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Summary

A symmetric pair of hyperchaotic attractors based on the 4‐D Rössler system is

constructed by adjusting the polarity information of some of its variables. By

introducing a plane of equilibria into this system, an attractor and a repellor

can be bridged. As a result, the proposed system is revised to be time‐reversible,

and one of the coexisting attractors can be extracted. Therefore, two coexisting

hyperchaotic attractors can be captured separately in an electric circuit without

an external circuit to set initial conditions, which has not been previously

reported.
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1 | INTRODUCTION

Multistability has attracted great interest in the nonlinear research, and many coexisting attractors can be found in
symmetric systems1-14 and asymmetric systems.15-20 Although a symmetric pair of coexisting strange attractors has been
reported in a 3‐D or 4‐D system, the phenomenon of coexisting symmetric pair of hyperchaotic attractors has not been
previously reported. In a 4‐D symmetric system,13,14 the coexisting symmetric pair of strange attractors usually merge
together before turning into a single hyperchaotic attractor. Many hyperchaotic systems have been designed using
extensions of the Lorenz and Rössler systems,21-28 where most of the polynomial nonlinearities are based on quadratic
nonlinearities without exhibiting coexisting hyperchaos. System coupling29-31 and the time‐delayed state feedback32 can
be applied for generating hyperchaos while desired higher‐dimensional dissipative hyperchaotic systems can be
constructed by using a single‐parameter controller.33 Unlike the above methods, and rather than increasing the degree
of the nonlinear terms, such as cubic26,34 or quintic nonlinearities,35 we instead modulate the polarity information of
some variables in a dynamical system. As a result, the asymmetric hyperchaotic Rössler equation is revised to be a
symmetric one, and it produces a symmetric pair of hyperchaotic attractors.

In Section 2, a symmetric pair of hyperchaotic attractors is obtained by revising the structure of the hyperchaotic
Rössler system. In Section 3, we discuss the relationship between the attractor and repellor and show a method to turn
one of the coexisting attractors into a repellor. A circuit implementation for reproducing these coexisting attractors is
discussed in Section 4, which agrees with the numerical simulation. The last section provides discussion and
conclusions.
2 | COEXISTING HYPERCHAOTIC ATTRACTORS

The following four‐dimensional Rössler equation.21

_x ¼ −y − z

_y ¼ x þ ayþ u

_z ¼ bþ xz

_u ¼ cu − dz

8>>><
>>>:

(1)

has a single asymmetric hyperchaotic attractor. Since the signal z is positive, we can revise the third dimension to be
_z ¼ b sgn zð Þ þ x∣z∣so as to construct a symmetric structure,

_x ¼ −y − z

_y ¼ x þ ayþ u

_z ¼ b sgn zð Þ þ x∣z∣
_u ¼ cu − dz

8>>><
>>>:

(2)

There are discontinuous functions in the right‐hand side, but according to the theorem shown in Davy,36 here F (t, V) is
measurable and piecewise continuous according to the vector V = (x, y, z,u) and therefore system (2) has Filippov
solution. System (2) has inversion symmetry with respect to the original point based on the invariance under the
coordinate transformation (x, y, z,u)→ (−x,−y,−z,−u), and hence it has a symmetric pair of coexisting attractors. When
a = 0.25, b = 3, c = 0.05, and d = 0.5, and initial conditions are (0, 1, 3, 18), System (2) is hyperchaotic with Lyapunov
exponents (LEs) of (0.1121, 0.0213, 0, −24.9268) and a Kaplan‐Yorke dimension of DKY = 3‐(λ1 + λ2)/λ4 ≈ 3.0054. As
predicted, System (2) gives a symmetric pair of coexisting hyperchaotic attractors. Figure 1 shows various projections
of the coexisting hyperchaotic attractors, which resemble the attractor for System (1). The cross section of the attractor
in the hyperchaotic region shown in Figure 2 has a dimension greater than 2.0, indicating that the capacity dimension of
the attractor is greater than 3.0.

When considering the nonlinear feedback in the hyperchaotic equations, all nonlinearities come from the third
dimension of z. Variable z can be replaced with an absolute‐value term |z|, and its polarity can be preserved by sgn
(z). Consequently, these substitutions can preserve the hyperchaos in the symmetric space. Correspondingly, the
symmetric system (2) has symmetric equilibrium points. When a = 0.25, b = 3, c = 0.05, and d = 0.5, the system has
three equilibrium points: one at the origin (0, 0, 0, 0) with eigenvalues (0, 0.05, 0.125 ± 0.9922i), which is an unstable



FIGURE 2 Projection onto the y‐z plane of a cross section of the hyperchaotic attractor at x = 0, u = 0 for system (2) with a = 0.25, b = 3,

c = 0.05, and d = 0.5

FIGURE 1 Projections of coexisting

hyperchaotic attractors of system (2) for

a = 0.25, b = 3 and c = 0.05, d = 0.5. A, x‐y

phase plane; B, x‐z phase plane; C, y‐z

phase plane; D, x‐u phase plane, red for

(−6,0, 0.5, 14) and green for (6,0,−0.5,−14)

[Colour figure can be viewed at

wileyonlinelibrary.com]
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node; and two other equilibrium points at (±5.4083, ±0.5547, ∓0.5547, ∓5.5470) with eigenvalues (−5.3090, 0.1019,
0.0494 ± 0.9987i), which are four‐dimensional saddle‐foci. This indicates that the coexisting attractors are self‐excited
rather than hidden.14,34,37-41

Here, our computation of LEs is based on the algorithm of Wolf rather from Kuznetsov,42 which is also a finite‐time
LE, and the time is 4e7. Like other systems with signum functions, the discontinuous signum function causes difficulty
in calculation of the LEs.43,44 We avoided this difficulty by replacing sgn (x) with tanh (Nx) and choosing N = 100,
which is sufficiently large that the calculated exponents are independent of its value to high precision. And
consequently, the absolute value function can be smoothed by replacing with tanh (Nx)*x since |x| = sgn (x)*x. The
initial conditions that were used here is (−6, 0, 0.5, 14) and other selected initial conditions give the same LEs to four
significant digits.

http://wileyonlinelibrary.com
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3 | TURNING AN ATTRACTOR INTO A REPELLOR

To extract any of the coexisting attractors, a proper initial condition is necessary to produce the desired oscillation. How-
ever, by changing one of the coexisting attractors into a repellor, a circuit may be used to implement the remaining
attractor from noise without needing a preselected initial condition. This can be done by revising the symmetric system
to be a time‐reversible system, which allows one of the coexisting attractors to become a repellor.45-47 As shown in
Figure 3, an odd function can bridge these two classes of systems, providing a new method to extract any of the
symmetric attractors.

Theorem 1. A super‐plane of equilibria can be introduced into System (2) through p = ± sgn (z), which

results in the following time‐reversible system with inversion‐invariant symmetry.

_x ¼ −y − zð Þp
_y ¼ x þ ayþ uð Þp
_z ¼ b sgn zð Þ þ xjzjð Þp
_u ¼ cu − dzð Þp

8>>><
>>>:

(3)
Proof. As pointed out in the first section, System (2) has inversion invariant symmetry, while the System (3)

has a super‐plane of equilibria at z = 0 when p = ± sgn (z). By making a transformation (x, y, z, t) → (−x,
−y, −z, −t), System (3) will recover its original governing equation. Therefore, System (3) is time‐reversible
with inversion‐invariant symmetry. The attractors and corresponding repellors with different functions are
shown in Figure 4. The symmetric version can be restored by multiplying the same odd function since
sgn(z) × sgn (z) = 1. For further reading, see Li and Sprott.46 Here, in this paper, a simpler circuit structure
is obtained by turning a symmetry system to a time‐reversible one. From this operation, one of the
coexisting attractors turns to be a repellor, and therefore it is more convenient to pick up the rest of
FIGURE 3 A bridge between the

symmetric system and time‐reversible

system [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Selecting different attractors

by introducing different functions

p = ± sgn (z) [Colour figure can be

viewed at wileyonlinelibrary.com]
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LI ET AL. 5
coexisting attractors without needing an initial condition unit (ICU). In addition, the specific nonlinearity
of signum function and absolute value function disappeared and can be replaced with switch operations.
System (2) does not have a hyperchaotic repellor. When time is reversed, the only attractor is the equilibrium at the
origin (plus the one at infinity). In contrast, System (3) has a hyperchaotic repellor. Now, one of the coexisting
hyperchaotic attractors is an invisible repellor (shown in red) and cannot be accessed regardless of the initial conditions,
while the remaining attractor (shown in green) can be extracted for any accessible initial conditions. This can be
accessed in an electronic circuit through inherent circuit noise.48 In fact, the newly introduced odd function can be
multiplied into each term, and if p = sgn (z), System (3) can be rewritten as

_x ¼ −y sgn zð Þ − ∣z∣
_y ¼ x sgn zð Þ þ ay sgn zð Þ þ u sgn zð Þ
_z ¼ bþ xz

_u ¼ cu sgn zð Þ − d∣z∣

8>>><
>>>:

: (4)

System (4) does not change its time‐reversible property and only produces the desired attractor as shown in green in
Figure 4A. In fact, when considering the attractor location in the space of z > 0, System (4) is equivalent to the original
System (1). Following the same analysis, when p = − sgn (z) System (3) becomes

_x ¼ −y − z

_y ¼ x þ ayþ u

_z ¼ −b − xz

_u ¼ cu − dz

8>>><
>>>:

: (5)

The only difference between Systems (1) and (5) is the third dimension, which is _z ¼ ±b ± xz. The attractor and the
repellor exchange roles when System (1) switches to System (5), which is convenient for showing the symmetric pair
of attractors in System (2).
4 | CIRCUIT REALIZATION

4.1 | A circuit implementation with initial conditions for attractor selection

The traditional method for reproducing coexisting attractors requires presetting the initial conditions. From Equation 2,
we design the analog circuit shown in Figure 5 to generate the hyperchaotic attractors, which includes four channels to
realize the integration, addition, and subtraction of the state variables x, y, z, and u, respectively. According to Kirchhoff's
circuit laws and the property of the circuit elements, the equations in terms of the circuit parameters are

_x ¼ −
1

R1C1
y −

1
R2C1

z

_y ¼ 1
R3C2

x þ 1
R4C2

yþ 1
R5C2

u

_z ¼ 1
R6C3

sgn zð Þ þ 1
R7C3

x∣z∣

_u ¼ 1
R8C4

u −
1

R9C4
z

8>>>>>>>>>>><
>>>>>>>>>>>:

: (6)

The circuit includes an ICU for presetting suitable voltages on the capacitors C1 to C4. Typically, an electronic switch
can fulfill this task. For example, the 0.45‐Ω quad SPDT analog switch TS3A44159 can be used to realize initial
condition presetting. As shown in the ICU in Figure 6, the control pin IN can be set to different voltages by the button
(high level or low level determined by the voltage divider Rm and Rn). This allows for COMi to either connect to NCi

(charging the capacitors through resistors Rih and Rig) or connect to NOi and provides feedback to the oscillator.



FIGURE 6 Initial condition unit for

presetting the voltage on the capacitors

FIGURE 5 Four integration channels

in circuit for the 4‐D system (2)
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4.2 | Circuit constructing for reproducing attractors

However, the abovementioned circuit is complicated since it requires special circuit elements for the implementation of
the absolute value, signum nonlinearity, and the ICU. When considering the relation between a symmetric system and a
time‐reversible one, usually four extra multipliers are required for realizing System (3). Fortunately, the circuit for
representing the coexisting attractors can be simplified further based on Equations 1 and 5. As shown in Figure 7,
through the general method of analog computation, four integration channels incorporated with the switch between
∓Vdd and ∓xz can be used to capture two coexisting hyperchaotic attractors separately. Here, the circuit schematic is
really simplified. Compared with Figure 5, except the ICU there are also no circuit units for realizing the absolute value
and signum nonlinearity in Figure 7. Figure 5 is designed to observe two coexisting attractors shown in Figure 1, while
Figure 7 is constructed for catching one of the coexisting attractors separately shown as Figure 4. The circuit equations,
where variables x, y, z, and u represent voltage levels, are given by



FIGURE 7 An equal schematic for

switching the coexisting attractors

FIGURE 8 The experimental circuit in

operation. The oscilloscope displays one of

the coexisting hyperchaotic attractors

[Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 9 Oscilloscope traces of

hyperchaotic attractors of system (2) A,

and B, x‐y plane, C, and D, x‐z plane

(1 V/div) [Colour figure can be viewed at

wileyonlinelibrary.com]

8 LI ET AL.
_x ¼ −
1

R1C1
y −

1
R2C1

z

_y ¼ 1
R3C2

x þ 1
R4C2

yþ 1
R5C2

u

_z ¼ ±
Vdd
R6C3

±
1

R7C3
xz

_u ¼ 1
R8C4

u −
1

R9C4
z

8>>>>>>>>>>><
>>>>>>>>>>>:

: (7)

To avoid saturating analog multipliers and operational amplifiers, the system is rescaled as x → 20x, y → 20y, z → 40z,
u → 20u, with circuit parameters: R1 = R3 = R5 = R9 = 400 kΩ, R2 = 200 kΩ, R4 = 1.6 MΩ, R6 = 1.06 MΩ, R7 = 20 kΩ,
R8 = 8 MΩ, R10 = R11 = R12 = R13 = 20 kΩ. The operational amplifiers are TL084 ICs powered by ±9 volts, and the
constant branch Vdd is powered by ±5 volts. Several design considerations were taken into account to prevent degrading
the hyperchaotic behavior. The experimental circuit in operation is shown in Figure 8. Oscilloscope traces from the
output of the integration channels are given in Figure 9. Aside from a few transients originating from different initial
conditions, the result is in agreement with Figure 1.
5 | CONCLUSION AND DISCUSSIONS

Hyperchaotic signals have great instability in two dimensions and relatively more complicated dynamics, and because of
this, hyperchaotic circuits can improve security and carrier performance by providing pseudo‐random signals that are
useful in secure communications and radar engineering.49-52 In this paper, a hyperchaotic system with a symmetric pair
of coexisting attractors is proposed by constructing a symmetric structure and revising the polarity. The introduction of
a signum function and absolute value function produces a polarity balance leading to a desired symmetric structure that
does not destroy the dynamics of the original four‐dimensional hyperchaotic Rössler system.

http://wileyonlinelibrary.com


LI ET AL. 9
However, the corresponding circuit requires special elements to execute the specific nonlinearity and preset the
initial conditions. A deeper examination of the relation between the symmetric system and the time‐reversible system
suggests that one of the coexisting attractors can be transformed into a repellor, and consequently the remaining
attractor can be extracted by the inherent noise in the circuit without the need for an ICU. The simplified structure
of the analog circuit designed in this paper reproduces the coexisting attractors separately without any complicated
elements for realizing polarity transformation. The corresponding hyperchaotic attractors show good agreement with
numerical simulation.
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