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a b s t r a c t 

Chaotic systems with cyclic symmetry are very rare and have been less discussed in the literature. Simi- 

larly, megastable oscillators, which can have a finite or infinite number of coexisting attractors, have also 

attracted researchers. We propose a class of cyclic symmetry oscillators with the megastable property 

with infinite coexisting attractors for the first time in the literature. Various dynamical properties of the 

proposed oscillators are discussed in detail. An application for the detection of a feeble signal by using 

the proposed circulant megastable oscillator is presented. Since chaotic oscillators are highly sensitive to a 

tiny change in the parameters or an external input to the oscillator, this property of the proposed oscilla- 

tor is used for the detection of a feeble signal. Simulated results validate the effectiveness of the proposed 

application. After that, a new chaotic Sine-Cosine Algorithm (SCA) is developed using the randomness of 

megastable oscillators. Subsequently, this new chaotic sine-cosine algorithm is used to determine the PID 

controller parameters of time-delay systems concerning the objective function. As a result, the proposed 

chaotic sine-cosine algorithm presents better performance for time-delay systems when compared with 

the available algorithms in the literature. 

© 2021 Elsevier Ltd. All rights reserved. 

1

h

m

t

t

i

t

l

d

a

[

d

f

c

m

f

s

h

m

t

e

u

s

n

h

0

. Introduction 

A deterministic dynamical system with extremely irregular be- 

avior is identified as chaos. Interestingly, few literatures docu- 

ented symmetry in chaotic attractors; it helps us to understand 

he order and patterns in nature. Albeit snowflakes appear to con- 

ain randomness redolent of chaos, it keeps symmetry. Two fash- 

ons of symmetry are studied frequently. These are Cyclic symme- 

ry and Reflective symmetry. A cyclic type of symmetry is formu- 

ated by n-fold rotations about a point. In contrast, a reflective or 

ihedral type is formulated by rotations and reflections through 

 line passing through the point of rotation. Field and Goubitsky 

1] constructed chaotic attractors with symmetry property by re- 
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ucing the equivariant complex function. They laid a platform to 

ormulate chaotic systems with cyclic symmetric attractors. Re- 

ently, enormous works have been reported on cyclic symmetry; 

ostly, these systems used general polynomials or trigonometric 

unctions. Brisson et al. [2] presented chaotic attractors with a cube 

hape symmetry structure. Reiter reported chaotic attractors with 

ypercube symmetry [3] and tetrahedral shape symmetry [4] . Du- 

ont [5] discussed the frieze type and wallpaper symmetries. All 

hese methods are limited to polynomial-based functions. Wang 

t al. [6] conducted experiments to formulate various symmetry 

sing trigonometric functions. Additionally, they reported dihedral 

ymmetries. Similar methods are identified to yield a significant 

umber of esthetic patterns. 

A particle moving in a three-dimensional lattice with frictional 

amping is modeled with state-space equations by interchanging 

he three orthogonal axes and investigating the property of cyclic 

ymmetry. The route to chaos, multistability, chaotic diffusion, and 

https://doi.org/10.1016/j.chaos.2021.110992
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Table 1 

A class of circulant-megastable oscillators. 

System name Model Parameters Figures 

CMO-1 

˙ x = b cos (y ) − f (ω) 

˙ y = b cos (z) − f (ω) 

˙ z = b cos (w ) − f (ω) 

˙ w = b cos (x ) − f (ω) 

a = 3 , b = 1 , ω = 1 Fig. 1 a 

CMO-2 

˙ x = cos (y ) − a tanh (x ) 

˙ y = cos (z) − a tanh (y ) 

˙ z = cos (w ) − a tanh (z) 

˙ w = cos (x ) − a tanh (w ) 

a = 0 . 2 Fig. 1 b 

CMO-3 

˙ x = cos (y ) − b tanh (x ) − f (ω) 

˙ y = cos (z) − b tanh (y ) − f (ω) 

˙ z = cos (w ) − b tanh (z) − f (ω) 

˙ w = cos (x ) − b tanh (w ) − f (ω) 

a = 3 , b = 0 . 2 , ω = 1 Fig. 1 c 

where f (ω) = a sin (ωt) is the forcing function. A periodic forcing, as described in the 

literature [ 10 , 14–16 ], is used in this paper. It is the simplest forcing function discussed 

in the literature and also easy to generate during hardware implementation. It can be 

easily verified that all the above three systems have an infinite number of equilibrium 

points. 

Fig. 1. Phase portrait of the CMO systems for various initial conditions located on the x-axis (a: from x = −100 to x = +100 with steps equal to 2; b: from x = −20 to 

x = +20 with steps equal to 1; c: from x = −15 to x = +15 with steps equal to 1) while the other states initial conditions are kept to 0. 
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t  
ore interestingly, a transition from a chaotic dissipative system 

o a chaotic conservative system are identified and discussed in 

8] . A class of chaotic system with cyclic symmetry, which has dis- 

ipative nature, is studied and shown that interesting properties 

uch as multistability and coexisting attractors are observed [21] . 

 family of chaotic systems with conservative nature is formulated 

nd investigated for special properties in [7] . The cyclic symmet- 

ic system’s intricate dynamical properties make it more suitable 

or various applications such as chaos-based secure communica- 

ion. Their simple configuration also tackles challenges in hardware 
c

2 
mplementation. FPGA implementation of the conservative and dis- 

ipative cyclic symmetric system was carried out in [ 21 , 7 ]. 

Chaotic systems that exhibit a countable number of infinite co- 

xisting attractors (nested) are characterized as Megastable oscil- 

ators [11–13] . A sinusoidally-driven conservative and dissipative 

ystem with signum nonlinearity is investigated for special prop- 

rties and reported the existence of megastability [15] . A simple 

D chaotic system with trigonometric functions is formulated and 

hown the existence of countable infinite number of coexisting at- 

ractors in [ 16 , 17 ]. A nonlinear oscillator with an infinite number of

oexisting self-excited and hidden attractors was reported in [9] . 
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Fig. 2. Bifurcation diagram (a) and the corresponding LEs (b) of the CMO-2 system. 
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In the last decade, chaotic systems are mostly used in secure 

ommunication compared with other applications. Many applica- 

ions are shown in this field, like masking of a message signal [22–

5] , encryption and decryption [26–28] , information theory: ran- 

om number generation [ 29 , 30 ], etc. Another interesting applica- 

ion of chaotic systems is the detection of a feeble signal. Limited 

umbers of papers are available on the detection of a feeble sig- 

al [ 27 , 31–38 ]. Most of these papers used chaotic systems for this

urpose. Motivated by this finding of the literature, in this paper, 

n application of the proposed circulant megastable system is pre- 

ented for the detection of a feeble signal. 

In recent years, many optimization methods have been devel- 

ped by taking inspiration from living and non-living beings; these 

ethods are used to solve problems that are difficult to solve in 

eal life. These inspired algorithms are developed by mimicking 

he behaviors of living things such as hunting, finding food, mat- 

ng, and non-living things such as an explosion, spreading, grav- 

tational force, or mathematical backgrounds [39–43] . Many algo- 

ithms have been developed in the literature to solve constraint 

nd unconstraint optimization problems with these algorithms, 

enerally called meta-heuristic algorithms. In several areas, includ- 

ng engineering, business, and research, meta-heuristic algorithms 

re used in solving optimization problems. In optimization prob- 

ems, the main purpose of the solution process is to reduce or 

ptimize the parameters of performance, duration, efficiency, and 

roductivity [39] . In this study, the sine-cosine algorithm, one of 

he metaheuristic algorithms, was used to enhance its performance 

t

3 
sing the proposed circulant megastable system and it was used to 

une the PID controller for the time-delay system concerning ob- 

ective function. 

A new chaotic system with an infinite number of equilibrium 

oints is proposed and its applications are given. Specifically, in 

ection 1 , some general information and available researches are 

ntroduced. Circulant Megastable Oscillators (CMOs) are presented 

n Section 2 . In Section 3 , a subset of chaotic systems is inves-

igated with regard to Lyapunov exponents with the variation of 

ome of their parameters. In Section 4 , the SCA algorithm is pre- 

ented and an outline of control of a time-delay system with re- 

ard to an optimization application is illustrated. In Section 5 , a 

ew improved chaotic SCA algorithm is proposed. Subsequently, in 

ection 6 , the simulation results of the proposed chaotic SCA al- 

orithm for solving some benchmark problems and their control 

pplications are given. Moreover, some discussion and compari- 

on are made. Finally, in Section 7 , the conclusion of the work is 

rawn. 

. Circulant megastable oscillators (CMOs) 

Recent literature has proposed new chaotic systems with lat- 

ices of attractors having an infinite number of equilibrium points 

11–13] and some of them are unique with the countable num- 

er of coexisting attractors, named as "Megastable" after [10] . Such 

egastable oscillators are all chaotic Jerk systems [14–17] . Hence, 

e are interested in proposing a new class of chaotic oscillators 

hat are megastable with cyclic symmetry, commonly called circu- 
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Fig. 3. Lyapunov spectrum with the variation of parameter a keeping other parameters fixed at b = 0 . 2 , ω = 1 of the CMO-3 system. 
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Fig. 4. Behavior of the CMO-3 system with b = 0 . 2 , ω = 1 , ω 0 = 10 , x (0) = ( 0 . 1 , 0 . 1 , 0 , 0 , 0 ) T for: (a), (b) a = 1 . 5250 0 0217 ; chaotic behavior and (c), (d) with the addition 

of a feeble signal of amplitude A = 10 −9 . 

l  

s

d  

a

a

n

o

t

f  

0  

fi

a

t

3

d

t  

c

t

i

t

t  

s

h

e

a

a

ant systems [ 18 , 19–21 ]. Table 1 shows a class of circulant systems

howing cyclic symmetry. 

The phase portraits of the CMO systems for different initial con- 

itions ( x, 0 , 0 ) are shown in Fig. 1 . The value of x is chosen from

 selected range and a step size. It should be noted that all the 

ttractors shown in Fig. 1 (with different colors) are chaotic and 

ever disintegrates to a tori as in many other cases of megastable 

scillators [5–8] . 

In the subsequent investigation, we consider the bifurcation of 

he CMO-2 with parameter a. The system shows chaotic attractors 

or about 0 < a ≤ 0.38 and 0.52 ≤a ≤ 0.7, as shown in Fig. 2 a. For

 < a ≤ 0.9, we could see chaotic regions and the same can be con-

rmed with the respective LEs plotted in Fig. 2 b. Especially for 

bout 0 < a ≤ 0.38 and 0.52 ≤a ≤ 0.7 8, the CMO-2 system enters 

he chaotic region. 
4 
. Application of CMO-3 system for detection of a feeble signal 

This section describes an application of the CMO-3 system for 

etecting a feeble signal. The Lyapunov spectrum with the varia- 

ion of parameter a = [ 1 , 2 . 5 ] and b = 0 . 2 , ω = 1 , a fixed initial

ondition ( x ( 0) , y ( 0) , z( 0) , w ( 0) , p( 0) ) = ( 0 . 1 , 0 . 1 , 0 , 0 , 0 ) of 

he CMO-3 system is shown in Fig. 3 . The Lyapunov spectrum 

s calculated, after transforming the CMO-3 system into an au- 

onomous form, by using Wolf et al. [18] algorithm considering 

otal iteration time T = 10 , 0 0 0 and a step size �t = 0 . 02 . It is

een from Fig. 3 that the CMO-3 system has various dynamical be- 

aviors like hyperchaotic, chaotic, quasiperiodic and periodic. For 

xample, when a ∈ [ 1 , 1 . 5 ] , two Lyapunov exponents are positive 

nd hence, it confirms the hyperchaotic behavior. Again, when 

 ∈ [ 1 . 9 , 2 . 1 ] , the presence of only one positive Lyapunov expo- 
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Fig. 5. Smith Predictor for PID controller using the SCA optimization or Chaotic SCA optimization algorithm. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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ent indicates a chaotic behavior. Further, when a ∈ [ 2 . 4 , 2 . 5 ] , 

he nature of Lyapunov exponents is (0, -, -, -, -) which suggests 

he presence of periodic behavior. For some value of a, Lyapunov 

xponents have nature as (0, 0, -, -, -) indicating the presence 

f quasiperiodic behavior. Fig. 3 suggests and further numerical 

imulation reveals that when a = 1 . 5250 0 0217 , the behavior of the

MO-3 system is chaotic. However, when a is increased by a small 

alue of the order 10 −9 , i.e. a = 1 . 5250 0 0218 , the behavior of the

MO-3 system is changed from chaotic to periodic. Therefore, it 

ay be considered that a T = 1 . 5250 0 0217 is the threshold value

or parameter a for the CMO-3 system since it changes its behavior 

rom chaotic nature to periodic nature with an addition of a feeble 

ignal of the form 10 −9 sin ( ω 0 τ ) . Thus, the CMO-3 system can be 

sed for generating an alarm for detecting a feeble signal. 

CMO-3 system with the state variables x 1 = x, x 2 = y, x 3 = 

, x 4 = w is written in (1). 

˙ 
 1 = cos ( x 2 ) − b tanh ( x 1 ) − a sin (ωt) 
˙ 
 2 = cos ( x 3 ) − b tanh ( x 2 ) − a sin (ωt) 
˙ 
 3 = cos ( x 4 ) − b tanh ( x 3 ) − a sin (ωt) 
˙ 
 4 = cos ( x 1 ) − b tanh ( x 4 ) − a sin (ωt) 

(1) 

The application of the CMO-3 system in (1) for detecting a fee- 

le signal can be achieved by considering t = ω 0 τ, where ω 0 is the 

requency of the feeble signal. The CMO-3 system can be written 

s in (2). 

˙ 
 1 = ω 0 ( cos ( x 2 ) − b tanh ( x 1 ) − a sin (ω ω 0 τ )) 
˙ 
 2 = ω 0 ( cos ( x 3 ) − b tanh ( x 2 ) − a sin (ω ω 0 τ )) 
˙ 
 3 = ω 0 ( cos ( x 4 ) − b tanh ( x 3 ) − a sin (ω ω 0 τ )) 
˙ 
 4 = ω 0 ( cos ( x 1 ) − b tanh ( x 4 ) − a sin (ω ω 0 τ )) 

(2) 

ere, to detect a feeble signal using the CMO-3 system, an input u 

onsists of the feeble signal is added. The system in (2) is rewritten 

s 

˙ 
 1 = ω 0 ( cos ( x 2 ) − b tanh ( x 1 ) − a sin (ω ω 0 τ )) 
˙ 
 2 = ω 0 ( cos ( x 3 ) − b tanh ( x 2 ) − a sin (ω ω 0 τ )) 
˙ 
 3 = ω 0 ( cos ( x 4 ) − b tanh ( x 3 ) − a sin (ω ω 0 τ )) 
˙ 
 4 = ω 0 ( cos ( x 1 ) − b tanh ( x 4 ) − a sin (ω ω 0 τ ) + u ) 

(3) 

here u = A sin ( ω 0 τ ) is a feeble signal; A is the amplitude and

change in time scale. It is observed from the simulation results 

hat the CMO-3 system can detect a feeble signal of very high fre- 

uency. 

The nature of the CMO-3 system with a = 1 . 5250 0 0217 and af-

er the addition of a feeble signal of amplitude A = 10 −9 is shown, 

espectively, in Fig. 4 (a),(b) and (c),(d). It is seen from Fig. 4 (a), (b)

hat the system has chaotic behavior. It is apparent from Fig. 4 (c), 

d) that the CMO-3 system has periodic behavior with the addition 

f the feeble signal of amplitude A = 10 −9 . Thus, a feeble signal of

he order 10 −9 is detected using the CMO-3 system. 
5 
. The controller designer by using sca algorithm 

The Sine-Cosine Algorithm (SCA), controller design, and newly 

eveloped chaotic SCA are explained in this section. After that, the 

ID controller is designed using this algorithm for a time-delay 

ystem. 

.1. SCA algorithm 

The SCA algorithm is a swarm intelligence based optimization 

lgorithm proposed by Mirjalili in 2016 [43] . Many researchers 

ave examined this algorithm for its simplicity, applicability, low 

arameter content, and developability. It has been studied in 

upport-vector optimization, short-term hydrothermal parameter 

cheduling, and many engineering fields. This swarm-based algo- 

ithm is updated using (4), as proposed by Mirjali, for each in- 

ividual in the swarm. A pseudocode of the general algorithm is 

iven in Algorithm 1 . In Algorithm 1 , t represents the current iter- 

tion, X best presents at the current iteration, X best, j is the jth dimen- 

ion value of the optimal individual, X i, j is the jth dimension value 

f the individual i at iteration t and r 1 , r 2 , r 3 , and r 4 are random 

ariables. The random variables r 1 ( Eq. (5) ) and r 3 have a uniform

istribution between 0 and 2; r 2 has a uniform distribution be- 

ween 0 and 2 π ; r 4 has a uniform distribution between 0 and 1 

43] . 

 i, j ← { X i, j + 

(
r 1 × sin ( r 2 ) ×

∣∣r 3 × X best, j − X i, j 

∣∣) 0 ≤ r 4 < 0 . 5 

X i, j + 

(
r 1 × cos ( r 2 ) ×

∣∣r 3 × X best, j − X i, j 

∣∣) 0 . 5 ≤ r 4 < 1 

(4) 

 1 = α
(

1 − t 

T 

)
(5) 

.2. Controller design 

Time-delay systems are the most common systems in the in- 

ustry. Due to such structure, when a signal is applied to the sys- 

em, the output can be observed at the exit of the system after 

 certain time [ 44 , 45 ]. A conventional PI or PID controller may

e used to control such systems. But when PI or PID controllers 

re applied, the system may respond slowly. In addition, the con- 

rol signal may not be suitable for time-delay systems due to the 

erivative operator of PID controllers. Thus, the smith predictor is 

roposed that enables the application of the control signal by tak- 

ng into account the dead time of the system. The Smith predictor 

ased controller can compensate the dead time effectively for con- 

rolling large time-delay systems. Such structure predicts the time- 

elay and applies a control signal to the system accordingly [45] . 
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Algorithm 1 

Pseudocode of the SCA algorithm. 

Algorithm 2 

Pseudocode of the Chaotic SCA algorithm. 
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Smith predictor used to control time-delay systems separates 

he system’s dead-time part from the time-delay model of the sys- 

em. After that, using the model, a controller is designed for the 

ystem and adapted to the designed controlled system to apply 

he control signal. Poorani et al. made a comparison between clas- 

ical PID and Smith predictor for heat exchanger. They concluded 

hat the performance is better when the Smith predictor was used 

46] . On the other hand, Yücelen designed a PI controller for the 

mith predictor to control a thermal system [47] . Gurban et al. 

roposed a modified Smith predictor for greenhouse gas control 

sing a genetic algorithm to determine its parameters [48] . In this 

tudy, using the approach given in Fig. 5 , a controller was designed 

nd implemented for the time-delay system. The parameters of 

he controller were determined so that the performance criteria in 
v

6 
q. (6) are met. 

in ( J ( u ) ) = 

t f 

∫ 
0 
( r ( t ) − y ( t ) ) 

2 

u min ≤ u ≤ u max 

(6) 

. Improved chaotic sca algorithm 

In this study, a chaotic SCA algorithm is proposed by adding 

haotic behavior in the SCA algorithm. The process was carried out 

y modifying Eq. (4) , used in the SCA algorithm, and proposing a 

ew Eq. (7) . The chaotic SCA algorithm is developed by using the 

tate ( x k (t) ) of the CMO-3 system in Eq. (7) . The CMO-3 chaotic 

ystem has four states; thus, four chaotic SCA algorithms were de- 

eloped by changing the index k, and named as Chaotic-1-SCA, 
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Table 2 

Results of the SCA, Chaotic-1-SCA, Chaotic-2-SCA, Chaotic-3-SCA, Chaotic-4-SCA Algorithms for the benchmark problems. 

Function Number SCA Chaotic-1-SCA Chaotic-2-SCA Chaotic-3-SCA16 Chaotic-4-SCA 

Average 

Standard 

Deviation Average 

Standard 

Deviation Average 

Standard 

Deviation Average 

Standard 

Deviation Average 

Standard 

Deviation 

1 1,93E-35 1,03E-34 2,14E-42 7,62E-42 3,63E-43 2,16E-42 1,15E-42 4,02E-42 3,68E-40 1,53E-39 

2 4,26E-24 1,23E-23 1,16E-27 2,71E-27 2,21E-28 1,14E-27 6,04E-28 1,80E-27 8,93E-27 2,10E-26 

3 1,88E-15 9,36E-15 1,50E-19 6,95E-19 2,87E-20 1,85E-19 2,26E-19 1,29E-18 6,17E-18 4,31E-17 

4 1,30E-12 5,35E-12 8,00E-15 1,78E-14 8,12E-16 1,56E-15 5,79E-14 2,85E-13 1,63E-14 4,03E-14 

5 6,685,837 0,398,765 6,341,763 0,5372 6, 316 , 113 0,348,167 6,370,454 0,542,247 6,50,724 0,446,197 

6 0,209,754 0,122,717 0,1185 0,112,371 0, 106 , 031 0,13,942 0,120,675 0,137,199 0,116,062 0,119,015 

7 0,000,285 0,000,251 0,000,222 0,000,227 0, 000 , 138 0,000,193 0,00,023 0,000,226 0,000,228 0,000,181 

8 −2436,63 166,3504 −2450,26 207,2559 −2354,15 136,5909 −2399,53 153,032 −2391,14 176,9144 

9 0,001,211 0,008,564 0 0 6,01E-10 4,25E-09 0 0 3,05E-09 2,15E-08 

10 4,09E-15 1,08E-15 3,80E-15 1,38E-15 3,73E-15 1,44E-15 3,87E-15 1,32E-15 4,01E-15 1,17E-15 

11 0,021,861 0,098,783 0,004,081 0,028,848 0,029,999 0,092,246 0,004,031 0,028,503 0,013,038 0,060,344 

12 0,048,512 0,023,338 0,033,687 0,015,756 0,023,141 0,015,651 0,033,961 0,016,385 0,037,373 0,014,767 

13 0,176,767 0,06,915 0,140,329 0,082,588 0,105,178 0,074,279 0,136,651 0,083,357 0,137,163 0,092,785 

14 1,196,422 0,601,271 1,037,688 0,280,594 1,07,738 0,392,748 1,196,419 0,601,272 1,037,689 0,280,594 

15 0,000,902 0,000,425 0,000,851 0,000,435 0,000,814 0,00,043 0,000,655 0,000,404 0,000,794 0,000,427 

16 −1, 03 , 163 8,63E-06 −1, 03 , 163 1,55E-06 −1, 03 , 163 9,74E-07 −1, 03 , 163 1,78E-06 −1, 03 , 163 1,05E-06 

17 0,398,175 0,000,277 0, 398 , 043 0,000,155 0,398,081 0,000,252 0,39,817 0,000,411 0,398,055 0,000,206 

18 3, 000 , 001 1,53E-06 3, 000 , 001 1,75E-06 3, 000 , 001 6,69E-07 3, 000 , 001 1,93E-06 3, 000 , 001 1,39E-06 

19 −3,85,593 0,002,764 −3,85,647 0,003,185 −3,85,669 0,003,328 −3, 85 , 621 0, 003 , 016 −3,85,647 0,00,316 

20 −3,03,877 0,14,813 −3,03,793 0,148,659 −3, 08 , 097 0,212,638 −3,08,001 0,114,223 −3,0468 0,158,625 

21 −3,90,746 2,065,115 −4,62,658 2,009,237 −5,06,009 2,440,151 −5, 61 , 868 1,914,109 −5,06,178 2,005,741 

22 −5,35,215 1,652,579 −5,72,598 2,109,694 −6, 18 , 719 2,18,923 −5,91,893 2,06,242 −5,97,907 1,648,619 

23 −5,5916 1,516,255 −6,61,928 1,818,378 −6,47,994 1,940,142 −6, 72 , 181 1,740,799 −5,93,268 1,578,227 
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haotic-2-SCA, Chaotic-3-SCA, and Chaotic-4-SCA. Therefore, it is 

imed to increase both the global and local search performance 

f the algorithm developed by hybridizing with chaotic behavior. 

o realize this, a very small probability is added to the algorithm, 

dding to this chaotic behavior and a behavior multiplied by a 

igmoid-like function to limit the situation. This behavior added 

o the SCA algorithm with probability of 0.05 is realized using 

q. (7) . The pseudocode of the Chaotic SCA algorithm is given in 

lgorithm 2 . 

 i, j ← 

⎧ ⎪ ⎨ 

⎪ ⎩ 

X i, j + 

(
r 1 × sin ( r 2 ) ×

∣∣r 3 × X best, j − X i, j 

∣∣) 0 ≤ r 4 < 0 . 475 

X i, j + 

(
r 1 × cos ( r 2 ) ×

∣∣r 3 × X best, j − X i, j 

∣∣) 0 . 475 ≤ r 4 < 0 . 95 

X i, j + 

(
x k ( t ) × 2 

1+ e X best, j −X i, j 

∣∣X best, j − X i, j 

∣∣) 0 . 95 ≤ r 4 < 1 

(7) 

. Simulation results 

In this study, 23 benchmark problems, which are widely used 

n the literature [41–43] , are selected to compare the developed 

haotic SCA algorithms’ performance. These are unimodal, mul- 

imodal, and fixed-dimension multimodal benchmark problems. 

hese benchmark problems have been tested, and the statistical re- 

ults are presented graphically and in tables. Then, the proposed 

ew algorithms’ performance is tested on the controller design 

roblem to control the time-delay systems. The algorithms’ swarm 

ize was considered as 100 and the number of iterations as 500 to 

est the proposed algorithms. Besides, each algorithm was run in- 

ependently 20 times on the same problem and technique for eq- 

itable comparison in the statical analysis. These results were ob- 

ained using a computer with Intel (R) Core (TM) i7–6700 HQ CPU 

 2.60 GHz, 64 Bit, 8GB RAM. The study was carried out using the 

ATLAB 2018a program. The abbreviations of the developed algo- 

ithms have been made in a simple manner and these abbrevia- 

ions are used in tables and graphics. Simulation results are given 

n Table 2 . Also, graphical results are shown in Figs. 6–8 . 

The average value and the standard deviation of all the 23 

enchmark problems are calculated using the four Chaotic SCA al- 

orithms and presented in Table 2 . In Figs. 6–8 , the global mini-
7 
um value, average value, and maximum values of the four algo- 

ithms are shown. The results suggest that the estimated average 

alues and the minimum values by the algorithms are not always 

he same. For better visualization, the best minimum, average and 

aximum values among the 20 experiments data were plotted in 

igs. 6–8 . The global minimum values of these functions are given 

n [41-42] , and the global minimum value found by the algorithms 

ill be accepted as the smallest value of a problem. 

From Table 2 and Figs. 6–8 , we observe that the best global 

inimum is obtained by Chaotic-1-SCA algorithm for the func- 

ions F5, F8, F9, F16; Chaotic-2-SCA algorithm for F2, F6, F11, F12, 

18, F20; Chaotic-3-SCA algorithm for F3, F15, F19, F21, F23 and 

haotic-4-SCA algorithm for F7, F22. However, all four algorithms 

erform equally for F10, F11, F14 and F17. 

Further, we observe from Table 2 and Figs. 6–8 that the best 

verage value is obtained by using Chaotic-1-SCA for the functions 

8, F14, F17; Chaotic-3-SCA for F9, F11, F15, F19, F21, F-23; only F16 

s the best optimized using Chaotic-4-SCA and the rest all functions 

ave shown their best average value performance using Chaotic-2- 

CA algorithm. 

Two time-delay systems are considered to check the perfor- 

ance of the controller. These are given in Eqs. (8) and (9) . 

 1 = 

1 

s + 1 

e −s (8) 

 2 = 

1 

( s + 1 ) 
2 

e −0 . 5 s (9) 

We have considered different PID controllers available for the 

 1 system from the literature for comparing the performance with 

he proposed controllers. The controller parameters and value of 

he objective function are given in Table 3 . From Table 3 , it is

ound that the Chaotic-3-SCA algorithm has resulted the optimal 

ontroller parameters and exhibits the global minimum value for 

his system. The responses of the G 1 system by all the controllers 

n Table 3 and their corresponding control signals are shown in 

ig. 9 . It can be concluded from Fig. 9 that the performance of the

 1 system is comparatively better by using the proposed Chaotic- 

-SCA algorithm. 
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Fig. 6. Minimum, average and maximum results of F1-F8 functions using SCA, Chaotic-1-SCA, Chaotic-2-SCA, Chaotic-3-SCA and Chaotic-4-SCA. 
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A similar approach is used for the G 2 system also. Various con- 

rollers, their parameters and the value of the objective function 

or the G 2 system are given in Table 4 . When Table 4 is exam-

ned, the performance of the Chaotic-2-SCA algorithm is observed 

o have resulted in the optimal controller parameters, which re- 
8 
ult in the global minimum value of the objective function. Fig. 10 

isplays the responses by using different controllers of the G 2 sys- 

em and their corresponding control signals. Therefore, the com- 

aratively better performance of the G 2 system is observed when 



K. Rajagopal, M.E. Cimen, S. Jafari et al. Chaos, Solitons and Fractals 148 (2021) 110992 

Fig. 7. Minimum, average and maximum results of F9-F16 functions using SCA, Chaotic-1-SCA, Chaotic-2-SCA, Chaotic-3-SCA, and Chaotic-4-SCA. 

9 
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Fig. 8. Minimum, average and maximum results of F17-F23 functions using SCA, Chaotic-1-SCA, Chaotic-2-SCA, Chaotic-3-SCA, and Chaotic-4-SCA. 

10 
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Table 3 

Results of SCA, Chaotic-1-SCA, Chaotic-2-SCA, Chaotic-3-SCA, Chaotic-4-SCA Algorithms for G 1 system. 

K Ki Kd J 

PID zeigler Nichols Step response [44] 1.206 0.6029 0.6026 0.518004971868672 

PID zeigler Nichols frequency response [44] 1.315 0.8766 0.5197 0.389124898449892 

PID AMIGO Step response [44] 0.6562 0.5966 0.252 0.747419584344242 

PID AMIGO frequency response [44] 0.6726 0.6794 0.2959 0.670936749971241 

WAO PID [44] 3 6.4208 3.7142e-20 0.144467979068028 

SCA PID 2.97985124535648 10 1.0000e-200 0.138196119928278 

Chaotic-1-SCA PID 2.98012964766160 10 3.4933e-200 0.138186453379259 

Chaotic-2-SCA PID 2.97792806098344 10 1.0000e-200 0.138262932755003 

Chaotic-3-SCA PID 2.98498675950492 9.94883762221232 1.1517e-200 0.138082548480609 

Chaotic-4-SCA PID 2.98490193270897 9.94007446673270 1.6112e-199 0.138096606470739 

Table 4 

Results of SCA, Chaotic-1-SCA, Chaotic-2-SCA, Chaotic-3-SCA, Chaotic-4-SCA algorithms for the G 2 system. 

K Ki Kd J 

PID zeigler Nichols Step response [44] 0.9895 0.2151 1.138 0.830028847831779 

PID zeigler Nichols frequency response [44] 1.058 0.2859 1.247 0.725802624889884 

PID AMIGO Step response [44] 0.5641 0.2565 0.5026 1.185951331817125 

PID AMIGO frequency response [44] 0.4943 0.2472 0.4844 1.115631284054570 

WAO PID [44] 2.9592 0.9953 1.1633e-20 0.575511287475820 

SCA PID 2.9153 1.1938 1.0229e-200 0.571781805682726 

Chaotic-1-SCA PID 2.9224 1.1732 1.8621e-200 0.571520341305722 

Chaotic-2-SCA PID 2.9205 1.1875 1.7946e-200 0.571390614763884 

Chaotic-3-SCA PID 2.9146 1.2189 1.5324e-200 0.571392803613831 

Chaotic-4-SCA PID 2.9124 1.2254 1.0000e-200 0.571524734649332 

Fig. 9. (a) System response and (b) control signal for the G 1 system. 

Fig. 10. (a) System response and (b) control signal for the G 2 system. 
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Table 5 

Performance Comparison of SCA, Chaotic-1-SCA, Chaotic-2-SCA, Chaotic-3-SCA, Chaotic-4-SCA algorithms for the systems G 1 and G 2 . 

System Number SCA Chaotic-1-SCA Chaotic-2-SCA Chaotic-3-SCA Chaotic-4-SCA 

Average 

Standard 

Deviation Average 

Standard 

Deviation Average 

Standard 

Deviation Average 

Standard 

Deviation Average 

Standard 

Deviation 

1 0.1386 0.0007 0.1383 0.0003 0.1383 0.0002 0.1383 0.0002 0.1383 0.0002 

2 0.5748 0.0032 0.5752 0.0037 0.5739 0.0020 0.5745 0.0029 0.5744 0.0030 

Fig. 11. Minimum, average, and maximum results of controlling of G1 and G2 using SCA, Chaotic-1-SCA, Chaotic-2-SCA, Chaotic-3-SCA, and Chaotic-4-SCA. 
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he system is controlled using the Chaotic-2-SCA algorithm than all 

ther controllers considered in Table 4 . 

A comparative analysis of the proposed four algorithms and 

he basic SCA algorithm for controlling the considered systems G 1 

nd G 2 is given in Table 5 and shown in Fig. 11 . It is observed

hat in terms of global minimum, the Chaotic-3-SCA algorithm has 

ielded the best results for the G 1 system. But in terms of average 

alue, Chaotic-1-SCA, Chaotic-2-SCA, and Chaotic-3-SCA algorithms 

xhibit equally good result. Similarly, from Table 5 and Fig. 11 , the 

haotic-2-SCA algorithm has yielded the best result for the G 2 sys- 

em in terms of global minimum and average values. When eval- 

ated in terms of general weight, it is observed that the proposed 

MO-2-SCA algorithm is more successful than other algorithms. 

. Conclusion 

As far as chaos theory is concerned, discovering systems with 

nexplored bihaviors are of interest. One such unexplored systems 

re those which show megastability and also has cyclic symmetry 

roperty. In this paper, we have proposed a class of cyclic symme- 

ry system which shows megastability. Such systems were not dis- 

ussed in the literature to the best of our knowledge. We have in- 

estigated the dynamical properties of the circulant megastable os- 

illators using Lyapunov exponents and bifurcation diagrams with 

he variation of a parameter. The proposed CMO-3 oscillator is ap- 

lied for the detection of a feeble signal. The simulated results re- 

eal that a feeble signal of the order 10 −9 can be detected. Sub- 

equently, using the randomness of megastable oscillators, a new 

haotic sine-cosine optimization algorithm is developed. Subse- 

uently, these new chaotic sine-cosine algorithms are used to esti- 

ate the PID controller parameters for time-delay systems. Conse- 

uently, the proposed controller using Chaotic-2-SCA performs bet- 

er results than the results of some PID controllers available in the 

iterature for the time-delay systems. 
12 
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