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Abstract

Many literatures have discussed fractional order memristor and memcapacitor based chaotic oscil-
lators but the entire oscillator model is considered to be fractional order. My interest is to propose
a nonlinear oscillator with only the memcapacitor element considered fractional order. Hence 1
propose a fractional order memcapacitor based novel chaotic oscillator. The complete mathemati-
cal model for the proposed oscillator is derived and presented. The dimensionless state equations
are then analysed using the equilibrium points and their stability, Eigen values, Kaplan-Yorke di-
mensions and Lyapunov exponents. To understand the complete dynamical behaviour, bifurcation
graphs are obtained and presented. Finally the proposed fractional memcapacitor oscillator is im-
plemented using off the shelf components.

Keywords:
Nonlinear systems, chaos, memcapacitor, fractional order circuit design.

1. Introduction

Chaos theory has become very popular in recent years and many studies have been carried out
on chaotic systems. Researchers have been exploring different chaotic systems [1, 2, 3], especially
hidden [4, 5] and multi-stability attractors [6, 7]. Also, in the recent years, fractional order chaotic
systems have become very popular and interesting topic. Many researchers have worked on them
(8,9, 10].

Chaos based applications are an important subject in the both science and engineering fields.
Chaotic systems have used in fields such as oscillator [11, 12], random number generator [13],
cryptology [14], steganography [15], synchronization [16], control [17], communication [18] and
parameter estimation [19]. With improvements in circuit design technology through the develop-
ment of integrated circuits [20], chaotic systems have aroused special interest, especially fractional
order based chaotic systems[21].
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Designing nonlinear oscillators with memristor elements have gained interest in the recent
years. Recently there have been many literatures discussing about such oscillators. Recently many
researchers have worked on the fractional order memristor (fracmemristor) models [22, 23, 24, 25,
26, 27]. There have been discussions on using memristor, memcapacitor, cubic nonlinear resistors,
piecewise linear functions being used as the nonlinear element to generate chaos and hyperchaos
[28, 29, 30, 31, 32, 33, 34]. Some special phenomena such as hidden attractors as well as coexisting
attractors in memristor based oscillators are also discussed in the literatures [32, 33, 34]. Fractional
order memristor based nonlinear oscillators have also been proposed and investigated [25, 35, 36]
where the authors derived fractional order from the integer order model.

Fractional calculus has history dating back to 17th century but it found its applications in
science and engineering research only in the recent years [37, 38, 39, 40, 41, 42]. Many physical
systems such as dielectric polarization, electromagnetic waves, and quantum evolution of complex
systems exhibit fractional order dynamics and thus fractional order control algorithms are achieving
the attention of researchers [43, 44, 45, 46].

In this study, a chaotic oscillator based on fractional order memcapacitor is investigated. Firstly,
a fractional order chaotic system is derived from fractional order memcapacitor circuit given in Fig.
1. Then, electronic circuit realization of the derived fractional order chaotic system is implemented.
While it is not possible to implement fractional order integration with ordinary circuit elements,
it was implemented with ordinary circuit elements using the approximated transfer function of the
fractional order described in [46].

The article is organized as: in Section 2, chaotic oscillator with fractional order memcapacitor
is introduced; in Section 3, dynamic analysis of the fractional order memcapacitor based chaotic
(FMC) system is performed; in Section 4, circuit realization of FMC system is implemented and in
the last section, Section 5, the conclusion is given.

2. Chaotic oscillator with fractional order memcapacitor

Developing fractional order nonlinear elements have gained interest in the recent years. Re-
cently many researchers have worked on the fractional order memristor (fracmemristor) models
(22, 23, 24, 25, 26, 27].

The Ohmic relationship of a memristor is given by

L L
Ry, = dopedRon + (1 _ M)Roff (D
Ltotal Ltotal

where R, is the minimum resistance and R,y maximum resistance of the memristor. The
Ldopud

I f change of
ate of change o T

is given as,



Ldo ed
d( Ltofal ) _ iMmRon i(t)G(LdOped) (2)
dt D? Ltotal

where (i, denoting the dopant mobility, the length of memristor and g(%) is dopant drift

given by f (%) =1- (2% — 1)% . The fractional memristor model is given by the relation
mR mn . L ope
Dy = £ HmTon ) g (Zdoved 3)

D 2 L total

Solving (3) with (1), the input resistance of the memristor is derived as,

d?R;y, _ iﬂmRon

L ope.
o T (g )

Ltotal

where Ry = Roff — Ropn. For linear window g(%)z 1 and using Riemann - Lioville

Theorem the memristor resistance can be derived as

1
t q+1

Rin = | 7™ Fq(q+ 1) kRq / (t = )0y (7) dr S)
0

Similarly the memcapacitor can be derived from the relation

qe(t) = cm (z,v,t) w(t)

= f(x,v,t) ©)

where ¢.(t) is quantity of charge at time ¢, x is the correspondence internal state variable and
¢m, 1s memcapacitor. The voltage across memcapacitor [36] is given by the relation

o(t) = ¢ (@, e t) qe(t) (7)

c;} is inverse memcapacitance. Equations (6) and (7) can be simplified to a generalized forms

as,

q(t) = emD[v (r) drlv(t) , ¢ <0 (8)

v(t) = ¢;;,' Dq (1) dr]q(t), ¢ < 0O 9)



Equation (8) is the voltage controlled memcapacitance and Equation (9) is the charge controlled
memcapacitance. Using Riemann - Lioville Theorem the fractional order model of (8) and (9) can
be derived as

6;11 B q—1 _
olt) = 25 0/ (t— ) g (D) dr | q(t) (10)
q(t):If(’Z) /(t—T)qlv(T)dT v(t) (11)
LO J

Equation (10) shows the fractional order charge controller memcapacitor and (11) shows the
fractional order voltage controlled memcapacitor.

There have been discussions on using memristor, memcapacitor, cubic nonlinear resistors,
piecewise linear functions being used as the nonlinear element to generate chaos and hyperchaos
[28, 29, 30, 31, 32, 33, 34]. Some special phenomena such as hidden attractors as well as coexisting
attractors are also discussed in the literatures [32, 33, 34]. Fractional order memristor based non-
linear oscillators have also been proposed and investigated [25, 35, 36] where the authors derived
fractional order from the integer order model. In our earlier discussion about using the fractional
order memristor element directly [27] rather than deriving the fractional order model from integer
order we used all the states of the oscillator as commensurate fractional order. In this paper we are
focusing our discussions towards using the fractional order model to only the memcapacitor charge
equation and the other states are kept as integer order. For this analysis we used one of our mem-
capacitor oscillator from our earlier work [36] and replaced the memcapacitor with fractional order
memcapacitor as shown in Fig.1.
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Figure 1: Fractional order memcapacitor based chaotic oscillator




R is the resistance, L is the inductances, G is the conductance and C' is the capacitance. C, is
the memcapacitor as discussed in [36]. The current flowing through the circuit are i, iR, ic,,, IL-
Applying Kirchhoffs law to the circuit shown in figure 1,

R%ZVC‘F(G_%) (o = Bo) qc,,

Ce = 1 (o= Bo) qc,, — Vo) —iL (12)

where gc,, is the charge of the memcapacitor and 0 = D%, , g < 0. Integrating equation
(12) with respect to time and using the flux relation ¢ (t) = awo + % Bo?

RGE = e+ (G — 3) (a0 = 360%)
Cd(ﬁff =% (a0 — $B0% — ¢c) — a1, (13)
quitL = d)c

where q;, = [ir(t)dt, ¢ = [Ve(t)dt and 0 = DYqc,,, ¢ < 0. Let us define the dimen-
sionless states of the system as x = o,,,y = ¢.,2 = —Rqy and the parameters are defined as
a = Ca(RG —-1), b = %(RG— 1),e =C,d =a,e = g f= —# and for the val-
ues of L = 0.13H, C = 3.57F,G = 2.1,R = 211Q, a0 = 0.7F ' and B8 = 0.8F ¢ 157!
the FMC system shows chaotic oscillations and the corresponding parameter values are derived
asa=-1.638,0=-0.936,c=4.5,d=0.7,e =0.4 and f =- 1.75. The dimensionless model of the
fractional memcapacitor chaotic (FMC) system is given in (14) The Initial conditions are chosen as
[0.1,0.1,0.1]. Figure 2 shows the 2D phase portraits of the system (14).

Dz = ax + bx? + cy
y=dr+ex? —y+z (14)
Z=fy
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Figure 2: 2D phase portraits of the FMC system for a) q=0.99 ;b) q=0.9 for initial conditions [0.1, 0.1, 0.1]

3. Dynamic analysis of FMC system

In this section we derive the various dynamical properties of the FMC system like the equi-
librium points, Eigen values, stability of equilibrium, Lyapunov exponents (LEs) and bifurcation
plots.

3.1. Equilibrium Points

By equating X = 0, the FMC system (14) shows two equilibrium points £; = [0,0, 0] and
Ey =[-%,0, %2“26]. The Jacobian matrix of the FMC system (14) is
a+2bx ¢ O
J(X)=|d+2ex -1 1 (15)
0 f 0

The characteristic equation of the system are given in Table 1,



Table 1: The characteristic equation of the system

Equilibrium points Characteristic polynomial
B = [0.0,0 A% 4; A% : (2- a,))\202+ A 4 2M2 4 (2= 20)A + (1= ed — a) A1
N HEXN+ 1 —a)N+(—a— f—cd))+af
AZ9 A2l 4 (25‘2‘Ib> A20 A9 o2 (2b—22ab> Al
By = [-2.,0, %2(126] N <b+ab+ iace - bcd) N0 _ x93 4 <b—;ab> \2
N <ab— bf —i—ance— bcd) X=af

The characteristic polynomial at the equilibrium F'; and for the parameter values a = - 1.638,b =-0.936,c =4.5

d=0.7,e=04and f=-1.75. are \?% + A\2! 4 3.638A%0 + \19 - 2124 5276\ — 0.512)\10 +
17502 + X3 4+ 2.638\2 4+ 0.238\ + 2.8665 and for the equilibrium point Fs, the characteristic poly-
nomial is A% + A?1 4+ 0.362A%0 + A19 + 2212 — 1.276 A1 + 2.512010 +1.75)0% 4+ X3 — 0.638)\% +
3.262)\ — 2.8665 . The necessary condition for the FMC system to exhibit chaotic oscillations
is 577 — min; (Jarg(A;)|) > 0, where M the LCM of the fractional orders. For equilibrium F;
the FMC has a real root for the characteristic equation (-0.9858) whose argument is *0’ and hence
o7 — 0 = 0.157 > 0 and similarly for equilibrium F5 the FMC has a real root 0.7582, whose
argument is "0” with 577 — 0 = 0.157 > 0 which confirms that the FMC systems shows chaotic
oscillations [39, 43, 47] as its integer order model [36].

3.2. Lyapunov Exponents and Kaplan-Yorke Dimension

The Lyapunov exponents (LEs) of the FMC system are derived using the Wolfs algorithm [48]
by using the fractional order predictor-corrector [49, 50] solver fde12 [51] in place of the ode solvers
[52]. The fdel2 solver is modified accordingly so that we could use the fractional orders for one
state variable whereas the other two states remains in the integer order. The Lyapunov exponents
of the FMC system are numerically found as I; = 0.126, Ly = 0, L3 = —2.231 .Since there
is a positive Lyapunov exponent it is clear that the FMC system (14) is a chaotic attractor. The
Kaplan-Yorke dimension of the FMC system is calculated as D gy = 2.06.



3.3. Bifurcation

The dynamic behavior of the FMC system for change in parameter is investigated using the
bifurcation plots. The parameter b is chosen as the control parameter while the other parameters
are taken as a =-1.638, c=4.5, d=0.7,e =0.4 and f =-1.75. The initial condition for the first
iteration is [0.1,0.1,0.1] which is changed to the end values of states z, y, z in every iteration and
local maxima of the state variable is plotted. Fig.3a shows the bifurcation of the FMC system with
parameter b for the fractional order ¢ = 0.99.

The FMC system multiple chaotic regions for 0.948 < b < —0.9, —0.897 < b < —0.865,
—0.832 < b < —0.788, —0.785 < b < —0.753, —0.751 < b < —0.745 and —0.743 < b <
—0.737. The FMC system take a period halving exit from chaos. These chaotic regions are con-
firmed from the positive Lyapunov exponents (LEs) shown in Fig.3b.
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Figure 3: a) Bifurcation of the FMC system with parameter using forward continuation (parameter increased with
reinitializing of initial conditions to end values of state variables) with initial conditions for the first iteration taken as
[0.1,0.1,0.1] , parameters a = - 1.638,b=-0.936,c=4.5, d=0.7,e = 0.4 f =- 1.75. and fractional order ¢ = 0.99; b)
The corresponding LEs.

Similarly bifurcation of the FMC system with fractional order is shown in Fig.4. The system
parameters are a =- 1.638,b=-0.936,c=4.5, d=0.7,e = 0.4 and the initial condition are taken
as [0.1,0.1,0.1] . The FMC system shows multiple chaotic regions for 0.8623 < ¢ < 0.9173,
0.9206 < ¢ <0.9321 and 0.9478 < ¢ <1
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Figure 4: a) Bifurcation of the FMC system with fractional order g using forward continuation with initial conditions for
the first iteration taken as[0.1,0.1,0.1] and parameters a = - 1.638,b = - 0.936,c =4.5,d=0.7,e =04, f =- 1.75.

The basin of attraction of the FMC system is given in Fig.5 for two different initial condition
of y with Fig.5a showing the cross section of  — z plane at y = 0 and Fig.5b showing the cross
section of x — z plane at y = —0.1.
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Figure 5: Cross section of the basin of attraction in the x — z plane fora) y = 0;b) y = —0.1
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4. Circuit Implementation of FMC system

The RiemannLiouville definition of fractional order integral is

t
70f (1) 2 F%Q)/o (t—7)""f(r)dr, t>0, g€ RT (16)

where g is the fractional order, Z9 is the ¢*" fractional order Riemann-Liouville integral and
I" (¢) is the gamma function. If the initial values of f (¢) are equal to zero, then the fractional order
integral given Eq.16 can be represented in frequency domain as:

LATIS () = F (5) a7

where F' (s) is the Laplace transform of function f (¢). Hence it can be said that the transfer
function of fractional order integrator is

H(s) = — (18)

However, the transfer function in Eq.18 cannot be realized directly with circuit elements. To
overcome this setback, Charef et.al [46] proposed a method approximate the transfer function in Eq.
18 that the approximated transfer function can be realized with RC ladder network.

The transfer function in Eq.18 has a slope of —20g dB/decade and can be approximated with zig-zag
lines that have slopes of 0 dB/decade and 20 dB/decade. According to [46] the transfer function of
the fractional order integrator can be approximated as:

N—-1 s
1 . 14 =
gy = Lo b o 0F5)

~ 19
st (1+2)1 HZN:O(HP%) )

Where p; is the corner frequency (or 1/p; is the relaxation time), z; and p; are the zeros and
poles of the approximated transfer function respectively and calculated as:

po = py10¥/20
zi = (ab)'apo (20)
pi = (ab)'po

a and b in Eq.20 are calculated as:

a = Zn=1 — 10v/10(1—q)

b :pnﬁ — 10v/10q @2y

Zn—1

11



y in Eq.20, 21 represents the maximum error in dB between the actual line and the approxi-
mated zig-zag line. N in Eq.19 can be calculated as:

log (—wgom )

Tog (ab) +1 (22)

N = Integer

It can be seen from Eq.22 that the value of the N is dependent on the frequency band, the max-
imum error between the actual line and the approximated line and the fractional order. All these
steps given in Eq.19-22 are described in [46].

Ahmad and Sprott in their study [40], calculated approximated transfer function of fractional orders
between the interval [0.1 0.9] with 0.1 step for 2 dB and 3 dB maximum errors using the algorithm
given in [46].

In this study, the fractional order memcapacitor based chaotic system has been investigated for two
different fractional order: ¢=0.9 and ¢=0.99. For the case when the fractional order ¢=0.9, the ap-
proximated transfer function with maximum error y=2 dB given in [40] is used. The approximated
transfer function of 1/5% is given in Eq.23.

1 2.2675(s +1.2922) (s 4 215.4) @3)
§09 7 (5 +0.01292) (5 + 2.154) (s 4 359.4)

For the case when the fractional order g=0.99, the approximated transfer function is calculated
by using described steps given in [46]. In the calculation, the corner frequency p; is chosen as
0.01 rad/sec and the maximum frequency wy,q, 1S chosen as 100 rad/sec as in study [40] and the

maximum error y is chosen as 0.2 dB. The approximated transfer function of 1/s%% is given in
Eq.24.
1 1.073(s+1.0235) (s + 107.2) (24)
5099 7 (5 4+0.0102) (s + 1.072) (s + 112.3)
For fractional order integrator the circuit shown in Fig.6 is used.
The transfer function of the fractional integrator given in Fig.6 is
A Z
Yo _2(9) (25)
Vi R

If the minus sign is dropped in Eq.25 and the value of R is selected as 1, then the impedance
Z(s) is equal to the approximated transfer function.

Z(s) = — (26)
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Figure 6: The fractional order integrator.

If the both nominator and denominator of the approximated transfer functions given in Eq.23
and 24 are examined, it can be said that both nominators and denominators are a positive real func-
tion and difference between degrees of the nominator and denominator polynomials in the both
transfer functions is not greater than one, then the both approximated transfer functions given in
Eq.23 and 24 are a real positive function. Hence, the impedance Z (s) for the both transfer function
can be realized any type of passive network (RC, RL).

In this study, we used Foster I method to synthesize the impedance Z(s) with RC ladder network. In
this method, the impedance is synthesized by partial fraction expansion of the impedance function.
Since the degrees of the both denominator polynomials are 3 and the degrees of the both nominator
polynomials are 2, the partial fraction expansion form of the both impedance functions Z(s) will
have the following form:

k1 ko ks

Z(s) = + + (27)
s+ o1 s+o02 s+ 03
The implementation of Z(s) given in Eq.27 can be seen in Fig. 7. In the figure the value of
capacitors is calculated as C; = k% and the value of resistors is calculated as R; = [’% .

The calculated resistors and capacitors values are given in Table 2 for both the fractional order.
The value a in Table 2 is the integration coefficient.
Table 2: The resistors and capacitors values of the fractional order integrators for the fractional
orders ¢ = 0.9 and ¢ = 0.99.
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0

Figure 7: The fractional order integrator circuit synthesize from the transfer functions given in Eq.23 and 24.

Table 2: The resistors and capacitors values of the fractional order integrators for the fractional orders q=0.9 and q=0.99.

q=0.9 | ¢g=0.99
R(Q) 1/a 1/a
Ry (9) | 0.00253 | 4.37e~*
Cy (F) | 1.098 | 20.367
Ry () | 0.253 | 0.0439
Cy(F) | 1.833 21.23
R3(Q) | 62922 [ 95.76
Cs(F) | 1232 | 1.0238

If Table 2 is examined, the values of both resistors and capacitors are not much suitable for
practical applications. However, these values can be shifted to a more reasonable range with mag-
nitude scaling. Magnitude scaling is process of scaling all the impedances in a network with the
same factor that frequency response of the network remains unchanged. In this study, the magnitude
scaling factor is chosen as k,, = 4.10°.

After magnitude scaling process, it is needed frequency scaling in order to obtain phase por-
traits of the fractional order chaotic system with an analog oscilloscope. The frequency scaling
factor chosen as ky = 2500. In the frequency scaling process of an RC network, the value of
capacitors decreases with the scaling factor while that of resistors remain unchanged.

The values of the resistors and capacitors are given in Table 3 after the both magnitude and
frequency scaling processes. The value a in Table 3 is the integration coefficient. Table 3: The
resistors and capacitors values of the fractional order integrators for the fractional orders ¢ = 0.9

14



and ¢ = 0.99 after the scaling processes.

Table 3: The resistors and capacitors values of the fractional order integrators for the fractional orders q=0.9 and q=0.99.

q=0.91]¢=0.99
R (kQ) 400/a 400/a
Ry (EQ) | 1.012 0.1748
Cy(nF) | 1.098 20.367
Ry (EQ) | 101.2 17.56
Cy(nF) | 1.833 21.23
R (k) | 25169 38304
Cs(nF) | 1.232 1.0238
R1 R2 K3
ANy AA Af—
3 c1 Q c3 -
i {— —

Figure 8: Fractional order impedance for transfer functions given in Eq. 23 and 24. (Diyi-Chen Model [53])

The circuit model of the fractional order memcapacitor based chaotic system is given in Fig.9.
The fractional order impedance shown in Fig.8 is consists of RC ladder network shown as in Fig.
8. The value of resistors and capacitors in Fig.8 is given in Table 2 for the fractional orders ¢ = 0.9
and ¢ = 0.99.
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Fractional Order Impedance
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Figure 9: The circuit implementation of the fractional order memcapacitor based chaotic system.

The phase portraits of FMC system for the both fractional order ¢ = 0.9 and ¢ = 0.99 obtained
via an oscilloscope are given in Fig.10.
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Figure 10: 2D phase portraits of the FMC system obtained from oscilloscope for a)g = 0.99;b)qg = 0.99 for initial
conditions [0.1, 0.1, 0.1], (Volt/Div=0.5V).

The electronic circuit model of FMC system is realized using the electronic card in [54]. The
picture of the circuit realization of FMC system is given in Fig.11.
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Figure 11: The circuit realization of FMC system.

5. Conclusion

A new chaotic oscillator with a fractional order memcapacitor is proposed and analysed. The
dynamical properties of the chaotic oscillator are investigated with equilibrium points, Eigen values,
Lyapunov exponents and bifurcation plots. The proposed FMC system is then realised in hardware
using off the shelf components. The experimental results confirm that the proposed oscillator is
hardware realisable. For the future research on similar areas, various memristor models such as
discontinuous memristor, exponential flux controlled memristor, second order memristor, etc, can
be considered. Also, the proposed novel FMC system can be in used many science and engineering
fields.
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