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Abstract In this study, a new variable-order fractional chaotic neural network with frequency effect is
proposed based on Hopfield Neural Network Under Electromagnetic Radiation, which is used to model
brain functions in the literature. The numerical solution of this proposed system is carried out by the
Griinwald-Letnikov (G-L) method, and time series and phase portraits are presented. In addition, the
chaotic behavior is analyzed by Lyapunov exponent analysis according to the frequency parameter used
for the variable-order function. A Pseudo-Random Number Generator (PRNG) is designed for data security
applications using the obtained state variables and the usability of the PRNG is demonstrated with the
NIST-800-22 test. Afterward, a data-hiding algorithm for personal data is presented for multi-channel
biomedical signals based on the designed PRNG. With this algorithm, implementations are made for
EEG, ECG, and EMG signals. It is shown in time and frequency domains that the method is usable for
data-hiding applications. In addition, the effectiveness of the newly developed algorithm is proven with

statistical methods.
1 Introduction

In recent years, as a result of the development of tech-
nology, chaotic systems have started to be used quite
frequently in fields such as communication, data secu-
rity, mechatronics, image processing, and physics [1-
8]. In particular, random number generators (RNG),
encryption, and data-hiding applications are the most
prominent areas where chaotic features are used [9-25].
Chaotic systems are widely preferred in these applica-
tions because the obtained chaotic signals or state vari-
ables are randomly changing, unpredictable, and non-
periodic.

The mathematical models of chaotic systems vary to
the structure of the system parameters, their dimen-
sions, the structure of their derivative orders, and
their classes of discrete or continuous-time systems.
Recently, continuous-time chaotic systems according to
their derivative orders have been a trending subject of
studies as a field of study and application. Derivative
orders in chaotic systems are usually defined as inte-
gers. However, fractional-order chaotic systems with
better nonlinear properties are widely available in the
literature [26-31]. The most up-to-date trend in these
matters is the study of variable-order systems beyond
fractional-order systems [32,33].
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Mathematical models defined as chaotic neural net-
works that show chaotic behavior are another widely
studied topic today [34-37]. Chaotic neural networks
can also be studied as integer order or fractional order
[38-45]. One of the leading neural networks studied in
the literature is the Hopfield Neural Network (HNN),
used to model brain behaviors. The HNN model shows
some behaviors such as periodic chaos, hyperchaos, and
quasi period, which are quite complex. These behaviors
increase even more under disturbances such as logic-
pulse stimulates and electromagnetic radiations [46—
48]. Therefore, this study prefers Hopfield Neural Net-
work Under Electromagnetic Radiation (HNNUER) for
PRNG design and personal data-hiding applications.

Studies on subjects such as data and informa-
tion processing/storage, image encryption, synchro-
nization, DSP and FPGA design, associative memory,
and brain work patterns, which are based on integer
and fractional-order HNN, are included in the literature
[46-53]. However, there are very few studies using the
HNNUER system as fractional order [49]. There is no
work published as variable order for HNNUER. In this
article, a study based on variable order for HNNUER
is presented.

Data security applications can be made for biomed-
ical signals or biomedical images using chaotic sys-
tems or chaotic neural networks [54-68]. However, when
the literature is examined, it is seen that data secu-
rity application is carried out for signals such as EEG,
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EMG, ECG, which are recorded as multi-channel, with
a single signal belonging to a single channel every
time. In this study, a new algorithm for multi-channel
biomedical signals is presented for the first time in the
literature, more suitable for real applications.

Considering all these explanations, the contribution
of the presented study to the literature can be summa-
rized as follows. In this article, a new Variable-order
Fractional Chaotic Neural Networks With Frequency
Effect (VFCNNWEFE) based on HNNUER is presented
for the first time in the literature. In this new sys-
tem, for the first time in the literature, the frequency
parameter is added to the time-dependent function used
to create a variable-order fractional. Numerical solu-
tion for VFCNNWFE is realized by Griinwald—Letnikov
(G-L) method. Time series and phase portraits were
obtained with the state variables calculated by the G-L
method. In addition, Lyapunov exponent analysis was
performed for the newly added frequency parameter,
and it was proven that VFCNNWFE showed chaotic
behavior. To demonstrate the usability of the presented
system in data security applications, a new Pseudo-
Random Number Generator (PRNG) was designed
using state variables obtained from the VFCNNWFE
system. Based on this PRNG, for the first time in the
literature, a new data-hiding algorithm has been devel-
oped that hides 2 Kbits of personal data into multi-
channel biomedical signals.

The paper has been planned as follows: VFCNNWFE
and numerical results are presented in Sect.2; PRNG
design based on VFCNNWFE is given in Sect. 3; the
new data-hiding algorithm is presented in Sect. 4, sim-
ulation results for multi-channel EMG, EEG, and ECG
signals have given in Sect.5 and conclusions are given
in Sect. 6.

2 Mathematical model of VFCNNWFE

The mathematical model of the Variable-Order Frac-
tional Chaotic Neural Network With Frequency Effect
(VFCNNWFE) proposed in this study is given in Eq.
(1). Equation (1) is the mathematical model, which
was revised as variable order and a frequency param-
eter added to the variable-order function, based on
fractional-order Hopfield Neural Network Under Elec-
tromagnetic Radiation which is defined in the literature
[49]:

DIy (1) = —z1(t) + atanh(z1 (t)) + btanh(za(t))
+ctanh(zs(t))
DI g0 (1) = —x9(t) — dtanh(z1 () + e tanh(zz2(t))...
... — ftanh(zs(t)) — gz2(t) (h — kx4(t)4)
DI o (1) = —x3(t) + mtanh(z1 (t)) — ptanh(za(t))
+7r tanh(z3(t))
DI gy (1) = ulwa(t) — waa(t).

(1)
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Parameter values determined for VFECNNWFE in Eq.
(1) are given as a = 1.5, b =2,¢=109,d = 1.5, e =
1.5, f =045, g = 043, h = 1.519, k = 0.12, m = 3,
p=2r=15 u=15 v =0.1and w = 0.45. The
q(wt) seen in Eq. (1) defines a variable-order fractional
function with frequency parameter and is given in Eq.

(2):
q(wt) = qo + acos(wt) + Fsin(wt). (2)

The parameter values seen in Eq. (2) are deter-
mined as ¢p=0.96, «=0.025, $=0.025 and w=1.5 rad/s.
According to the parameters in Eq. (2), the fractional-
order value of VFCNNWFE varies between ¢in=
0.9246 and ¢y,4,=0.9954. This range of values is quite
large compared to similar studies in the literature. A
large range increases the dynamic properties of the
proposed system. When the initial values of the state
variables are determined as x1(0) = 0.1, x2(0)=—0.1e,
23(0)=0.1 and x4(0)=—0.1e together with the system
parameter values given above, the system shows chaotic
behavior. Numerical calculation for the proposed VFC-
NNWFE was performed using the G-L method [51,69-
73] as seen in Eq. (3):

-t () raaa (e () |
®

In the definition of G-L seen in Eq. (3), s(x) is the dif-
ferintegrable function, (a,x) is the start and end dura-
tion of the s(x) function, v is fractional-order, T' is
Gamma function. “~FDY defines Griinwald-Letnikov
fractional differential operator.

The time series and phase portraits of the obtained
state variables from the proposed VFCNNWFE, which
is calculated with the G-L method for the specified
parameters and initials, are presented in Figs.1 and
2. When Fig.1 is examined, it is seen that the time
series of the VFCNNWFE change randomly and are
nonperiodic. In Fig. 2, the resulting phase portraits can
evaluate as multiple attractors and they have chaotic
trajectories. The results in Figs.1 and 2 show that the
VFCNNWFE proposed in Eq. (1) can be considered as
a chaotic system.

In addition, Lyapunov exponents’ analysis was also
carried out to show that the system is chaotic and to
demonstrate the effect of the newly added frequency
parameter (w) on the chaos behavior. The analysis
results obtained are shown in Fig.3. When Fig.3 is
examined, it can be seen that the VFCNNWFE system
exhibits chaotic behavior between nearly w = 0 and 2
rad/s. Between nearly w = 2 and 4 rad/s, sometimes it
is chaotic and sometimes it is not chaotic. After w =4
rad/s, it is not chaotic and it appears to be completely
out of chaos. Accordingly, it has been shown that the
system exhibits chaotic behavior for the w = 1.5 rad/s
value determined in Eq. 2.
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3 VFCNNWFE-based PRNG design

In this section, a new PRNG designed based on the
state variables obtained from the numerical solution
of the VFCNNWFE system is introduced. The most
important factor is that the chaotic system used in
data security applications such as chaos-based encryp-
tion and data hiding has sufficient randomness. With
this PRNG design, it is aimed to show that the pro-
posed system has sufficient randomness.

Figure6 shows the flow diagram of the designed
PRNG. In the PRNG design, as a first step, the param-
eters and initial values of the VFCNNWFE system are
determined. Afterward, numerical results are obtained
with the G-L method. Each calculated state variable is
converted to binary format in each iteration. 9 LSB bits
of each state variable are taken and a 36-bit bit array
is formed in each iteration. These iterations continued
until there are 1000000 bits in total. When the array of
1000000 bits required by the NIST-800-22 test is com-
pleted, the NIST-800-22 test is performed using NIST
Statistical Test Suit Software (sts-2.1.1) [74].

The NIST-800-22 test includes 15 different statistical
tests (seen in Table 1) for determining the randomness
of bit arrays. For all of these tests, the results about
randomness are presented using P values. If the calcu-
lated P value for one of the tests is obtained equal to 1,
this means the bit array has perfect randomness. If the
obtained P value is equal to zero, this means the bit
array is not random. On the other hand, for P value >
0.001 situations, the bit array can be considered to be

random with a confidence of 99.9% [75]. For this reason,
if the calculated P values for the NIST tests are between
0.001 and 1, the tested bit array is accepted as random
in the literature. The performed NIST test results for
the developed PRNG are presented in Table 1. When
the results in Table 1 are examined, it is seen that all
results (P values) are between 0.001 and 1, which is the
success criteria of the test. According to these results,
it has been shown that VFCNNWFE-based PRNG has
sufficient randomness.

4 The new data-hiding algorithm for
multi-channel biomedical signals

In this section, the new data-hiding algorithm for multi-
channel biomedical signals, developed based on the
PRNG designed in the previous section, is presented
(in Fig. 7). In the developed data-hiding algorithm, per-
sonal data to be hidden are hidden in multi-channel
biomedical signals. Accordingly, personal data are mes-
sage data, and the used multi-channel biomedical sig-
nals are carrier signals.

The data-hiding algorithm seen in Fig. 7 is performed
for each bit of message (personal) data. State variables
(x1, x2, x3 and x4) calculated with the G-L method in
each iteration are converted to binary format for each
personal data bit that is desired to be hidden. Then, in
accordance with the PRNG, 9 bits are taken from each
state variable and a 36-bit binary array is created. The
last 4 bits of this array are used to determine which
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Fig. 4 Flowchart of the
designed PRNG
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Letnikov Method
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Table 1 NIST-800-22 test results of VFCNNWFE-based PRNG

Statistical tests P value Result

Frequency (Monobit) test 0.683273674902085 Successful
Block-frequency test 0.459958782937705 Successful
Cumulative-sums test 0.889834169201796 Successful
Runs test 0.765576078258594 Successful
Longest-run test 0.46087909724265 Successful
Binary matrix rank test 0.726827620827944 Successful
Discrete Fourier transform test 0.251349108810223 Successful
Non-overlapping templates test 0.0044831701237676 Successful
Overlapping templates test 0.813034059559583 Successful
Maurer’s universal statistical test 0.0239984428650677 Successful
Approximate entropy test 0.576435276890138 Successful
Random-excursions test (z = —4) 0.373733486465795 Successful
Random-excursions variant test (z = —9) 0.0924883183589073 Successful
Serial Test-1 0.42790111377448 Successful
Serial Test-2 0.201530218143745 Successful
Linear-complexity test 0.258401444956329 Successful

channel of the multi-channel biomedical signals is used
to hide data. With the remaining 32 bits, it is deter-
mined which value of the selected channel is used to
hide data. By the performed control in the algorithm,
a used carrier data cannot be used later. In this way,
a unique carrier value is determined for each personal
data bit. Thus, no data loss occurs. Data hiding is per-
formed by placing the personal data bit on the LSB of
the determined carrier value. With this algorithm, any
data hiding can be done into multi-channel biomedical
signals such as EEG, ECG, and EMG. After the data-
hiding process is completed, the reverse of the processes
in the developed algorithm is performed to retrieve the
hidden data.

5 Simulation results for multi-channel
EMG, EEG, and ECG signals

In this section, simulation and analysis results of the
newly developed data-hiding algorithm for EMG, EEG,
and ECG signals with different channel numbers and
data lengths are presented. First of all, time series, his-
togram distributions, and frequency spectrums of orig-
inal and data-hidden EMG, EEG, and ECG signals are
presented. Afterward, entropy, mean, standard devia-
tion, correlation, SSIM (Structural Similarity Index),
PSNR, and MSE results obtained for all signals are
given together, and the effectiveness of the algorithm
on different signals is examined.

Considering the number of channels and data lengths
for all used signals, the total number of data was deter-
mined as 77,128. In this way, the LSB data-hiding
capacity of all used signals is equalized. Thus, the per-
formance evaluations became more meaningful with the
equal number of data used in the signals. Personal data
consisting of 256 characters and a length of 2048 bits
(2 Kbits) have been hidden in all used signals. The hid-
den text is shown below. This text has been successfully
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recovered, fully and sequentially, after successful hiding
to all signals. This shows that the developed algorithm
works correctly.

Text of the hidden personnel data:

“Name: Sezgin; Surname: Kacar; ID: 0123456789;
Date of Birth: 1.1.XXXX; Place of Birth: XXXXX,
Turkey; Phone no: +90123456789; Address: Sakarya
University of Applied Sciences, Faculty of Technology,
Department of FElectrical and FElectronics Engineering,
Turkey”.

5.1 Simulation results

In this section, the used multi-channel biomedical sig-
nals have been regulated as follows: the EMG data
recorded over 8 channels that contain 9641 values in
each channel, the EEG data recorded over 14 chan-
nels that contain 5509 values in each channel, and
the ECG data received over 6 channels that contain
12,855 values in each channel. After the data regu-
lation, the developed data-hiding algorithm has been
applied. For each channel of each signal, original and
data-hidden time series, histogram distributions, and
frequency spectrums have been obtained. But, when the
all obtained results of all channels are presented graph-
ically, there are a lot of figures which make it difficult
to follow the paper. So that, some of the selected chan-
nels are presented here. The used original EMG signals
and the data-hidden EMG signals are shown in Fig. 6
for channels 1, 5, and 8; the used original EEG signals
and the data-hidden EEG signals are shown in Fig. 7 for
channels 1, 5, 9, and 14; the used original ECG signals
and the data-hidden ECG signals are shown in Fig. 8 for
channels 1 and 5. When Figs. 6, 7, and 8 are examined,
it is seen that there is no difference between the orig-
inal and data-hidden signals. Accordingly, as a result
of the visual analysis, it was seen that the data-hiding
application was successful.
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Fig. 5 Flowchart of
data-hiding algorithm

Calculation of state
variahles of VFCNNWFE
System with Griinwal d-
Letnikov Method

After the time series of the signals, the histogram
distributions have been analyzed to see if the data hid-
ing changed the distribution of the values of the signals.
Figure 9 shows histograms of the used original EMG sig-
nals and the data-hidden EMG signals for channels 1, 5,
and 8. Histograms of the used original EEG signals and
the data-hidden EEG signals are shown in Fig. 10 for
channels 1, 5, 9, and 14. Figure 11 shows the histograms
of the used original ECG signals and the data-hidden
ECG signals for channels 1 and 5.

When Figs. 9, 10, and 11 are examined, it is seen that
there is no difference between the histograms obtained
for the original and data-hidden signals. These results
show that the data-hiding application does not nega-
tively affect the value distribution in biomedical signals,
which are the carrier data, and does not change the
distribution. Accordingly, as a result of the histogram
analysis, it was seen that the data-hiding application
was successful.

Another analysis performed on the original and the
data-hidden signals are frequency spectrum analysis

@ Springer
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Fig. 6 Original and steno

Data Hidden EMG Signal (CH1)

. 1000 1000
signals of EMG data for
channels 1, 5, and 8 500 500
0 0
-500 -500
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Original EMG signal (CHS) Data Hidden EMG Signal (CHS)
5000 5000
0 0
-5000 -5000
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Original EMG signal (CH8) Data Hidden EMG Signal (CH8)
5000 5000
0 0
-5000 -5000
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Fig. 7 Original and steno Original EEG signal (CH1) Data Hidden EEG Signal (CH1)
. 4600 4600
signals of EEG data for
Channels 1, 5, 9, and 14 4400 ’ ’ r‘ P 4400 ﬂ n P P
4200 4200
4000 4000
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Original EEG signal (CHS5) Data Hidden EEG Signal (CH5)
4400 4400
4350 4350
4300 4300
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
i G si CH9 Data Hidden EEG Signal (CH9
4300 Original EEG signal (CH9) 4300 gnal (CH9)
4250 4250
4200 4200
4150 4150
0 2000 4000 6000 0 2000 4000 6000
Original EEG signal (CH14) Data Hidden EEG Signal (CH14)
4600 4600
4400 4400
4200 4200
0 2000 4000 6000 0 2000 4000 6000

with FFT. Figure 12 shows frequency spectrums of the
used original EMG signals and the data-hidden EMG
signals for channels 1, 5, and 8. Frequency spectrums of
the used original EEG signals and the data-hidden EEG
signals are shown in Fig. 13 for channels 1, 5, 9, and 14.
Figure 14 shows frequency spectrums of the used origi-
nal ECG signals and the data-hidden ECG signals for
channels 1 and 5.
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When Figs. 12, 13, and 14 are examined, it is seen
that there is no difference between the frequency spec-
trums obtained for the original and data-hidden sig-
nals. These results show that the data-hiding applica-
tion does not adversely affect the frequency components
in the used biomedical signals and there is no data loss.
Accordingly, as a result of the frequency spectrum anal-
ysis, data hiding was found to be successful.
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Fig. 8 Original and steno
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The last analyses as presented visually are the plots
of different values of steno signals and the original sig-
nals, in Figs. 15, 16, and 17 for EMG, EEG, and ECG
signals, respectively. In these figures, the different val-
ues of steno signals obtained after LSB data hiding are
seen on the original EMG, EEG, and ECG signals.

When Figs. 15, 16, and 17 are examined, all the dif-
ferent values of steno signals obtained after LSB data-
hiding processes are seen overlapped with the originals
signals of EMG, EEG, and ECG signals and there is
no deviation on the steno signals values. These results
show that the data-hiding processes do not cause any
deformation on the original signals.

All the obtained results showed that the application
of data hiding did not cause a significant change on dif-
ferent biomedical signals, which are carrier data. This
situation also shows that diagnosis can be made via
data-hidden signals. In this way, the developed appli-
cation is seen as usable in real life.

5.2 Statistical analysis results

In this section, entropy, mean, standard deviation, cor-
relation, SSIM (Structural Similarity Index), PSNR,
and MSE results are obtained to demonstrate the effec-
tiveness of data hiding and confirm the simulation
results. Entropy (in Eq. (4)) provides information about
the randomness of the signals:

- Z s(i)logz(s(i))- (4)

Mean is the average value of the signal. The formula of
mean is given in Eq. 5:

1 N

The standard deviation is a metric of the amount of
variation of values of a signal. It can be seen in Eq. 6:
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Fig. 10 Histogram
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Fig. 11 Histogram
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Another used statistical parameter is correlation
which gives the similarity between two signals. The cor-
relation value can be calculated with Eq. (7):

cov(z, y)

corr(z,y) = DD
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In Eq. (7), cov(x,y) means covariance between two
signals that can be calculated with Eq. (8):

N
cov(z,y) = %Z(xz — E(x))(yi — E(v)). (8)

i=1

In Eq. (9), the formula of SSIM is given. SSIM value
is another similarity metric between two signals like cor-
relation:
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Fig. 12 Frequency
spectrums of original and
steno signals of EMG data
for channels 1, 5 and 8

Fig. 13 Frequency
spectrums of original and
steno signals of EEG data
for channels 1, 5, 9 and 14
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Fig. 14 Frequency
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Fig. 15 Original EMG signals and different values of steno EMG signals after LSB data hiding for channels 1, 5, and 8

z,y)
(2E(z)E(y) + C1)(2cov(z, y) + C2)
(E(z)? + E(y)? + C1)(D(x)? + D(y)? + C2)
9)
The formulas of PSNR and MSE which are used com-

monly in literature for comparing two signals are given
in Egs. (10) and (11):

MAX (z)?

PSNR = 1OlogloM—SE

08

(10)

MSE——

N (11)

The obtained results are given in Table 2 compara-
tively. When these results are examined, it is seen that
the entropy, mean, and standard deviation values are
very close or the same to each other in the original and

@ Springer

data-hidden steno signals for all signal types (EMG,
EEG, and ECG). When these values are very close or
the same for the original and the steno signals, this
means the signals are similar to each other. In addition,
the obtained correlation and SSIM values for original
and steno signals are almost equal to 1 which means
the original and steno signals are nearly the same for
EMG, EEG, and ECG signals. These results show that
the data-hiding application does not cause a statisti-
cally significant change in the signals. PSNR and MSE
values in Table 2 also reveal the similarity between orig-
inal and steno signals in all signal types. Accordingly,
the obtained PSNR values show that the original sig-
nals do not deteriorate much in data-hiding applica-
tions, while the MSE values show that the differences
between the original signals and the steno signals are
negligible. All these results show that the data-hiding
application is quite successful and effective, but also
confirms the obtained simulation results.



Eur. Phys. J. Spec. Top.

EEG signal (CH1)
4600 T T T T T
Original signal
4400 [ *  Different Values of Steno Signal
4200 -
4000 | | | | 1
0 1000 2000 3000 4000 5000 6000
EEG signal (CH5)
4100 T T T T Original signal
*#  Different Values of Steno Signal
4350 +hail L " |
e M 4 ; % 3 i LATH IR U i WL Wl
. M43 k { Y T A * l
W H ¢
4300 | | | | |
0 1000 2000 3000 4000 5000 6000
EEG signal (CH9)
4
900 T T T I Original signal
4250 *  Different Values of Steno Signal
AL TR o | L ":|_.,
4200 [ Tt I 6 f, / SRRtk ok g I it i O N o
Pl RN TN TRR i 4
4 3 ' - M
4150 | N | | | |
0 1000 2000 3000 4000 5000 6000
EEG signal (CH14)
4
600 T T T T Original signal
*  Different Values of Steno Signal
4400 =
1

4200
0

1000 2000

3000 4000 5000 6000

Fig. 16 Original EEG signals and different values of steno EEG signals after LSB data hiding for channels 1, 5, 9, and 14
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Fig. 17 Original ECG signals and different values of steno

6 Conclusions

In this study, for the first time in the literature, a
chaotic neural network with frequency parameter in
variable-order function has been presented and it has
been proved that it exhibits chaos behavior by suc-
cessfully performing the analysis. Thus, a new param-
eter has been introduced for variable-order systems in
the literature. A new PRNG design was made using

ECG signals after LSB data hiding for channels 1 and 5

the dynamic features of the proposed system and suc-
cessful results were obtained. Based on the designed
PRNG, data hiding has been implemented for the first
time in the literature for multi-channel biomedical sig-
nals, including EMG, EEG, and ECG. A new algo-
rithm has been developed for this application. With the
developed algorithm, successful simulation and analy-
sis results were obtained for multi-channel EMG, EEG,
and ECG signals, and the effectiveness of the developed

@ Springer
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Table 2 Statistical results for multi-channel biomedical signals

EMG EEG ECG

Original Steno Original Steno Original Steno
Entropy 9.6161 9.6241 9.7498 9.8887 9.9494 10.0448
Mean 13.3214 13.3233 4.2992 4.2992 4.2109 4.2276
Stand. dev. 9.1765 9.1765 3.5351 3.5350 2.5564 2.5562
Correlation 0.9999 0.9999 0.9999
SSIM 0.9998 0.9999 0.9986
PSNR 66.8326 64.4587 63.8260
MSE 0.0135 0.0233 0.0269

algorithm was demonstrated. Although 2.66% (2 Kbits)
of the data amount of biomedical signals are hidden, the
results obtained are quite good. For example, accord-
ing to all comparative graphics in time and frequency
domains and histograms in Figs.6, 7, 8, 9, 10, 11, 12,
13 and 14, there are no differences between the original
and steno signals. In addition, it is shown in Figs. 15, 16
and 17 that the different values of steno signals do not
affect the structure of the original signals. In addition,
the statistical results in Table 2 show that the origi-
nal and steno signals are nearly the same. Accordingly,
it can be said that the proposed algorithm for multi-
channel signals increases the data-hiding capacity and
does not cause a significant deterioration in biomedical
signals.
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