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Abstract 

Green synthesis ultrasonic method is reported for the preparation of zinc oxide nanopartilces

loaded on activated carbon derived from coffee waste. The zinc modified AC was used

effectively for the elimination of malachite green (MG) from wastewater. The examined batch

adsorption parameters are; initial pH (2-9), sorbent amounts (0.10-0.50 g/100 mL), mixing

time (5-120 min), MG concentrations (25-300 mg/L) and temperature (298-318 K). The XRD,

SEM/EDS, and FT-IR analysis techniques were conducted to describe the chemical structure

as well as surface morphology of Zn(OH)2-AC composite. The results demonstrated that the

adsorption capacity of Zn(OH)2-AC composite was improved with incremental of the initial

dye concentration, pH, and temperature, and decreased as the Zn(OH)2-AC composite dose

was increased. The Langmuir isotherm model (R2 = 0.97) showed better conventionality than

the Freundlich model (R2 = 0.80) with a maximum removal capacity of 303.03 mg/g at 318 K

and pH 7.0. The kinetic results revealed that the equilibrium data well follow the pseudo-

second-order model. The thermodynamic investigations indicated the spontaneous and
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endothermic removal of MG. The cycling test exhibited that the developed Zn(OH)2-AC

composite had virtuous repeatable adsorption/desorption performance particularly until the

fourth cycle. In addition to comparatively shorter adsorption time, relatively high adsorption

capacity, reasonable reuse performance, and being of cost-effective and eco-friendly of the

developed Zn(OH)2-AC composite make it economic, effective and hopeful adsorbent for

cleaning MG containing wastewaters. 

Keywords: Zinc hydroxide composite, Malachite green, Kinetic and isotherm, Coffee waste,

Adsorption, Ultra removal 

1. Introduction 

Dyes- containing wastewaters are among the important contaminants due to the ecological

problems that they will cause. 10.000 various types of dyes and an average of 700.000 tons of 

dye are being used around the world (Senthilkumaar et al., 2006). Dyestuffs cause toxic,

carcinogenic, and aesthetic problems in aquatic environments (Pharma et al., 2011). Reactive

dyes are the most commonly used dyes that are used in the textile industry because of their

luminescent structures, fast application, and low cost (Ahmad and Alrozi, 2011). Reactive

dyestuffs are not biodegradable because of their solubility feature in the water and azoic

structure. Dyes in the wastewaters are being removed by using different traditional methods

such as bio-adsorption/adsorption (Altintig et al., 2018; Wangi and Zhu, 2007; Yu et al.,

2017; Pereira et al., 2003; S. Dashamiri et al., 2016; Saleh 2020a,b), chemical oxidation

(Wang et al., 2015) and magnetic separation (Huang, 2017). The removal of organic dyes

using different kinds of bio-based-AC. When these methods are compared, the most preferred

method is adsorption because of easy use (Ip et al., 2009; Lin et al., 2017). The adsorption

process comes into prominence because it provides high-quality output water on the removal

of the dissolved organic contaminants as dyes (Walker and Weatherley, 1997; Zhang et al.

2019; Zhu et al. 2020). In recent years researchers modified the nano-structure materials to
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increase the surface areas of activated carbons (ACs) and their adsorption capacities. The use

of hydroxylated metal nanoparticles such as copper (II) oxide (Mazaheri et al., 2015),

ruthenium and copper covered zinc sulfide (Asfaram et al., 2015), zinc oxide nano particles

(Azad et al., 2015) have been preferred as chemical activating agents of the different kinds of

ACs used as adsorbents due to some advantages like high selectivity and various reactive

centers (Dashamiri et al., 2017; Sadeghi et al., 2012). Moreover, various methods have been

tried to activate these modification processes and adsorbents. Some of them are acid

cavitation, thermal activation, and acoustic cavitation. Acoustic cavitation is based on the

application of ultrasonic radiation to the aquatic environment. When ultrasound was spread in

the aquatic environment, cavitation bubbles were created in the aquatic environment with the

effect of the high ultrasonic pressure. These bubbles grow up to an unbalanced dimension and

precipitate introverted (Jing et al., 2011). As the diameters of the bubbles created at lower 

frequencies at around 20 kHz are greater relatively, the intensity of the hydro-mechanical

shear forces created during the cavitation precipitation at lower ultrasonic frequency is

maximum. This mechanism of the acoustic cavitation can be used to increase the activation of

adsorbents and adsorption capacities (Breitbach and Bathen, 2001).  

Even though numerous countries have prohibited the usage of MG because of its

serious harmful effects, it has been still used in some industrial activities such as fish farming,

for dyeing of textile products due to its being cost-effective and easily obtainable (Ramaraju

et al., 2014). With remediation purpose of MG-polluted wastewaters, some AC based-

adsorbents were modified with ZnO or Zn(OH)2 nanoparticles because of increased number of

oxygen-containing functional groups and structural bonding of zinc to the surface of AC.

Moreover, compared with the non-modified AC, Zn element on the surface improves the

adsorption selectivity of AC to the target molecules and expanding the interlayer spacing of

adjacent AC planes (Liu et al., 2020). With this regard, Zn(OH)2 nanoparticle-loaded AC
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(Bazrafshan, et al., 2015), bio-based magnetic AC (Wangi and Zhu, 2007) chemical

functionalized AC (Ghasemi  et al., 2016), ZnO-loaded AC (Ghaedi et al., 2016), coconut coir

based-AC (Askari et al., 2017) were reported to eliminate MG from water. In addition,

although there are a few studies on Zn(OH)2 loaded AC using different methods in the

literature (Bazrafshan et al.,2015; Ghasemi et al., 2016; Mosayebi et al., 2015; Mosayebi

and Azizian, 2016). By considering the literature survey, it can be remarkably noted that

development of a novel low-cost, economic and facile synthesizable zinc acetate-activated

carbon (AC) for effective cleaning of aqueous solutions from MG pollutant is still needed. In

this sense, the green and facile synthesis of coffee waste-based AC/Zn(OH)2 composite was

carried out by means of ultrasonic cavitation method and then evaluated for removal of MG

from aqueous solutions for the first time in this study. A series of instrumentation techniques

was conducted for characterization of the adsorbent using XRD, FT-IR, and SEM/EDS,

analysis. In addition, adsorption isotherm modeling and reusability cycling test, as well as

thermodynamic and kinetic examinations of the adsorption method were applied.  

2. Material and Method 

2.1. Material 

AC was produced from coffee wastes in this study. Sodium hydroxide (NaOH), zinc acetate

(Zn (CH3COOH)2), and hydrochloric acid (HCl), and MG were supplied from Merck

(Darmsadt, Almanya). The MG (C52H54N4O12; MGw: 329.46g/mol) stock solution was

prepared as 1000 mg.L-1 and the dilution process was used to prepare solutions with required

concentrations. The pH of the solutions was adjusted by 0.1 M HCl or NaOH solution. All

chemical agents used in the work were of analytical grade.  

2.2. Preparation of coffee waste based-AC adsorbent and its modification with Zn(OH)2

nanoparticles  
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Initially, AC was produced from coffee wastes in this study. An amount of coffee wastes

(CW) was taken from coffee markets at a Sakarya, Turkey province. It was impregnated with

85%V/V H3PO4 with a ratio of 1:1 and put into a tube furnace at 700 °C for 60 min to become

AC (CWAC). The CWAC was washed with water until its filtrate was neutral. 

In the second step, the produced coffee waste based-AC adsorbent was modified by

Zn(OH)2 nanoparticles via the in-situ process. For this aim, 50.0 mL of 0.05 M zinc salt was

mixed with 50 mL of 0.1 M NaOH solution at room temperature. After adding 2 g AC, the

mixture was shaken in the ultrasonic bath for 15 min at 200 W power. The ultrasonic

activation of AC was performed using (Elma brand, E 30 H) model ultrasonic bath. In the

next step, the mixture was centrifuged for about 600s at 6000 rpm. It was then washed with

water and ethanol. The obtained Zn(OH)2-AC composite was kept in the oven to dry. This

nanomaterial was sieved and the particles with a size between 180-212 μm were used in batch

adsorption runs. 

2.3. Analytical measurements 

SEM/EDS analysis photographs were taken under a high vacuum at 20 kV using Jeol JSM-

6060LV brand instrument. Au cover processing was performed in order to provide

conductivity property to Zn(OH)2-AC composite sample. Images were recorded between

1.000x and 300.000x zoom and 50 µm-200 nm resolution. The EDS analysis was displayed

by focusing on a specific point on the scanned image area of the sample. FT-IR spectrum of

the adsorbent was obtained using a Perkin Elmer model spectrometer. The ultraviolet and

visible light (UV-Vis) measurements were carried out by Shimadzu UV-2600 model

Spectrophotometer. The measurement range was taken as 617 nm. pH of each solution was

recorded with Mettler TOLEDO Seven Compact device. The crystal structures of the samples

were identified with a Rigaku model X-Ray diffractometer (XRD) in 2θ angle range of 10-

80°. The thermal degradation stability of the produced AC and Zn(OH)2-AC samples was
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investigated using a NETZSCH-STA 449 F1 model Thermogarvimetry analysis

(TGA)/Differential thermogravimetric analysis(DTA) instrument. The samples were heated

with in nitrogen atmosphere from room temperature to 1000 °C with a heating rate of 10 °

C/min. 

2.4. Adsorption and desorption studies 

The solutions of MG dye were prepared from the stock solution (1000 mg/L) by dilution. 100

mL aqueous solution was used for each adsorption run from the water. The influence of

contact time (5-120 min), initial pH (2-9), adsorbent amount (0.10- 0.50 g/100 mL),

temperature (298-318 K) and dye concentration (25-300 mg/L) on the removal of MG. The

mixing process was done using a temperature adjusted-shaker at 150 rpm. The mean values

obtained after repeated three times were taken into account. The equilibrium concentrations of

MG the removal percentage were calculated using Eq. (1-2): 

𝑞 𝑥𝑉            (1) 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 % 𝑥100        (2) 

Where, qe is the equilibrium concentration of removed MG onto Zn(OH)2-AC composite

(mg/g). Co and Ce is initial (mg/L) and equilibrium concentration of MG at equilibrium time

(mg/L), respectively. V and m are solution volume (mL) and adsorbent mass (g).  

The desorption efficiency of MG was investigated using six different concentrated-eluents:

0.05 M NaOH, 0.1 M NaOH, 0.2 M NaOH, 0.05 M HCl, 0.1 M HCl and 0.2 HCl. 0.1 g of

adsorbent was agitated for 60 minutes for MG concentration of 100 mg L-1 at a shaking rate of

150 rpm for 2 hours at 298 K. The separated adsorbent from MG solution was washed with

purified water and dried in the oven at 60 °C. Before each desorption cycle, MG adsorptionJo
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yield (%) was determined as mentioned above. The desorption yield (%) was (Wang et al.,

2016). 

                          𝐷𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 % 𝑥100                                                                    (3) 

Where Cd and Ca are desorption and adsorption equilibrium MG concentration (mg L-1) 

3. Results and discussion 

3.1. Characterization results 

XRD results of AC and Zn(OH)2-AC composite before and after dyestuff adsorption were

evaluated, Figure 1. In the diffraction pattern of AC, the large peak in a range of 20 and 30°

corresponds to the amorphous phase and the low peak at 2θ value of 39.04° represents the

crystalline phase of AC.  

 

Figure 1. XRD diffraction patterns of (a) AC (b) Zn(OH)2-AC composite (c) Zn(OH)2-AC

composite after MG  adsorption 

As seen from the pattern of Zn(OH)2-AC composite before MG adsorption, the peaks with

crystal lattice of 100, 002, 101, 102, 110, 103, 200 correspond to the 2θ value of 32.03, 36.65,

Jo
ur

na
l P

re
-p

ro
of
7 
 



 169 

 170 

 171 

172 

173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

181 

182 

 183 

184 

Journal Pre-proof
38.27, 48.20, 57.55, 62.33 and 68,76°. On the other hand, it can be seen all main characteristic

peaks belonged to AC and Zn(OH)2 are present in the diffraction pattern of  Zn(OH)2-AC

composite after MG adsorption. Moreover, the sharpness of these peaks was decreased due to

the dye adsorption.  

Figure 2 shows the FTIR spectrums of AC, Zn(OH)2-AC composite before and after 

MG adsorption. There are three small absorption bands observed at 1428, 1602, and 887 cm-1

corresponding to CH bending vibrations, C=C stretching vibrations, and CH out-of-plane

bending vibrations, Figure 2(a). The spectrum of the Zn(OH)2-AC composite indicates peaks

at about 3720 and 3390 cm-1 are ascribed to the stretching bands of the OH group, Figure

2(b). The minor peaks at about 1426, 1580, and 775 cm-1 corresponding to stretching and

bending and out-of-plane bending vibrations of CH, C=C, and CH groups of AC components

of the adsorbent mentioned above. The peaks at about 1700 and 1070 cm-1 are owing to the

C=O and C-O stretching vibrations of the acetate group, respectively (Sharma et al., 2012). 

 

Figure 2.  FTIR spectrums of (a) AC (b) Zn(OH)2-AC composite (c) Zn(OH)2-AC composite

after MG  adsorption 
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The adsorption peak at 800 and 550 cm-1 wave number shows the Zn-O tension in the

ZnO cage. The adsorption peak at the 453 cm-1 is regarded as the bending vibration of Zn-O

in the ZnO cage (Sohail et al., 2017). On the other hand, the spectrum of Zn(OH)2-AC

composite includes the absorption signals regarding all of the components of AC after MG

adsorption, Figure 2(c). Moreover, the little changes in the wavenumber of the peaks were

due to the physicochemical attractions between MG and the functional groups of Zn(OH)2-

AC composite. By considering all FT-IR findings, it could be concluded that the MG

adsorption on the surface of Zn(OH)2-AC composite was accomplished. Figure 3(a-c)

displays the SEM images of AC Zn(OH)2-AC composite and Zn(OH)2-AC composite after

MG  adsorption. As can be seen from Figure 3(a), the surface of AC consists of

microparticles with arbitrary geometry and their size particles is greater than 10 µm.  

 

Figure 3. SEM photographs of (a) AC (b) Zn(OH)2-AC composite (c) Zn(OH)2-AC

composite after the adsorption (d) EDS results of Zn(OH)2-AC composite 
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Moreover, the existence of holes among these particles can be observed, which can

penetrate dye pollutants. The surface structure of the AC was considerably changed because it

is covered homogenously with zinc Zn(OH)2 nanoparticles (seen as white color), Figure 3(b).

Following the adsorption (Figure 3(c)), the surface of Zn(OH)2-AC composite was covered

with MG. By taking account of these results, it can be remarkably noted that that the MG was

effectively adsorbed on Zn(OH)2-AC composite. Similar microstructures were reported for

nano-ZnO/pollen composite for dye removal (Tzvetkov et al., 2017). In addition, Figure 3(d)

demonstrates the EDS analysis results of Zn(OH)2-AC composite. As detected from spectral

data, the weight fractions of C, O, and Zn in the produced adsorbent were found as 3.86,

19.63, and 76.51%.  

TGA and DTA analyses results were examined to determine thermal degradation

temperature range of both AC and Zn (OH)2 -AC samples as shown in Figure 4. 

Figure 4. TGA and differential thermogravimetric analysis (a)AC (b)Zn(OH)2-AC composite 

As seen in Figure 4, the degradation step in temperature range of 25-120 °C is corresponding

to the evaporation absorbed water as the other degradation is step is continuing over 900 °C.

On the other hand, the thermal decomposition stage between 25 and 120 °C is attributed to the

weight loss of the absorbed water into AC part of the composite. The degradation stage at
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120-300 °C is associated with the thermal decomposition of Zn(OH)2 nanoparticles and the

rest stage/or stages is regarded with thermal degradation of AC composite. 

3.2. pH influence on MG removal yield  

pH is considered one of the most imperative factors that influence the surface charge

intensity of the adsorbent and diluted ion concentration in solution. Thus, it affects implicitly

the adsorption capacity (Behzad et al., 2015). The influence of pH on MG adsorption on

Zn(OH)2-AC composite was studied with 0.1 g/100 mL dose at 298 K for 25, 50, and 150

mg/L dye concentrations. The dependency of MG removal yield of Zn(OH)2-AC composite

on the pH of the solution is demonstrated in Figure 5. The elimination of MG in acidic

conditions is relatively lower (in the range of 72-81%) compared to the basic conditions. It

could be due to the occupation of H+ ions onto the adsorbent surface and thus decreasing MG

retention (Senthilkumaar et al., 2005). The removal yield of MG was increased as the solution

pH was increased. MG adsorption in the cases the pH≥5 for the selected MG concentrations is

higher than the adsorption in acidic pH environment. It was because the surface of the

adsorbent was negatively charged that allowed much more electrostatic attraction and thus

increased MG adsorption. Moreover, the adsorption was almost stabilized after pH 7 and

higher. pH 7 was identified as the optimum value for the highest adsorption capacities in all

concentrations. Similar results can be found for MG adsorption onto bamboo leaf ash

(Dessyntha and Priwidyanjati 2017), using pea shells (Khan et al., 2014) and wood apple shell

(Sartapea et al., 2017). 
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Figure 5. The effect of MG removal yield on the pH of the solution (Initial MG

concentration: 50, 100, 150 mg/L, temperature: 298 K, adsorbent dose: 0.1 g/100 mL). 

3.3. Mixing time effect on MG removal yield   

Adsorption continues until the dynamic equilibrium has occurred between concentration in

the solution and adsorbate concentration. There is an identified distribution between the

diluted solid and liquid phases. The distribution ratio is the measurement of the equilibrium

situation in the adsorption process. To identify the adsorption equilibrium, the solute amount

adsorbed in the unit weight of solid adsorbent against the remaining concentration in the

equilibrium time at the constant temperature is presented in the graphic (Gupta et al., 2011).

To define the adsorption equilibrium time, six different mixing times were studied at different

concentrations of the dye, pH 7, 298K, and 0.1 g/100 mL adsorbent dose, Figure 6. It was

identified that the adsorption equilibrium time started to become constant after 30 min for 3

different concentrations. Moreover, for all studied initial MG concentrations, it was decided

that the optimized mixing time was 60 min.  
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Figure .6 The mixing time effect the removal yield of MG (Temperature: 298 K and pH: 7) 

3.4. Adsorbent dose effect on MG removal yield  

The adsorbent dose is one of the chief limits that affect the removal yield. In the case the

adsorbent dose is insufficient, maximum removal yield may decrease and, otherwise, it is

high, flocculation may occur in the solution. Both cases influence adsorption negatively (Xiao

et al., 2010). In this study, the adsorbent dose was taken as four different values as 0.5, 0.1,

0.2, and 0.5 g/100 mL at different concentrations of the dye, pH 7, and 298K (Figure 7). The

removal yield was over 90% for all examined initial MG concentrations with an increase of

adsorbent dose. The highest yield was observed for 0.3 g/100 mL dose and 50 mg/L initial

MG concentration. Moreover, there was no increase above 0.3 g/100 mL dose for 100 mg/L

initial concentration. The lowest yield was determined as 87.5% for 0.5 g/100 mL dose at 100

mg/L concentration. By considering these results, the optimum sorbent mass was taken as 0.1

g/100 mL for the next batch adsorption experiments.  Jo
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Figure 7. Adsorbent dose effect on the removal yield of MG (temperature: 298 K and pH:7) 

 
3.5. Initial MG concentration effect on MG removal yield 

The dependency of removal yield on the initial MG concentration was also investigated at

298-318 K, pH 7, and 0.1 g/L dose. The results obtained for six different initial MG

concentrations, 25, 50, 75, 100 150, and 300 mg/L, are presented in Figure 8.  

 

Figure 8. The initial MG concentration effect on the removal yield of MG (temperature: 298-
318 K, pH: 7, adsorbent dose: 0.1 g/100mL). 
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In Figure 7, it was observed that the adsorption yield was dropped with an increase of initial

MG concentration for the studied temperatures. Moreover, the removal yield was the same

value (96.9%) for 25.0 mg/L dye at 298 K while it was found to be 71.5, 83.8, and 86.8%,

respectively at 298, 308, and 318 K.  

3.6. Temperature effect on the amount of removed MG 

The temperature effect on the amount of removed MG was searched at three different

temperatures, 298, 308, and 318 K for pH 7, 0.1 g/100 mL dose, and 100 mg/L initial

concentration of dyestuff. Figure 9 displays the effect of temperature on the removal of MG. 

 

Figure 9. Temperature effect on the amount of removed MG 

 
As seen from the graph, the amount of removed MG was linearly improved with rising

temperatures. The quantity of adsorbed MG was determined as 10.5, 39.7, and 67.7 mg/g, at

about 298, 308, and 318 K. This result was due to the enhanced mobility of the MG molecules

from solution to the surface of the adsorbent through the temperature (Almeida et al., 2009).  
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3.7. Adsorption thermodynamics 

Changes in entropy (∆S°), enthalpy (∆H°), and Gibbs free energy (∆G°), parameters were

defined by Eqs. (3-6). The ∆G° parameter was calculated by considering the distribution

constant (KD) at equilibrium time. 

∆𝐺 𝑅𝑇𝑙𝑛𝐾                                (4) 

𝑙𝑛 𝐾                          (5) 

∆𝐺 ∆𝐻 𝑇∆𝑆 𝑅𝑇𝑙𝑛𝐾                                  (6) 

𝑙𝑛𝐾 ∆ ∆
                                                                                                                  (7) 

The ∆H° and ∆S° functions were determined from the slope and intersection point of ln KD

versus 1/T plot. Here, b2 means the adsorption capacity (mg/g) at equilibrium time as b1

signifies remaining dyestuff concentration (mg/L) in a liquid phase at equilibrium time. T and

R are temperature (K) and gas constant (8.314 J/mol.K), (Arias and Sen 2009). 

The values of the thermodynamic parameters were calculated, Table 1. As seen from

this table, the negative ∆G° expresses the spontaneity of MG adsorption onto Zn(OH)2-AC

composite as its high negative value with increasing temperature means more suitability of the

adsorption process (Sara and Tushar, 2012). Thus, the MG adsorption was more favorable at

318 K relative to 298 and 308 K. The positive ∆H° demonstrates that the adsorption of MG

has an endothermic nature. Moreover, the positive ∆S° specifies the increased randomness at

the adsorbent-liquid interface through the removal (Sara and Tushar, 2012). The similar

adsorption Positive ∆S° value demonstrates that the randomness on the solid-liquid interface

increased during the adsorption The similar adsorption characters were reported for the

adsorption congo red from water over pine cone powder (Sara and Tushar, 2012) and the

adsorption of three basic dyes onto peat (Allen et al., 2004).  
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   Table 1. Thermodynamic parameters calculated/determined for 

                          MG adsorption onto Zn(OH)2-AC composite 

T (K) ΔGº (kJ/mol) ΔHº (kJ/mol) ΔSº (J/mol K) 

298 -5.82  
73.74 

 

308 
318 

-9.42 
-11.13 

0.267 

 

3.8. Adsorption isotherms 

To identify the adsorption type and determine the maximum removal capacity of the

developed adsorbent for MG removal, the equilibrium data was modeled using Langmuir and

Freundlich isotherm equations. The Langmuir model known as type-I isotherm suggests

an asymptotic methodology for monolayer coverage of the adsorbent surface containing a

finite number of adsorption sites. When the adsorption is achieved equilibrium, adsorption

capacity is reached a maximum (Dawood and Sen, 2012). The linear formulation of this

model can be given as follow:  

                          𝐶𝑒         (8)  

Where Ce is the adsorbate concentration following the adsorption (mg/L), qe is adsorbed

amount onto adsorbent (mg/gr), KL is isotherm coefficient (L/mg), qmax is max sorption

capacity (mg/g). 
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                Figure 10. Langmuir isotherm plots obtained (a) 298 K; (b) 308 K and (c) 318 K)  

The equilibrium results are in agreement with the Langmuir isotherm plots (Figure 10)

because of the high correlation coefficient (R2), 0.99, 0.96, and 0.98 with at 298, 308, and 318

K, respectively. Moreover, qm and the KL of Zn(OH)2-AC composite for MG were determined

as 243.90, 277.78, and 303.03 mg/g and 0.09, 0.15, 0.15 L/mg, respectively.  

The Freundlich isotherm model assumes the multilayer covering of the adsorbent

surface by adsorbate molecules (Ozdemir, et al., 2006). The linear formulation of this model

is presented below: 

                        𝑙𝑛𝑞 𝑙𝑛𝐾 𝐶                                                                    (9) 

where qe is concentration at equilibrium (mg/g) of adsorbate onto the surface of the adsorbent,

Ce is adsorbate (mg/L) in solution, and Freundlich’s constants are Kf   and n. Jo
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             Figure 11. Freundlich isotherm plots obtained at (a) 298K, (b) 308K (c) 318K  

The Freundlich parameters defined from the plot in Figure 11 were given in Table 2. As seen

from tabulated data, the correlation coefficient (R2) was 0.80-0.97 for a temperature range of

298-318 K. This means that the adsorption equilibrium data was not adequately favorable by

Freundlich isotherm model. By considering both isotherm modeling results, hence the

elimination of MG with Zn(OH)2-AC composite was carried out at a single layer and with

electrostatic attraction power.  

Table 2. Langmuir and Freundlich isotherm constants obtained for 298, 308 and 318 K.  

Temperature (K) Langmiur isotherm Freundlich isotherm 
 qm (mg/g)    KL (L/mg)    R2 KF  n (l/mg)      R2 

298 243.90 0.09 0.99 31.19 2.12    0.97 
308 277.78 0.15 0.95 45.60 2.18    0.85 
318 303.03 0.15 0.97 46.53 1.97    0.80 
 

3.9. Kinetic studies 

The kinetic mechanism of MG adsorption was identified by pseudo 1st and 2nd order kinetic

models. Pseudo 1st order model (Lagergren et al., 1898) was applied to the equilibrium data to

Jo
ur

na
l P

re
-p

ro
of
19 
 



356 

357 

358 

 359 

 360 

 361 

 362 

363 

 364 

  365 

366 

367 

 368 

369 

 370 

 371 

 372 

 373 

374 

375 

Journal Pre-proof
examine the adsorption mechanism. The linear form of Lagergre’s equation was written as 

below: 

                         log 𝑞 𝑞 log 𝑞
,

𝑡                                                               (10) 

Here, qe (mg.g-1) and qt (mg.g-1) are the adsorbed amount of the adsorbate at equilibrium time

and any t time and k1 (min-1) is rate constant. k1 and qe values are computed from slope and

intersection point of the plot ln(qe-qt) vs t. Kinetic data obtained from pseudo 1st order

modeling for initial MG concentration of 50, 100, and 150 mg L-1 is shown in Table 3 and

Figure 12.  

On the other hand, the kinetic mechanism of MG adsorption onto Zn(OH)2-AC

composite was investigated using pseudo 2nd order model equation which is defined as below

(Mckay and Ho, 1999):  

  𝑡                                                                                        (9) 

Here, k2 (g.mg-1.min-1) is the constant of 2nd order rate constant. qe and k2 values are

determined based on the plot of t/qt vs t. 

The R2 values in the ranges of 0.98-0.99 demonstrated that pseudo 1st order kinetic

model was not very appropriate to recognize MG adsorption mechanism onto Zn(OH)2-AC

composite, Figure 13 and Table 3. Besides, the qe,exp values for three initial concentrations

were well agreement with the qe,cal values, hence the MG removal over Zn(OH)2-AC

composite can be better monitored by the 2nd order kinetic model. 
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Figure 12. Pseudo 1st order kinetic modeling results obtained for MG adsorption onto 

Zn(OH)2-AC composite (Initial MG concentration: 50, 100 and 150 mg/L, adsorbent dose:

0.1g/100 mL, pH: 7, temperature: 298 K). 

 

Figure 13. Pseudo 2nd order kinetic results obtained for MG adsorption onto Zn(OH)2-AC

composite (Initial MG concentration: 50, 100 and 150 mg/L, adsorbent dose: 0.1g/100 mL,

pH: 7, temperature: 298K). 
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Table 3. Kinetic results determined based on pseudo 1st and 2nd order kinetic models  

 Pseudo 1st order                                         Pseudo 2nd order       

C0 (mg.L-1) qe exp k1, min
-1 qe cal (mg.g-1) R2 k2 (g.mg-1.min-1) qe cal (mg.g-1) R

50 47.66 0.17 36.20 0.63 0.141 50.51 0

100 91.30 0.14 37.44 0.98 0.297 94.33 0

150 134.81 0.13 55.79 0.77 0.540 149.25 0

 

3.10. Reusability study 

The MG desorption efficiency was investigated using six different concentrated-eluents: 0.05

M NaOH, 0.1 M NaOH, 0.2 M NaOH, 0.05 M HCl, 0.1 M HCl and 0.2 HCl. The desorption

efficiency was determined to be 83.62%, 88.3%, 97.6%, 87.22%, 89.90% and 93.45%,

respectively. As can be seen from these results, the maximum desorption efficiency was

achieved by using 0.2 M NaOH solution and therefore was selected as optimum eluent. The

reusability was checked by following the adsorption–desorption process for 0.2 M NaOH

eluent. On the other hand, reusability performance is one of the fundamental criteria of a

freshly developed adsorbent in terms of reducing its utilization cost for engineering scale-

wastewater cleaning processes. By considering this fact, a seven cycling-

adsorption/desorption treatment was conducted to establish the reuse performance of

Zn(OH)2-AC composite adsorbent for the removal of MG from aquatic media. With this aim,

desorption experiments were carried out using 0.05, 0.10, and 0.20 M NaOH. The reusability

yield (%) for each cycle was shown in Figure 14. Only about 12%-reduction was occurred in

adsorption yield during the first four cycles and it was reached to about 24% after 7th cycle

although the desorption yield was almost constant. The reduction in the adsorption capacity of

the composite adsorbent could be due to the partially deactivation of its adsorption cites

during the cycling treatment. Consequently, the developed Zn(OH)2-AC composite adsorbent

demonstrated a reasonable reuse performance throughout the removal of MG from aqueous

media. 
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Figure 14. Reusability yield (%) for seven adsorption/desorption cycles (298 K, adsorbent

dose: 0.10 g/0.1L, pH: 7) 

 

3.11. Comparison of the developed adsorbent in terms of adsorption capacity 

The MG removal performance of the synthesized Zn(OH)2-AC composite adsorbent via

ultrasonically assisted method with different kinds of adsorbents available in literature was

compared in Table 4. As can be seen from the tabulated data, the adsorption capacity of the

developed adsorbent is higher than most of the adsorbents. The results show that the produced 

Zn(OH)2-AC composite adsorbent has a remarkable MG removal ability. This observation

suggests that the increased adsorption capacity of ultrasonically assisted synthesis in MG

removal may be caused by high pressure shock waves during the violent collapse of cavitation

bubbles.  
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Table 4. Comparison of MG adsorption capacity of Zn(OH)2-AC composite with that of  

different kind of adsorbents reported in the literature 

bent pH Temperature 
(K) 

Synthesis 
Method 

Adsorbent 
dose  

Initial 
concentration 
(mg/L) 

Adsorption 
capacity 
(mg/g) 

Refer

-ZnO/ 
 

6.6 298 Two-step liquid 
precipitation 

0.05 g/mL 50 145.9 (Tzve
al., 20

  
article 

9 323 Coprecipitation 0.15g/50 mL 25-100 21.7 (Gaut
al., 20

loaded  7 298 Microwave 
irradiation 

15 mg/50 mL 5-30 59.17 (Azad
2015)

H)2-NP-AC 4.5 298 Sonochemically  0.019 g/mL 20 74.63 (Bazr
al., 20

ionalized 8 298 Microwave-
assisted 

0.001 g/50 mL 25-65 333.3 (Ghas
al., 20

nut shell-
 AC 

7 318 Carbonazition 
 

0.1 g/100 mL 25-200 106.54 (Altin
al., 20

-AC 7 318 Magnetic 
coating 

0.1 g/100 mL 25-200 311.40 (Altin
al., 20

oFe2O4 5 n.a Facile refluxing 0.05 g/25 mL n.a 89.29 (Ai et
2010)

H)2-AC 
osite 

7 318 Ultrasonically 0.1 g/100 mL 25-300 303.0 This s

 

4. Conclusions 

In this work, it is aimed to develop and characterize coffee waste-based activated carbon (AC)

as an eco-friendly and highly efficient material. The bio-based AC was doped ultrasonically

with Zn(OH)2 and used successfully for the removal of MG from water. The studied pH,

temperature, adsorbent dose, and initial MG concentration affected the adsorption yield

remarkably effects. The adsorption equilibrium results were modeled with Langmuir and

Freundlich isotherms and the Langmuir model is the more suitable for recognize the sorption

type. The maximum adsorption capacity of the produced Zn(OH)2-AC composite was

determined by the evaluation of linear Langmuir isotherm plot as 303.0 mg/g at 318 K and pH

7. Thermodynamic calculations displayed that the adsorption process had spontaneous and 

endothermic character. The kinetic studies exposed that the pseudo 2nd order model was well

proper to identify the adsorption mechanism. The prepared adsorbent had outstanding
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reusability performance after even the 7th cycle. The produced Zn(OH)2-AC composite has

good usage potential as an alternative adsorbent for the effective removal of MG from

wastewaters because of its relatively high adsorption capacity, reasonable reuse performance,

and being of cost-effective and eco-friendly. 
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Highlights

•AC sorbent was produced from coffee waste with low cost material.

•AC/ .

•The

•The

•The
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zinc hydroxide nanoparticles composite was used to remove MG from aqueous solutions

 dependency of the adsorption efficiency on the batch parameters was studied.

 maximum adsorption capacity was determined to be 303.03 mg g−1 

 synthesized adsorbent can be promising sorbent for MG elimination from wastewaters.
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