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Abstract—During acquisition or transmission of the Electro-
cardiogram, noises generated from the surrounded electrical
equipment, the patient’s motion, movement of the electrodes,
or contraction of the muscle around the heart usually interfere
with the obtained signal. The interference of these noises in the
frequency domain may mask the desired signal and obstruct
the diagnosis process. Blind Source Separation techniques and
Model-based filtering methods have shown promising results
in ECG signal processing. This work pointed to assess the
performance of Independent Component Analysis and Extended
Kalman Filter in removing the most common ECG noise, such as
muscle contraction, baseline shift, and electrode motion artifact.
Testing has been executed on a formed signal set by adding noises
from the MIT noise stress test database to signals from the MIT-
BIH arrhythmia database at a different signal to noise ratio.
Performance comparison demonstrates that both techniques show
satisfying results in muscle artifact filtering, while ICA based
filtration is more accurate than EKF in reducing baseline wander
and electrode movement artifacts.

Index Terms—Electrocardiogram, Blind Source Separation,
Model-based filtering, Independent Component Analysis, Ex-
tended Kalman filter, Signal to Noise Ratio

I. INTRODUCTION

The electrocardiogram (ECG) is a graph describes the
action potential differences produced by depolarization and
repolarization of the atria and ventricles measured on the body
surface using electrodes. ECG signal shows the hearts rhythm,
electrical conduction paths abnormalities, and chambers state.
The clinicians use the electrocardiogram as an essential part
of evaluating the human heart functions because of its relative
ease of acquisition, analysis, and preciseness of information
about heart abnormalities. The standard ECG signal consists of
a series of repeated ECG cycle. Waves, segments, and intervals
describe each cycle. The clinicians need to identify the cardiac
cycle components for an accurate diagnosis.

ECG signal analysis stages are; signal preprocessing, noise
filtration, detection of the cardiac cycle component, feature
extraction, and formulation of the feature set [1]. The initial
ECG analysis stage is noise and artifacts removal, which can
have the same shape and within the frequency band of the
ECG signal. ECG is susceptible to noise during the acquisition
process due to muscle contraction, the patient’s or electrode’s
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motion, and respiration. Also, the presence of devices around
the patient represents another source of interference [2].

Filters detect, extract, or separate the desired signal from
a noisy background and reduce noise components. Many of
the available filtering techniques are based on the notion of
spectral decomposition, such as using notch filters to reduce
the power lines interference and bandpass filters to discard
noise, which is localized in particular regions of the frequency
spectrum. These techniques depend on the principle of linear
superposition, and there is a fundamental assumption to reveal
that the underlying signal and the noise are active in different
parts of the frequency domain. The ECG signal frequency
band is between 0.01-100 Hz. Signals with frequencies greater
than 100 Hz or less than 0.01 Hz are considered as noise.
Finite Impulse Response filters are used in all ECG devices
to remove or reduce the undesired low and high-frequency
noises. Low and high pass filters are implemented to cut out
the high and low-frequency noise signals. Band-stop filters
are selective filters used to remove the power line frequency.,
usually 50 or 60 Hz 3. FIR filter’s ability to reject noises and
produce an ECG signal close as possible to the real heart
potentials has been examined using several models. Mean
square error (MSE) has been calculated for the response of
different windowing techniques, FIR Chebyshev low pass filter
has reduced the muscle artifact to the minimum [4]. The
performance of various FIR and IIR filters has been computed
and compared based on their SNR to ease the problem of
selecting the appropriate filter order [5].

Filtering techniques are classified into linear and nonlinear.
Wiener and Wavelet Filter are considered as linear filtering
techniques applicable when both the signal and noise within
the same region in the frequency domain, while model-based
filtering and Blind Source Separation (BSS) are nonlinear
techniques thus do not depend on the linearity constraints [2].
Many filters have been designed using Wiener and Wavelet
Filters. An adaptive Wavelet Wiener Filter is proposed to
remove myopotentials (EMG) noise and estimate a noise-
free ECG signal [6]. The method achieved approximately
10.6 dB increment when tested on a generated database
using signals from the CSE database, which is better than
the traditional Wiener Wavelet-based Filtering methods. An
improved Wavelet Wiener Filter has also been applied on CSE



database signals to overcome the linear filtering problem. SNR
improvement (SNRI) for the introduced AWWF was 10.3 dB,
while the SNRI for Wiener Wavelet Filter (WWF) was 5.2 dB
[7].

Numerous researches were done in the area of ECG signal
analysis and processing. However, recent advances in filter-
ing, pattern recognition, and classification techniques have
represented a new researching area in ECG signal analysis.
Blind source separation techniques and model-based filtering
methods show a positive impact on ECG signal processing.
Over the past several years, source separation methods have
gotten much consideration for their ability to separate noise
sources from non-Gaussian noisy ECG signals and make
them cleaner and better interpretable for clinicians. The ICA
technique works on maximizing non-Gaussianity using higher-
order statistics such as kurtosis and Negentropy. The maxi-
mization process is based on the central limit theorem [8].

ECG signal has a non-Gaussian shape; therefore, FASTICA
has been employed to remove baseline wandering from a
single channel ECG, which has been constructed to a multi-
channel by adding some delay to the original signal. Results
are derived by the proposed method were compared with
those obtained from the traditional FIR high-pass filter [9].
Different ICA algorithms such as JADE and FASTICA have
been studied and used for ECG denoising, with an effort
to use constraint-ICA for noise separation [10]. FASTICA,
with two granularity functions, hyperbolic tangent and power
function, has been applied on randomly mixed data taken from
the MIT-BIH arrhythmia database to isolate noise components
from signal and noise mixture. Analysis of the obtained
results demonstrated that tanh granularity function has quicker
convergence when matched with the multi-granularity power
function [11]. A Filter has been created based on the Kernel
Principal Component Analysis (KPCA) algorithm to release
the ECG signal from the effect of MA, EM, and BW noises.
KPCA has given the lowest MSE compared to DWT and PCA
based filtering and 5 dB SNR [12].

Model-based filtering techniques attempt to build a success-
ful filter by finding an approximate signal or noise model.
For ECG signals, extracting some features and then use them
as parameters to develop a dynamical model can create a
denoised signal. The first dynamical model for producing an
artificial electrocardiogram has been introduced by (McSharry,
2003) [13]. The model consists of three joined conventional
differential equations with the facility to specify the model
parameters by the operator. The generated model has been
fitted in real-time into ECGs collected from a healthy person,
and another evaluation process has been done [14].

An effective filtering process using Extended Kalman Filter
(EKF) has been performed on cardiac signals from MIT-BIH
database. The previously presented nonlinear model has been
linearized to apply the proposed EKF. Results clarify that the
filter can successfully follow and remove noise components
and produce better SNR [15], [16]. New filtering schemes have
been built based on Extended Kalman Filter to train Multilayer
Perceptron Neural Network [17]. The Wiener and Kalman

filter’s ability to remove ECG signal noises has been measured
using SNR, MSE, and Percentage RMS as evaluation metrics.
Filtering gaussian, power line interference, muscle artifact,
baseline wander, and composite noise using Wiener filter
has produced average SNR higher than these achieved using
Kalman filter [18]. Cubature Kalman filter (CKF) has been
used to filter muscle artifacts and white Gaussian noises with
input SNR from -5 tol0O dB. For white Gaussian noise, the
output average SNR was about 11dB. In contrast, the CKF
filter’s output in the presence of muscle artifacts was 9 dB
[19].

Here, the ICA’s ability to eliminate muscle contraction,
baseline shift, and electrode motion artifact has been investi-
gated and compared with the performance of EKF in filtering
the same noises.

II. THEORY
A. Independent component analysis (ICA)

ICA is a source separation method that transforms the data
onto an independent set of vectors. ICA is a biorthogonal
transformation project data mixture into non-orthogonal axes
[14]. The following general mathematical framework is used
to define ICA.

X =AS (1)

X is the observed signals matrix, A is the mixing matrix, and
S is the source signals matrix.

§S=A"IX = WX 2)

W is a de-mixing matrix that is obtained by inversing the
matrix A.

ICA assumes that the observed signals are linear mixtures
of independent source signals to estimate the unknown source
signals. The source estimation process can be achieved by non-
linear decorrelation or maximizing the source non-gaussianity.
The signal non-Gaussianity can be measured by maximum
likelihood, mutual information, marginal entropy, Negentropy,
and kurtosis [8].

Kurtosis is the normalized fourth-order cumulant. It is
usually used to measure non-gaussianity for its computational
and theoretical simplicity. When the data is preprocessed, its
variance is equal to one £.S? = 1. Kurtosis is given by:

kurt(s) = E[S*] — 3(E[S*]) (3)

Various ICA algorithms have been developed, but FastiICA
and JADE algorithm are mostly used for ECG noise separa-
tion. RobustICA algorithm has been developed by (V. Zarzoso
and P. Comon, 2010) as an improvement of FastICA. The
algorithm achieves a precise line search of the absolute fourth-
order moment to extract any nonzero independent component.
In this method, the kurtosis divergence function is optimized
globally at each de-mixing vector update to enhance the
kurtosis in the search path [16].

RobustICA implements optimization at each iteration using
an optimal step-size method; the process can be summarized
as follow:



1) Set i=0 and give the de-mixing vector w an initial value.

2) Calculate the optimal step-size polynomial coeffcients.
p(u) :Ez:” apu® The coeffcients a;, can simply be
acquired from the observed signal and the recent values
of w and g.

3) Compute the fourth order polynomial roots {ug } i:l )

4) Choose the root which maximize the absolute value of
fourth order moment within search path using:

Uppt=Tnaxy, [kurt(w+ugg)]

5) Update w (i+1) =wW+Uopry-
6) Normalize w (i+1) :%
7) Calculate the estimated component value using S;=w2.
While g is the search direction and
gradient 9=V, kurt(w).
S=yi.y2, ...yn are the estimated data matrix.

B. Exrended Kalman Filter (EKF)

Kalman filter is a statistical method that optimally estimates
past, present, and future states of an unknown variable within
a set of noisy variables. The extended Kalman filter (EKF) is
a modified version from the traditional Kalman that has been
developed to work on the nonlinear dynamical models [2].

For a discrete nonlinear model and observation vector 1y,
can be formulated as follows:

typically the

Tep1=f (g, wi, k)
k=9 (2, vk, k)
Where f is the state space update function with state
vector x, and wy represents the process noise vector with
associated covariance matrix Q. = Lwy x w’. While g
introduces the measurement function, which shows the rela-
tionship between the state vector and the observations, and vy
is measurement noise vector with associated covariance matrix
R = Fug x n}f_'.
The above equation (4) need to be linearized around a
specific point (&g, Wy, ¥4) in order to compute the Kalman
Filter gain and the covariance matrix [20].

C))

C. ECG Model and its Linearization

ECG is a series of repeated super quasi-periodic waves. The
ECG model generator uses a series of exponentials to trace out
the morphology of the ECG in the z-direction. The periodicity
of the ECG makes the progress of the ECG track in a bounded
cycle of unit radius. The extrema of the peaks (P, Q, R, S.T)
is described by (6p,00,0r.0s.67) in ECG generator. The
following differential equations has been developed in [13] to
represent ECG dynamical model equations, which are a set of
three ordinary state in Cartesian coordinates.

T= ar—wy
y= ar+wy
. AN
i= =3 i p. Q. R s 1) i Dbiexp (—T);;)—(z— 20)

(5)
While @« = 1 — /(22 +¥?) ., § = atan2(y,x) and

NG; = (0 — 6;)mod(27). Where x, y, and z are the state

variables, w is the angular velocity of the track, € is the
four quadrant arctangent of the components of x and y, with
—m < atan2(y,x) < 7 and zp is the baseline.d; is the angular
position for the PQRST waves, a; is the magnitude of the
peaks, b; is the width (time duration) of each peak. Plotting z
coordinate vs. time presents the artificial ECG signal [20].

The Cartesian form equations (5) can be rewriten in the
polar form as follow:

7= r(l-r)
f=w

A7
- (P Q. R S T} Ab;exp (f 25 )f(zf Z0)
(6)
The polar form is less complicated than the cartesian form.
We can notice that » can be discarded since it does not affect
the state variable z or any other variable.
The two-dimensional equations of the dynamic system can
be simplified and written in the discrete form using a time
step of size J, as follow:

Op1=0(k)+wdt
Zy1= — ., Ota;AOexp (—%)Jr 2(k)+not

z=

(7)

Where 0(k) and z(k) are the phase and ECG at time instant
k, 77 1s an additive noise that describes all the additive sources
of process noise and replaces baseline wander, i is the number
of Gaussian functions whilefl; represents the phase center of
the i-th Gaussian.

In nonlinear dynamic models, the EKF is used to change
the states over time but to complete the estimation process the
model needs to be linearized to compute the Kalman filter
coefficients. For this, & and z are considered as the state
variables and the model parameters a;, b;, 6;, w, n are the
process noises, By defining. In order to apply the EKF.

{ tper = F (8,0, k)

Yk = G(Q,Z,&J. (J‘i:'L}«i:biaTI- ]/') (8)

The linearized model with respect to f, z ,and process noise
components is represented in [13]. The system process noise
and covariance vectors are defined as follows:

) QT: W, ’ﬂT

9)

wi = [ap,...,ar,bp,...,br.0p, ..
Qg =F {‘u:k'w',f}

The phase observations ¢ and the noisy ECG measure-
ments s, can be written in state space form as coming:

2 ]-s[ ][]
S 2k VE

Where R = Eluy,vg]![ug, vg] is the observation noise
covariance matrix.

(10)

[II. METHOD

Despite the numerous research in the area of ECG signal
processing, finding robust signal filtering techniques still form
a challenge because the success of the noise reduction algo-
rithm does not rely only on the nature of the signal but also
depends on the noise nature.



A. ECG Filtering Using RobustICA

In this part, relying on the held comparison in [21] between
newly proposed RobustICA and FastICA. RobustICA has been
used for muscle artifact, baseline shift, and electrode motion
noise separation from contaminated ECG signal using only
two leads. Estimation method based on correlation has been
performed to reconstruct a clean signal from the separated ICs.
Signals are taken from the MIT-BIH database and mixed at
a different ratio with noises taken from the MIT noise stress
test database.

modified lead 11 = lead I + N
modi fied vh = vd + N

Where the modified leads represent the signal and noise
mixture. Lead II and v5 are ECG signals taken from MIT-
BIH database. N represents noise source (BW, MA, or EM)
taken from MIT noise stress test database.

The steps of the algorithm can be described as follow:

1) Input: Observed noisy ECG signal.

2) Preprocessing: Subtract the signal mean,then Prewhiten
the signal.

3) Estimate independent components using RobustICA.

4) Estimate mixing matrix H.

5) Calculate Kurtosis of estimated independent compo-
nents..

6) Output: Estimated Filtered ECG signal.

B. ECG Filtering Using EKF

Extended Kalman Filter has been used for muscle contrac-
tion, baseline shift, and electrode motion artifact filtering from
contaminated ECG signals. Using EKF formulation and the
nonlinear state-space model presented in [22], estimation of
the artifacts can be found. Process Equation:

{ Or+1 = (O + wd) rmod(27)

. 2 11
Sky1 = — va dta; NBexp (—%) + sp+7 (1D

4 is the sampling time, A#; = (0 —0;)mod(27), w = 27 f,
fis heart rate, and N is the number of Gaussian functions.

{ O = Or + 11y

12
S = 2+ U (12)

Where ¢, is the phase of the observations, and s is the
measured noisy ECG. While uj and v are the measurement
noises.

The estimated de-noised ECG signal can be found from the
following equation:

U = yr — Sk (13)

Where 0y, is the estimated de-noised ECG signal, ¥, is the
noisy ECG signal and s; is the estimated noise. The noise
estimation process using EKF can be summarized as follow:

1) Input: measured noisy ECG signal.
2) Determine the location of R-peaks.
3) ECG phase calculation.
4) Mean ECG extraction.

5) Model fitting with the optimal parameter of mean ECG.

6) Apply EKF after calculating the covariance matrices of
the measurement and process noise.

7) Output: subtract the noisy ECG signaly;, from the esti-
mated noise signal 0, to get the denoised signal §y.

IV. RESULT

The impact of the suggested methods has been studied on an
artificial database that has been generated by selecting some
ECG signals files from the MIT-BIH Arrhythmia database and
mixing them with noise signals taken from MIT-BIH non-
stress test database (NSTDB), which contains real ECG noises.
The selected files have been segmented so that every Ten
seconds represent a signal. The signals mixing process has
been accomplished by adding the noise signal to the clean
ECG signal to compose a noisy signal with the desired SNR.
Seven combinations with different signal to noise ratio values
extending from -20 to 20 dB have been generated for each
segment. Then, the signal to noise ratio of the output signals
has been calculated and compared with the input signal. The
full testing has been simulated using MATLAB.

A. ECG noises removal using ICA

Baseline wandering (BW), Electrode motion (EM), and
Muscle artifact (MA) signal has been combined with standard
ECG signals to obtain noisy signals with a signal to noise ratio
(20, 12, 6, 0, -6, -12, -20) dBs. These corrupted signals have
been refined using RobustICA algorithm-based method. Table
I contains the SNR before and after the filtering and percentage
Mean Square Error values. Fig. 1, Fig. 2, and Fig. 3 show
the noisy signal and the filtered signal. The blue line shows
the noisy ECG signal and the red line displays the estimated
noise-free signal.

TABLE 1
SIGNAL TO NOISE RATIO VALUES AFTER USING ICA

SNR After Filtering
before Basline wandering Electrode motion Muscle artifac
filtering SNR RMSE % SNR RMSE % SNR RMSE %
-20 -7.83 9.23 -6.54 9.32 -3.59 9.30
-12 0.17 8.83 -0.80 9.14 441 9.06
-6 6.17 8.48 7.46 8.81 10.41 8.68
0 12.17 8.28 13.46 8.47 16.41 8.26
6 18.17 8.17 19.46 8.26 22.41 7.98
12 2417 7.99 2546 8.09 28.41 7.60
20 32.17 7.63 33.46 7.59 36.41 7.54

From Table I using RoboustICA with baseline wandering
has increase SNR about 12 dB. Filtering the electrode move-
ment artifact using RoboustICA has improved the SNR of
about 13 dB. While using RoboustICA to remove the muscle
artifact has raised the SNR of about 16 dB.

B. ECG noises removal using EKF

Noises have been mixed with ECG signal to obtain noisy
signals with a signal to noise ratio (20, 12, 6, 0, -6, -12, -20)
dBs. Table II contains noisy ECG signal SNR values and the
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Fig. 1. Baseline wandering filtering.
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Fig. 2. Electrode motion artifact filtering.

estimated signals SNR values after using EKF, and the Model
Error.

From Table II, signal to noise ratio improvement after using
EKF in case of baseline wander reduction is about +2 dB,
for electrode movement reduction is about +1.5 dB, and for
muscle artifact removal is about +7 dB.

C. Comparison between ICA and EKF

From Fig. 4, SNR improvement after using RoboustICA to
filter baseline wander is about +12 dB, while it is about +2
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Fig. 3. Muscle artifact filtering.

TABLE 11
SIGNAL TO NOISE RATIO VALUES AFTER USING EKF

SNR After Filtering
before Basline wandering | Electrode motion | Muscle artifac
filtering SNR ME SNR ME SNR ME
-20 -17.91 0.07 -18.57 0.18 -12.72 | 0.94
-12 -9.91 0.09 -10.91 0.10 -474 | 0.58
-6 -3.98 0.25 -4.93 0.12 1.05 0.26
0 1.96 0.19 141 0.19 744 0.24
6 7.22 0.11 7.78 0.16 13.16 | 0.14
12 11.45 0.38 13.04 0.14 18.14 | 0.15
20 21.81 0.14 18.41 0.13 20.71 0.14
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Fig. 4. Baseline wandering removing using ICA and EKE

dB after using EKF.

From Fig. 5, SNR enhancement after using RoboustICA to
remove electrode movement artifact is about +13.5 dB, while
SNR improvement after using EKF is about +1.5 dB.

From Fig. 6, SNR change after using RoboustICA to filter
muscle artifact is about +16.5 dB, while SNR advance after
using EKF is about +7 dB.
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Fig. 5. Electrode motion artifact removing using ICA and EKF.
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Fig. 6. Muscle artifact removal using ICA and EKE

V. DISCUSSION AND CONCLUSIONS

This work has been concerned with studying the ECG signal
and the noises that mask it to develop an efficient and reli-
able algorithm to reduce muscle contraction artifact, baseline
shifting, and electrode motion noises as the most common
ECG noises. Two algorithms have been applied; Independent
Component Analysis(RobustICA), which separates the con-
taminated observed signal into independent components, and
model-based filtering using Extended Kalman Filter(EKF).

To assess the success of the suggested method, an artificially
produced database has been built by mixing noise-free ECG
signals with baseline wander, muscle artifact, and electrode
movement noises to create signals with Signal to Noise Ratio
(SNR) 20, 12, 6, 0.-6, -12, and -20 dB.

The results of the analysis demonstrate that RobustICA
gives better results in the decline of muscle artifact when
matched with the reduction ratio of baseline wander and
electrode movement artifacts. Simultaneously, EKF shows
promising results in decreasing muscle artifact when the
signals have low SNR. The analysis results also demonstrate
that RobustICA is more beneficial than EKF in decreasing
baseline wander and electrode movement artifacts while both
show promising results in reducing muscle artifact. RobustICA
based estimation algorithm performed better than the EKF
method by producing better SNR in the presence of all
common types of artifacts.
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