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Abstract In this study, the classification of time series belonging to three different chaotic systems has been
proposed using machine learning methods. For this purpose, the time series of Lorenz, Chen, and Rossler
systems, three of the well-known chaotic systems, are classified using machine learning methods. In the
study, the classification of chaotic systems has been made with 18 sub-methods of Naive Bayes, Support
Vector Machines, K-Nearest Neighborhood, and Tree methods. As a result, the K-Nearest Neighborhood
method has classified time series belonging to chaotic systems with very high accuracy of 99.2%. In this

way, it has become possible to associate the chaotic-random signals with a mathematical system.

1 Introduction

Chaotic systems are nonlinear mathematical models
which originated from the rules of defining chaotic
behaviors. In recent years, chaos theory and chaotic sys-
tems have been used in various engineering fields such
as cryptography, image and voice encryption, secure
communication, data security, random number gener-
ators, digital signature applications, weak signal detec-
tion, DC-DC converters, and neurophysiology, among
others. Similarly, machine learning has been one of
the most popular subjects widely used in recent years.
Although many studies on machine learning mainly
focus on the classification processes in different fields.
Theretore, in this study, chaotic systems and machine
learning are used together.

Machine learning is a branch of artificial intelligence
that enables computers to learn using existing data
from complex and large data sets [1]. Due to the high
classification performance of machine learning algo-
rithms, they have been used in many different areas
[2]. Because of its classification ability, it can also be
used to classify chaotic systems that have similar char-
acteristics to each other.

According to the literature review, there are vari-
ous studies on the classification of chaotic signals using
machine learning algorithms. The radial basis function
approach and standard numerical techniques have heen
widely used in estimating the fime series of chaotic
systems [3-6]. It is very successtul in classitying and
predicting machine learning and deep learning tech-
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niques [7]. This performance reveals that it can also
be used to estimate and classify time series [8,10].
Pathak et al. [11], [12] used machine learning to per-
form model-free prediction of chaotic dynamical sys-
tems. Boulle et al. [13] classified the univariate time
series of a dynamic system using machine learning algo-
rithms. They trained neural networks on a more com-
plex and larger dimensional data set than test data to
assess the ability to generalize with respect to the low-
dimensional phase space.

Machine learning algorithms have been used in vari-
ous fields. Zhang et al. [14] designed a machine learning-
based classifier to differentiate between schizophrenia
patients and healthy constructs using features extracted
from electroencephalograph (EEG) signals based on
time-dependent EEG activity (ERP). Sayilgan et al.
[15] classified seven different hand gestures using a
brain—computer interface based on steady-state visu-
ally evoked potential (SSVEP). They used Naive Bayes
(NB), Support Vector Machines (SVM), and Extreme
Learning Machine as classification algorithms. Shimpi
et al. [16] classified 16 types of arrhythmias with electro-
cardiogram (ECG) data using machine learning algo-
rithms. In the classification, they used the SVM, Ran-
dom Forest, Logistic Regression, and K-Nearest Neigh-
bor (KNN) algorithms.

In this study, we classified the signals presenting
chaotic behaviors and random characteristics using a
new approach. According to experimental results, time
series of chaotic systems have been classified with high
accuracy using machine learning methods such as NB,
SVM, KNN. and Tree. The rest of the study has been
organized as follows. Section 2 introduces the chaotic
systems used in the study and the data set obtained
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from them. Section 3 briefly explains the machine
learning methods used for the classification. Section 4
presents the simulation and performance results of the
classification processes. Section 5 give the conclusions.

2 Chaotic systems and data set used in the
study

This section presents three different systems used for
generating the time series to be classified and the data
set belonging to the time series obtained from these sys-
tems. There are numerous chaotic systems in the liter-
ature, such as Lorenz, Chen, and Rossler systems. For
that reason, some criteria were taken into account while
selecting the systems used in this study. Based on this,
the systems that are among the most common chaotic
systems, 3-dimensional, and whose mathematical mod-
els contain similar nonlinear terms were determined.
Additionally. these systems can be used for real physical
system modeling such as atmospheric, electrical, chem-
ical systems. Moreover, since the time series and phase
portraits of the Lorenz and Chen systems are similar
and the Rossler system’s time series and phase portraits
are different from the others, it is deemed appropriate
to examine the classification performance.

2.1 Lorenz system

Lorenz system was developed in 1963 by Edward Lorenz
as a simplified mathematical model for atmospheric
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convection [17]. Lorenz system consists of three ordi-
nary differential equations, as seen in Eq. (1). In Eq.
(1), the constants of a. b and care system parameters,
and =, y, and z are the system’s state variables.

& =a(y—x)
j=le—z)—y
i=uwy — bz. (1)

The Lorenz system has also been used in simplified
mathematical models of thermosiphons [18], lasers [19],
electric circuits [20], brushless DC motors [21], dynamos
[22], and chemical reactions [20]. In Fig. 1, the time
series and the phase portraits of the Lorenz System
are plotted for parameter values of a = 10, b = 8/3,
¢ = 28. And the initials values are set to xp = 10,
Yo — *10, zZ0 — 15.

2.2 Chen system

A double scroll chaotic attractor, similar but nonequiv-
alent to Lorenz System, is named Chen System or Chen
Attractor proposed by Guanrong Chen and Ueta in
1999 [23]. Chen System also consists of three ordinary
differential equations, as seen in Eq. (2).

& =aly—x)
y=(c—a)r—rz+cy
Z=uwy — bz, (2)
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Fig. 1 Time series and phase portraits of Lorenz system for a = 10, b = 8/3, ¢ = 28, initials = {10, —10, 15}
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Fig. 2 Time series and phase portraits of Chen system for a = 40, b = 3, ¢ = 25, initials = {0.1,0.5,0.6}

where a, b, and ¢ are system parameters and z, y and
z are the system’s state variables. The time series plots
and the phase portraits of the Chen System can be seen
in Fig. 2 for parameter values of a = 40, b = 3, ¢ = 25,
and the initials of xg = 0.1, yo = 0.5, zp = 0.6. When
the time series and phase portraits in Figs. 1 and 2 and
Eqs. 1 and 2 are examined, it is seen that these systems
have similar properties, which poses a challenge that
should be overcome in the classification of time series.

2.3 Rossler system

The Rossler system, developed by Otto Rossler in 1976,
is an advantageous model for modeling chemical reac-
tions [24]. The Rossler System, like the other two sys-
tems used in the study, consists of three continuous-
time nonlinear ordinary differential equations that
present chaotic behavior (Eq. 3).

L=—y—z
y=ux+ay
z=b+z(x —c), (3)

where a, b, and ¢ are system parameters and z, ¥ and =z
are the system’s state variables. Although Rossler Sys-
tem is similar to the Lorenz system in terms of equa-
tions, it is a system that can be analyzed more straight-
forwardly and has a single scroll. Figure 3 shows the
time series and phase portraits of the Rossler System
obtained with parameter values of @ = 0.1, b = 0.1,
¢ = 14, and the initials of xo = 10, yo = 10, zo = 0.
Examining these time series and phase portraits show

that they are different from the other two systems, and
it will be easier to classify them.

2.4 Data set

In this section, the process followed in obtaining the
data set used in the study is explained. While creating
the data set, the Runge-Kutta 4 (RK4) algorithm has
been used to calculate all systems’ state variables and
obtain time series. In addition, many results have been
obtained by making changes in calculation and systems
parameters to diversity the time series data. When cal-
culating the time series, 750 different results for each
system were calculated by changing the length of the
time series, the step interval of the RK4 algorithm, the
system parameter values, and the initial values. Since
all systems are 3-dimensional, 2250 time series for each
system and 6750 different time series data sets have
been obtained for three systems. The calculation and
the system parameters used in the study are shown in
Table 1.

3 The machine learning methods used in
the study

Time series are classified using machine learning algo-
rithms of Lorenz, Chen, and Rossler chaotic systems.
In this study, Support Vector Machines (SVM), Naive
Bayes (NB), K-Nearest Neighbor (KNN), and Tree
algorithms are used to classify the system type by
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Fig. 3 Time series and phase portraits of Rossler system for a=0.1, b=0.1, c=14, initials={10, 10,0}

Table 1 The calculation and the system parameters

System  Length of Time Series Step Interval  System Parameters Initials
(The number of of RK4 (Values of Parameter
calculated values) Algorithm b for all systems)
Lorenz 10000, 12500, 15000, 0.01 b=25,3,35,4,45,5 Xop=0.1,02,03,04, 05
17500, 20000 Yo = 0.3, 0.4, 0.5, 0.6,0.7
0.02 Zy =04, 0.5, 06, 0.7, 0.8
Chen 20000, 25000, 30000, Xp=28,9,10, 11, 12
35000, 40000 0.05 b =0.05, 0.1, 0.15, 0.2, 0.25, 0.3 Yy =8, 9, 10, 11, 12
Zp=0,1,2,3,4
0.1 Xop=28,9,10, 11, 12
Rossler 2000, 4000, 6000, 0.2 b = 2.5, 2.55, 2.6, 2.65, 2.7, 2.75 Yo= -8, — 9, — 10, — 11, — 12

8000, 1000

Zo = 13, 14, 15, 16, 17

checking the time series data. These algorithms used
are briefly explained below.

3.1 Support vector machine

Support vector machine was developed by Vapnik et al.
in the 1990s. SVM is used to separate data belonging to
two basic classes. It is also an algorithm used to perform
classification and regression operations [25]. It allows
drawing the decision boundary with the quadratic opti-
mization method on a plane where the data are located
and the farthest from the members of the two classes,
as shown in Fig. 4 [26].

Each of the data shown in Fig. 4 is computed using
the equation in Eq. 4 as follows:

{ (i, ni) [mi € RY nye{-1, 1}}?11 ) (4)
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Where m is the input data, and n is a class represented
between — 1 and 1.
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Fig. 4 An example of a separable problem in a 2-
dimensional space
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3.2 Naive Bayes

It is an algorithm developed by British mathematician
Thomas Bayes [27]. NB is one of the most essential and
successtul learning algorithms in machine learning [28].
It is a probabilistic statistical inference and is used to
identify previously created classes [29]. For this pur-
pose, Chen, Lorenz, and Rossler are used in the study
to divide the time series of chaotic systems into 3 differ-
ent classes. NB, the theorem of the algorithm, is shown
in Eq. 5. The conditional probability of P (C,.|I) is cal-
culated according to Eq. 5.

P(Cll) = =5

(5)

where P (C,|I) expresses the probability that the input
I sample belongs to the C class. P (C,) indicates the
probability of observing class @, P (I|C,)is the proba-
bility of observing the class C,.. and P (1) refers to the
probability of input independent ot classes.

3.3 K-nearest neighbor

KNN is a sample-based classifier that allows classifi-
cation without knowing the probability distributions
of classes [30]. Therefore, it is a model that enables
data classification to be classified according to the clos-
est point by the K number determined from the previ-
ously classified data. The closest points are calculated
from the Euclidean distance. The ideal K value dif-
fers according to the data that are being studied [1].
The process of determining the closest neighbors can
be accelerated using traditional indexing methods.

3.4 Decision tree

It is a data mining classification technique that is fre-
quently used in classification problems [31]. In Decision
trees, a decision tree is first created, then the rules gen-

T'rue Positive + True Negative

Table 2 Confusion matrix

Actual Class

Predicted Class

Positive Negative
True True Positive True Negative
False False Positive False Negative

the learned model is shown as classification rules. In
the classification stage, the accuracy of the classifica-
tion rules is measured using test data. If the accuracy
measured is within the acceptable limits, these rules are
used to classify new data sets [35].

4 Simulation results and performance
evaluation

A data set consisting of time series belonging to Chen,
Lorenz, and Rossler chaotic systems and containing .z,
y, z, and time parameters in each system has been cre-
ated. Chen dataset with 19831 pieces of data, Lorenz
dataset with 17827 pieces of data, and Rossler dataset
with 18167 pieces of data, and therefore, a total of
55825 pieces of data have been used. 80% of the cre-
ated data set has been nsed for training and 20% for
testing and verification. Test and training data have
been determined randomly. After the training process,
the developed classifier has been tested by the test and
verification data. Moreover, the classification achieve-
ments have been calculated due to the classification,
accuracy, precision, sensitivity, specificity, recall, and
F1-score values. Then the results of these measurements
were presented with a confusion matrix, scatter plot
graphies, and ROC (receiver operating characteristic)
curves were drawn to measure the model’s success.

The determined classes from the test data and the
number of true classes of the systems were compared.
The accurate estimation ratio was calculated using the
confusion matrix (Table 2) and Eq. 6.

Accuracy =

True Positive + True Negative + False Positive + False Negative

erated from the decision trees are classified [32]. Deci-
sion trees have a structure consisting of roots, branches,
and leaves. It looks like a tree due to its structure. Deci-
sion trees start with the root node and split large data
sets into smaller groups moving through the leaves. In
this tree structure, each element is called a node. Het-
erogeneous nodes created in these trees are called child
nodes, and homogeneous ones are called terminal nodes
[33]. Data classification in decision trees consists of two
primary stages: learning and classification stages [34].
In the learning phase, the training data set is analyzed
by the classification algorithm to create a model, and

This ratio shows the general classification accuracy of
the classifier. In addition, calculations of the other mea-
surements are given as follows. As shown in Eq. 7, pre-
cision is expressed as the ratio of true positive values
to the sum of true positive and false positives.

Precisi True Positive )
recision = — P
True Positive + False Positive

As shown in Eq. 8. sensitivity is expressed as the ratio
of true positive values to the sum of true positive and
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Table 3 Three-class confusion matrix
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Actual Class Predicted class

Chen

Lorenz

Rossler

Chen True Chen (TC)
Lorenz False Lorenz-1(FL-1)
Rossler False Rossler-1(FR-1)

False Chen-1(FC-1)
True Lorenz (TL)
False Rossler-2(FR-2)

False Chen-2(FC-2)
False Lorenz-2(FL-2)
True Rossler(TR)

Table 4 Conversion table of three-class confusion matrix to 2-class confusion matrix

Parameters Classes
Chen Lorenz Rossler
True Positive TC TL. TR
False Positive FC-1 + FC-2 FL-1 + FL-2 FR-1 + FR-2
True Negative TL + TR + FL-2 4+ FR-2 TC + TR + FC-2 + FR-1 TC + TL + FC-1 + FL-1
False Negative FL-1 + FR-1 FC-1 + FR-2 FC-2 + FL-2
Fig. 5 Confusion matrix (a) (b)
of three classes, a KNN
Algorithm, b SVM @ Predicted Class @ Predicted Class
Algorithm, ¢ Tree 5“. Chen | Lorenz | Rossler 5 Chen | Lorenz | Rossler
Algorithm, d Naive Bayes Y Chen 1949 21 3 o Chen 1953 20 0
Algorithm & Lorenz 17 1765 1 £ | Lorenz 55 1728 0
Rossler | 4 0 1812 ™ [Rossler |5 0 1811
(c) (d)
@ Predicted Class 2 Predicted Class
& Chen | Lorenz | Rossler = Chen | Lorenz | Rossler
Y | Chen | 1857 | 111 5 Y | Chen | 1823 | 147 3
E Lorenz | 115 | 1665 3 £ | Lorenz | 371 | 1409 3
Rossler | 11 2 1803 ™ [Rossler |46 44 | 1726
false negatives. negatives.
True Positive s T,
Sensitivity = (8) Recall — True Positive (10)

False Negative + True Positive”
As shown in Eq. 9, specificity is expressed as the ratio
of true negative values to the sum of true negative and

false positives.

True Negative

Specificity = (9)

False Positive + True Negative

As shown in Eq. 10, recall is expressed as the ratio of

True Positive + False Negative

The Fl-score, shown in Eq. 11, is expressed as the ratio
of 2*True positive values to the sum of false positives,
false negatives, and 2*True positive.

F1 — score

2 # True Positive

~ 2% True Positive + False Positive + False Negative

true positive values to the sum of true positive and false (11)
Table 5 Conversion table of three-parameter confusion matrix to two-parameter confusion matrix
Parameters Chen Lorenz Rossler

KNN SVM TREE NB KNN SVM TREE NB KNN SVM TREE NB
True Positive 1949 1953 1857 1823 1765 1728 1665 1409 1812 1811 1803 1726
True Negative 24 20 116 150 18 55 118 374 4 5 13 90
False Positive 3578 3539 3473 3182 3768 3769 3676 3598 3752 3756 3748 3750
False Negative 21 60 126 417 21 20 113 191 4 0 8 6
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Table 6 Classification achievements of models, a) KNN Algorithm, b) SVM Algorithm, ¢) Tree Algorithm, d) Naive Bayes

Algorithm

Class Accuracy precision sensitivity specificity Re-call F'1-Score
(a)

Chen 0.9919 0.9878 0.9893 0.9933 0.9893 0.9886
Lorenz 0.9930 0.9899 0.9892 0.9952 0.9882 0.9891
Rossler 0.9986 0.9978 0.9978 0.9989 0.9978 0.9978
(b)

Chen 0.9856 0.9899 0.9702 0.9944 0.9702 0.9799
Lorenz 0.9865 0.9692 0.9886 0.9856 0.9886 0.9788
Rossler 0.9986 0.9972 1.0000 0.9987 1.0000 0.9986
(c)

Chen 0.9566 0.9412 0.9365 0.9677 0.9365 0.9388
Lorenz 0.9585 0.9338 0.9364 0.9689 0.9364 0.9351
Rossler 0.9962 0.9928 0.9956 0.9965 0.9956 0.9942
(d)

Chen 0.8982 0.9240 0.8138 0.9550 0.8138 0.8654
Lorenz 0.8986 0.7902 0.8806 0.9058 0.8806 0.8330
Rossler 0.9828 0.9504 0.9965 0.9766 0.9965 0.9729

Table T Total performance results of the three-class sys-
tem

Classifier Accuracy %
Naive Bayes 39.0
SVM 98.6
KNN 99.2
Tree 95.6

Bold letter indicates the best performance result

Since different classes have been used in the study,
the confusion matrix given in Table 2 was recreated
as shown in Table 3.

Table 3 was created to convert a three-class contu-
sion matrix into a two-class confusion matrix [36]. Table
4 was obtained using Table 3 to calculate the accu-
racy, precision, sensitivity, specificity, recall, and F'1-
score classification performance of each class.

The confusion matrices obtained as a result of the
study are shown in Fig. 5. The confusion matrix
obtained with the KNN algorithm is shown in Fig. Ha.
The confusion matrix obtained by the SVM algorithm
is given in Fig. 5b, the confusion matrix obtained by
the Tree algorithm is shown in Fig. 5c¢, and the confu-
sion matrix obtained by the NB algorithm is presented
in Fig. 5d.

A conversion table of the three-class confusion matrix
to 2-class confusion matrix, presented in Table 4, was
used to calculate the performance metries easily. Addi-
tionally, using Tables 4, 5 was obtained.

Table 8 Accuracy rates according to classification types

Classifier Accuracy %
Naive Bayes
Gaussian Naive Bayes 88.3
Kernel Naive Bayes 89.0
Support Vector Machine
Linear SVM 89.0
Quadratic SVM 97.2
Cubic SVM 93.0
Fine Gaussian SVM 98.6
Medium Gaussian SVM 97.2
Coarse Gaussian SVM 94.3
K-Nearest Neighbor
Fine KNN 99.2
Medinm KNN 98.6
Coarse KNN 96.7
Cosine KNN 96.0
Cubic KNN 98.6
Weighted KNN 98.8
Decision Treee
Fine Tree 95.6
Medium Tree 91.7
Coarse Tree 89.2

Bold letter indicates the best performance result

The values in Table 6 were obtained using accuracy,
precision, sensitivity, specificity, recall, and Fl-score
performance results calculated according to the equa-
tions given in Eqgs. 6, 7, 8, 9. 10, and 11 according to
the values given in Table 5. The total performance of
the classification algorithms used in the study for three
classes is generally calculated using Eq. 12.
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Fig. 7 ROC curves of the classification algorithms

TC+TL+TR

A -
Ay = G TL+ TR+ FC_1+FC_2+FL_1+FL_2+FR_1+FR_2 (12)
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The achievements of the system for the three classifi-
cations obtained using Eq. 12 are presented in Table 7.

The results obtained in Table 7 are the best in terms
of the methods explained above. In addition, there are
different sub-methods among the four used methods.
The results obtained with these sub-methods are pre-
sented in Table 8. When Table 8 is examined, it is
seen that the best results obtained are consistent with
Table 7.

Figure 6 shows the graphics of the data classified as
true and false by the algorithms. The graphics of cor-
rectly and incorrectly classified data for three classes
obtained using the KNN algorithm, SVM algorithm,
NB algorithm, and Tree algorithm are shown in Fig.
6a—d, respectively.

In addition, ROC curves were also used to show
the performance of the study with different graphics.
ROC curves are calculated as the ratio of sensitivity to
precision. Classification algorithms try to strike a bal-
ance between sensitivity and precision. Therefore, ROC
curves are often used to evaluate the balance between
sensitivity and precision.

The area under the ROC curve is called Area Under
Curve (AUC). The value of this field gives the ROC
score and when this value approaches to 1, the positives
are successfully separated from the negatives.

The approach of the ROC curve to the upper left
corner indicates that the correct positive rate is high
and the area under the curve is significant. It can be
used to see whether the positives are separated from
the negatives successtully.

The ROC curves given in Fig. 7 show that the ROC
curve is closer to the upper left corner than the others,
according to the result obtained with the KNN algo-
rithm, so the correct positive rate is high and the area
under the curve is high. As a result, positives do not
seem to be successfully separated from negatives. It is
seen that SVM, TREE, and NB have the most signifi-
cant area under the ROC curve, respectively.

5 Conclusions

In this study, a novel approach was presented. and time
series of three different chaotic systems were classified
with high accuracy using machine learning methods,
which are frequently used today. Lorenz. Chen, and
Rossler systems, three of the most widely known sys-
tems in the literature, were used for this study. The data
set used in the study was obtained by solving these sys-
tems with the RK4 method. This data set was obtained
for different step intervals, initial values, system param-
eters, and time intervals, and therefore, a variety of
data was created. In particular, systems with similar
dynamic properties and time series, such as Lorenz and
Chen, were correctly classified. Along with achieving
relatively high accuracy in each method. the highest
accuracy rate was achieved as 99.2% with the Fine KNN
method. In addition, this study shows a way for classify-
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ing signals and data with chaotic or random characters
and associating them with a mathematical model.
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