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Abstract Mass attenuation coefficients, effective atomic

numbers, effective electron densities and Kerma relative to

air for adipose, muscle and bone tissues have been inves-

tigated in the photon energy region from 20 keV up to 50

MeV with Geant4 simulation package and theoretical cal-

culations. Based on Geant4 results of the mass attenuation

coefficients, the effective atomic numbers for the tissue

models have been calculated. The calculation results have

been compared with the values of the Auto-Zeff program

and with other studies available in the literature. Moreover,

Kerma of studied tissues relative to air has been determined

and found to be dependent on the absorption edges of the

tissue constituent elements.

Keywords Attenuation coefficient � Effective atomic

number � Geant4 simulation � Tissue model

1 Introduction

During more than three decades, due to the digital

computing developments and wide use of radioactive

sources, the attenuation measurements of X-rays and

gamma rays have become an important part in numerous

diverse fields of physics. Their interactions with the human

tissues and organs have also occupied a special significance

in medical physics by virtue of their applications in diag-

nostic and radiation therapy. Human organs are made of

tissues that are formed by specialized cells. Each cell is

composed of elements with low atomic numbers [1–3].

Therefore, the doses received by tissues imputed to ion-

ization, scattering and absorption processes occured with

such elements [4]. The mass attenuation coefficient (l/q)
and the mass energy-absorption coefficient (len=q) need to

be known for dosimetry studies. Such basic quantities are

discussed in Sect. 3, and detailed information about them

can be found in [5].

The first tabulations of the mass energy-absorption

coefficient were the efforts of Berger [6] and Allison [7].

Berger’s tabulation included 15 elements, air, and water at

the energy region between 3 keV and 10 MeV, whereas

Allison’s tabulation for seven elements, air, and water for

energies from 10 keV to 100 MeV. Later on, Hubbel

published data [8] on mass attenuation and mass energy-

absorption coefficients for H, C, N, O, Ar, and seven

mixtures from 0.1 keV to 20 MeV. That work has been

extended two times [9, 10] to cover all elements (for Z ¼ 1

to 92) and 48 additional substances over a wide energy

range from 1 keV to 20 MeV. As a technological alterna-

tive, the XCOM program was developed to calculate the

attenuation coefficients of photon for elements, com-

pounds, and mixtures over a wide range of energies [11].

This program has been converted to WinXcom software

[12] based on the mixture rule for all elements and any

mixture at selected energies. In addition, Chantler [13]

provided new tabulation that was improved as a pro-

gramme FFAST [14].

The Monte Carlo method is commonly used to simulate

radiation interaction with matter and to obtain the mass

attenuation coefficient. There are some strong toolkits like

Geant4 and MCNP that are currently used in the field of

radiation physics. The validation of Geant4 [15] simulation
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package has been frequently examined for determining the

attenuation coefficients by using different types of mate-

rials [16–19] and tissue-equivalent models [20, 21].

Moreover, this work is also a validation of Geant4 as a

powerful alternative tool to calculate attenuation parame-

ters. In addition to Geant4, MCNP is also preferred to

simulate the attenuation of photon in various media and

gives very satisfactory results (see, for example, [22–26]).

Effective atomic number (Zeff), effective electron den-

sity (Neff ) and kinetic energy released per unit mass

(Kerma) are also serviceable parameters to characterize

photon interaction with human tissues. The variation of Zeff
with photon energies was suggested by Hine [27]. Thus,

accurate and quick determinations of this parameter were

targeted by several experiments, methods and programs.

Such experiments, in which Zeff is determined by using the

attenuation coefficients, were performed for elements

[28, 29], for mixtures [30–32] and for tissues or tissue-

equivalent materials [33, 34]. In addition, many theoretical

studies have been conducted to obtain the attenuation

coefficients and effective atomic numbers for elements and

mixtures. For example, Jayachandran found that the cal-

culated value of the effective atomic number (7.23) for

lithium tetraborate Li2B4O7 agrees closely with the value

of 7.22 for soft tissue of composition C5H40O18N [35].

Manohara, who investigated the effective atomic number

for some fatty acids and cysteine, concluded that Zeff is

equal to the mean atomic number over a wide energy range

around 1 MeV [36]. Singh, who studied dosimetric mate-

rials in terms of mass energy-absorption coefficients,

equivalent atomic numbers and Kerma in the energy range

between 0.015 and 15 MeV, concluded that Nylon has been

found to be a good tissue substitute material for making

tissue phantoms of the biological tissues [37]. Moreover,

Taylor submitted the Auto-Zeff software [38] as an appro-

priate method to evaluate the effective atomic numbers that

necessitate consideration of energy-dependent behavior for

composite materials such as biological tissues, alloys,

polymers, compounds, and mixtures for total and partial

photon interactions. Later on, Un and Caner developed a

new platform (Direct-Zeff) that computes the mass attenu-

ation coefficients, the effective atomic numbers and the

effective electron numbers per unit mass for any selected

materials [39]. XMuDat is also a program to be used with

Windows 95 or Windows NT operating systems for the

evaluation of mass attenuation coefficient, mass energy-

absorption coefficient and the single value of effective

atomic number for a given material for total or specific

reaction channels over range of 1 keV to 50 MeV [40].

Similar to the XMuDat, another program called NXcom is

constructed for calculating attenuation coefficients of fast

neutrons and gamma rays [41]. The results of the program

were tested by comparing them with the ones from

WinXcom and Monte Carlo simulations and show very

good agreement. There are numerous studies in the litera-

ture (see, for instance, [42–49]) providing a wide database

for attenuation coefficients, Zeff , Neff and Kerma for

biomedical materials by using various methods and

programs.

The present work shows the comparison between results

from Geant4 simulation package, theoretical calculations

and experiments for three different types of human tissues

in terms of mass attenuation coefficients and effective

atomic number. For this purpose, first of all, Geant4 Monte

Carlo simulations have been utilized to extract the mass

attenuation coefficients of photon for adipose, muscle and

bone tissues. The results have been compared with the ones

from theoretical calculations and experimental data avail-

able in the literature. Effective atomic numbers of studied

tissue models have been computed by direct method, Auto-

Zeff and XMuDat programs. In addition, mean free paths of

the photons, Kerma relative to air and effective electron

density for those tissues have been discussed.

2 Geant4 simulation

Monte Carlo simulations of this study have been per-

formed by using the package of Geant4.10.03.p02. Geant4

is the successor of the GEANT series of software toolkits

that were first to use object-oriented programming based on

C?? language. It allows users to define classes for the

detector geometry, primary particle generator, and physics

processes to handle the interactions of particles with mat-

ter. It provides a set of electromagnetic physics processes

handling the photon-tissue interactions (photoelectric

effect, Compton scattering, Rayleigh scattering and pair

production) over a wide range of energy [50].

In this study, adipose, muscle and bone tissue models

have been studied by the Geant4 code that was explained in

detail in our previous work [51]. Briefly, they have been

considered to have simple geometries, slabs of various

thicknesses from 1 to 10 cm. The elemental composition of

the studied tissues is shown in Table 1. The densities of

tissue models have been chosen to be 0:95 g=cm3 for adi-

pose tissue, 1:04 g=cm3 for muscle tissue and 1:85 g=cm3

for bone tissue [1, 3].

The beam source has been positioned on one of the

edges of the tissue model such that the momentum direc-

tions of the photons are perpendicular to the tissue surface.

Simulations have been performed for 14 different photon

energies from 20 keV to 50 MeV, for each tissue type

separately. For each run, 106 incident photons have been

injected upon the tissue models.
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3 Methods of calculation

3.1 Mass attenuation coefficient

A beam of photons with an incident intensity, I0, pen-

etrating a layer of material with thickness, x, and density, q,
emerges with intensity, I, given by the exponential atten-

uation law:

I=I0 ¼ e�lx ; ð1Þ

where l in the unit of cm�1 is the linear attenuation

coefficient of the absorber, which can be obtained from

measured values of I0, I and x. In addition, the ratio of the

linear attenuation coefficient to the density (l=q) is called
the mass attenuation coefficient. l=q relies heavily on

theoretical values for the total cross section per atom (rtot)
according to the equation:

l=q ¼ rtot=uA ; ð2Þ

where u is the atomic mass unit and A is the atomic mass

number of the target element. The total cross section can be

written as the sum over contributions from the principal

photon interactions by

rtot ¼ rph þ rcoh þ rincoh þ rpair ; ð3Þ

where rph is the atomic photo-effect cross section, rcoh and
rincoh are the coherent (Rayleigh) and the incoherent

(Compton) scattering cross sections, respectively, and rpair
is the cross sections for electron-positron production. The

total mass attenuation coefficient, ðl=qÞtot, for any chem-

ical compound or mixture of elements is given by mixture

rule.

ðl=qÞtot ¼
X

i

wiðl=qÞi ; ð4Þ

wi and ðl=qÞi are the weight fraction and mass attenuation

coefficient of the ith constituent element, respectively.

3.2 Effective atomic number

Zeff has been calculated as a function of photon energy

by using three different methods: direct method, interpo-

lation method and Auto-Zeff program. In addition, XMuDat

software has also been utilized to get Zeff value.

According to the direct method, Zeff is equal to ratio of

total atomic cross section (ra) and total electronic cross

section (re).

Zeff ¼ ra=re ð5Þ

The total atomic cross section, ra, is given by:

ra ¼
ðl=qÞtissue
NA

P
iðwi

Ai
Þ ; ð6Þ

where NA is the Avogadro’s number. For calculations, the

mass attenuation coefficients have been accepted to have

values estimated based on Geant4 simulation. The elec-

tronic cross section, re, is defined as:

re ¼
1

NA

X

i

fiAi

Zi
ðl=qÞi

� �
; ð7Þ

where fi and Zi are the fractional abundance (mass fraction)

and the atomic number of the ith element in the tissue,

respectively. The effective electron density (Neff ) is the

number of electrons per unit mass and expressed by the

relation of:

Neff ¼
ðl=qÞtissue

re
: ð8Þ

The Auto-Zeff program is an user friendly interface used to

compute energy-dependent atomic numbers with very low

uncertainties for user-specified material. The cross section

matrices of photon-element interactions are constructed for

energies between 0.01 and 1000 MeV. Coefficients for

composite media are constructed via linear additivity of the

fractional constituents and contrasted against the precal-

culated matrices at each energy, thereby associating an

effective atomic number through interpolation of adjacent

cross section data.

XMuDat computer software is able to produce a single-

valued effective atomic number for a given material by

assuming the photoelectric effect as the main interaction

process [40]. The method of XMuDat program to calculate

the effective atomic number based on the formula:

Table 1 Fraction weights of the elements for adipose, muscle and

bone tissues

Element Tissue

Z Symbol Adipose Muscle Bone

1 H 0.1140 0.1020 0.0640

6 C 0.5980 0.1230 0.2780

7 N 0.0070 0.0350 0.0270

8 O 0.2780 0.7290 0.4100

11 Na 0.0010 0.0008 –

12 Mg – 0.0002 0.0020

15 P – 0.0020 0.0700

16 S 0.0010 0.0050 0.0020

17 Cl 0.0010 – –

19 K – 0.0030 –

20 Ca – – 0.1470
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Zeff ¼
X

i

ðaiZim�1Þ1=ðm�1Þ; ð9Þ

where ai is the fractional number of the electrons of the ith

element and m is a constant between 3 and 5. It is preferred

that m is set to be 3.6 for elements with Z\6 and 4.1 for

elements with Z[ 6 [52].

3.3 Kerma

Kerma is the initial kinetic energy of all secondary

charged particles liberated per unit mass. It is applicable to

photons and neutrons and in the unit of J kg�1 ¼ Gy, as the

absorbed dose. Kerma of the compounds, mixtures, and

human tissues relative to air was calculated [47, 53, 54]

based on the relation:

Kr ¼
Ktissue

Kair

¼ ðlen=qÞtissue
ðlen=qÞair

; ð10Þ

where ðlen=qÞ is the mass energy-absorption coefficient. In

this work, the values of ðlen=qÞ for the elements of studied

tissues have been extracted from the compilation of Hub-

bell [9], and then the values of ðlen=qÞ for the tissues have
been calculated by mixture rule.

4 Result and discussion

4.1 Mass attenuation coefficient

The exponential relationship between the ratio of

transmitted photon intensity to that of the incident photons

(I=I0), which is called transmittance, and the tissue thick-

ness is given by Eq. 1. Geant4 simulation results I=I0 with

energies from 0.02 MeV to 50 MeV have been plotted as

functions of tissue thicknesses for adipose, muscle and

bone tissue models separately (see Fig. 1). Each graph has

been fitted to the function of e�lx in order to get the fitting

parameter, l (linear attenuation coefficient). The solid lines

in the graphs are the fit curves.

The mass attenuation coefficient ðl=qÞ for each tissue

type and energy has been calculated by dividing l to the

density of the tissue of interest. l=q values for adipose,

muscle and bone tissues obtained from the simulation are

given in Tables 2, 3 and 4, respectively, together with the

ones from theoretical calculations and experimental

studies.

It can be seen from the tables that the results obtained

from simulation, theoretical and experimental studies are in

a very good agreement. Generally, the errors on the values

from the simulations and the experiments were calculated

to be less than 2% and 3%, respectively [21, 33]. In the

present study, error propagation of the fitting in the

figures has been found to be less than 5%. The small dis-

crepancies among the values can be attributed to the tissue

modeling and the methods that were used to estimate the

cross sections. The l=q values decrease with increasing

photon energies for all tissue types. This behavior depends

on the total photon interaction that shows the superposition

of multiple partial interactions (e.g. photoelectric absorp-

tion, Compton scattering and pair production). According

to theoretical calculations, the mass attenuation coefficients

experience a significant attenuation of 71.64 % for adipose

tissue, 77.73 % for muscle tissue and 84.47 % for bone

tissue in the energy region between 20 and 30 keV. The

calculated theoretical l=q values tend to be higher than the

simulated values for low energies. However, these values

show more agreement at a high energy region. It is clear

that the higher theoretical values reflect the effect of the

chemical composition of the tissue models and the mixture

rule method.

The photoelectric absorption is a dominant process for

photon energies of less than 50 keV. In this energy region,

the value of the mass attenuation coefficients rapidly goes

down due to the photoelectric cross sections directly pro-

portional to Z4 and inversely to E3. At higher energies, the

Compton scattering becomes the dominant mechanism that

varies with Z and E�1. Therefore, a smooth decrease of l=q
values was observed. For the photon energies greater than

1022 keV, the pair-production process appears and the

interaction cross section changes with Z2 and logE. Thus,

the l=q values look independent of photon energy and

decrease slowly.

Mean free path ðkÞ, defined as the average distance

between two successive interactions, is simply reciprocal

of the linear attenuation coefficient. k of the photons

through adipose, muscle and bone tissues is illustrated in

Fig. 2 as a function of energy.

It is clear that k values increase with energy except for

the abrupt changes near the absorption edges and at the

threshold energy of photon interactions, such as photo-

electric effect, coherent (Rayleigh), incoherent scattering,

and electron-positron production. The k is inversely pro-

portional with the number of photon collisions. Thus, it can

be concluded that the photon collisions are relatively high

in the low energy region\30 keV, which makes the mass

attenuation coefficients bigger. This property is also an

explanation for the fact that the low energy X-rays deposit

much energy (radiation dose) in the first few centimeters in

the body. For higher energies, the number of collisions

sharply drops down causing a decrease in the mass atten-

uation coefficients.
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Fig. 1 Transmittances as a

function of tissue thickness for

adipose, muscle and bone

tissues with fit curves
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4.2 Effective atomic numbers

The effective atomic numbers ðZeffÞ for adipose, muscle

and bone tissues in the photon energy region 0.01 to 20

MeV are shown in Fig. 3.

It was found that the computed effective atomic num-

bers at a low energy region (\ 30 keV) have a high

uncertainty. For example, it reaches the value of ± 25%

when Auto-Zeff is utilized [38]. On the other hand, the

effective atomic numbers calculated by using the Auto-Zeff
software and direct method are in a very good agreement in

the energy region from 50 keV to 10 MeV where the

Compton scattering is a dominant process. In this medium-

energy region, the effective atomic numbers have been

observed to be constant, whereas significant variations

have been found in the lower (\50 keV) as well as in the

higher ([10 MeV) regions. The effective atomic numbers

calculated by using the direct method have higher values

than those computed by Auto-Zeff software and interpola-

tion method in the energy regions of both photo-absorption

and pair production. Moreover, the Zeff calculated by direct

method and Auto-Zeff program have a maximum differ-

ences of 18.9% for adipose, 21.2% for muscle and 38.7%

Table 2 Mass attenuation coefficients for adipose tissue

Photon energy (MeV) Mass attenuation coefficients ðcm2=gÞ

Theoretical Simulation Experiment

0.02 1.079 0.939 1.26 [33]

0.03 0.306 0.264 0.32 [33]

0.05 0.223 0.205 0.21 [33]

0.06 0.198 0.187 –

0.08 0.179 0.173 0.18 [34]

0.15 0.150 0.148 –

0.36 0.111 0.111 –

0.66 0.086 0.088 0.08 [34]

0.83 0.077 0.076 0.07 [34]

1.17 0.065 0.066 0.06 [34]

1.33 0.061 0.062 0.05 [34]

10 0.021 0.020 –

20 0.017 0.014 –

50 0.015 0.017 –

Table 3 Mass attenuation coefficients for muscle tissue

Photon energy (MeV) Mass attenuation coefficients ðcm2=gÞ

Theoretical Simulation Experiment

0.02 1.702 1.517 1.75 [33]

0.03 0.379 0.325 –

0.05 0.244 0.221 0.30 [33]

0.06 0.206 0.192 0.19 [33]

0.08 0.182 0.174 0.17 [21]

0.15 0.149 0.146 –

0.36 0.110 0.109 0.09 [21]

0.66 0.085 0.085 0.08 [21]

0.83 0.076 0.078 –

1.17 0.065 0.065 0.05 [21]

1.33 0.061 0.062 0.05 [21]

10 0.022 0.025 –

20 0.018 0.017 –

50 0.017 0.012 –

Table 4 Mass attenuation coefficients for bone tissue

Photon energy (MeV) Mass attenuation coefficients ðcm2=gÞ

Theoretical Simulation Experiment

0.02 6.325 – –

0.03 0.982 0.910 –

0.05 0.419 0.379 0.49 [33]

0.06 0.278 0.255 0.24 [33]

0.08 0.207 0.193 0.19 [21]

0.15 0.149 0.144 –

0.36 0.107 0.106 0.09 [21]

0.66 0.082 0.082 0.08 [21]

0.83 0.074 0.074 0.07 [21]

1.17 0.062 0.062 0.06 [21]

1.33 0.058 0.058 0.05 [21]

10 0.023 0.025 –

20 0.20 0.021 –

50 0.019 0.019 –

Photon energy (MeV)
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Fig. 2 Mean free path ðkÞ of photon through adipose, muscle and

bone tissues
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for bone in the energy region around 10 keV. The values of

Zeff for adipose and muscle by using interpolation method

were taken from [44]. Furthermore, the single Zeff values

obtained from the XMuDat program are also included to

the graphs shown in Fig. 3. For each type of tissue, it lies

between the values obtained from the direct method and the

one from Auto-Zeff software.

The plot of effective atomic numbers versus effective

electron densities for tissue models is shown in Fig. 4. As it

can be expected, the relation between Neff and Zeff is

smooth and linear since they are directly proportional with

each other.

4.3 Kerma

Kerma relative to air ðKrÞ as a function of photon energy
for adipose, muscle and bone tissues over the energy range

from 1 keV to 20 MeV is shown in Fig. 5.

Energy-dependent variation of Kr represents the

behavior of Zeff due to different processes such as photo-

absorption, Compton effect and pair production. Although

this variation can be seen clearly at a photon energy below

100 keV, the Kr values were found to be constant (�
unity) for higher energies. The Kr value for bone tissue,

which contains the higher-Z elements like Ca, reaches up to

6.96 at 40 keV. This peak value of Kr can be attributed to

the photoelectric effect around the K-absorption edge of

Ca. For muscle and adipose tissues, which have negligible

fraction weights of high-Z elements, the values of Kr are

equal or less than one.

5 Conclusion

This article provides data, from Geant4 simulations and

theoretical calculations, of mass attenuation coefficients

and effective atomic numbers for adipose, muscle and bone

tissues over a wide range of energies up to 50 MeV. All of

these parameters are mainly dependent on the incident

photon energy and the tissue constituent elements. The

mass attenuation coefficient and effective atomic numbers

sharply decrease where the photo-absorption is the domi-

nant mechanism in tissue. Also, they are nearly constant at

the predominance of the Compton scattering, and a smooth

variation can be seen at the energy region of the pair-

production process.

Mass attenuation coefficients generated by using Geant4

have uncertainties less than � 1% at the low energy region

and less than 8% at high energies. Effective atomic num-

bers calculated by direct method and Auto-Zeff program

have a maximum difference of 18.9% for adipose, 21.2%

for muscle and 38.7% for bone in the energy region around

10 keV. The single effective atomic number obtained by

the XMuDat program exhibited values higher than those of

the Auto-Zeff program and less than those of the direct

method. Moreover, the elements that compose the tissue

play a significant role in the calculation of Kerma.
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