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Memelements play an important part in the design of high density memory systems and low power
memory. In this paper, we created a novel fractional-order chaotic circuit with a memristor and a mem-
capacitor with a linear inductor. The various dynamical properties of the fractional-order system are in-
vestigated by using some dynamic analysis methods like Lyapunov exponents and bifurcation after the
numerical solution for the fractional-order system. In addition, to show the applicative advantages of the
proposed chaotic system, we have realized about the synchronization of fractional-order chaotic systems

Chaos and used it in secure communication systems first time in the literature according to our knowledge. The
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results of the theoretical analysis and simulation show that the simple fractional-order chaotic system
has very rich dynamic properties and can be used in different engineering applications.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Memristor was proposed as a two-terminal circuit element by
Leon Chua in 1971 [1] that relates electrical charge to magnetic
flux and was first physically manufactured at the HP Laboratory in
2008 [2].The memristor has been used in many memristor-based
design applications in the literature with its characteristic features,
such as computer architectures, neuromorphic structures, and dig-
ital circuits [3-7]. One of these application areas is memristor-
based chaotic systems. Its nonlinear feature has shown that the
memristor can be used in chaotic circuits, and recently the design
of memristor-based chaotic circuits with various nonlinear equa-
tions has received considerable attention. Several memristor-based
chaotic/hyper-chaotic circuits have been developed and extensively
explored in recent years, using memristors instead of nonlinear re-
sistors used in classical chaotic circuits [8-11].The numerical sim-
ulation of such intricate systems are discussed in few literatures
[12,13] and identified with challenges in obtaining results. In [6,14—
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18] stochastic models with memelements and significance of hys-
teresis effect in dynamic behavior were discussed.

Zhou et al. suggested a smooth nonlinear four-wing hyper-
chaotic system by introducing only a flux-controlled memristor to
a pseudo-four-wing, three-dimensional (3D) chaotic structure. The
dynamic behavior of the new memristive system, in which the cir-
cuit is also developed, has been confirmed by theoretical analy-
sis and simulation. With the proposed system, four-wing attrac-
tors were produced, and thanks to this system, it can also produce
from two to four-wing chaotic attractors by adjusting the parame-
ter [19,20]. Ma et al. suggested the application of a flux-controlled
memristor to a three-dimensional autonomous chaotic system as a
new hyper-chaotic attractor. The transition from chaos to hyper-
chaos has been observed as the control parameters in the sys-
tem decreased. Additionally, it was shown thatit was shown that
the hyper-chaotic state persists throughout the entire process. As a
consequence of the experiments, it was shown that the newly de-
veloped method has a richer dynamic nature than other literature
studies [21].

Bao et al. engineered an unbalanced hyper-chaotic memris-
tive system that combines an infinite number of hidden attrac-
tors, using a memristor instead of a coupling resistor in a three-
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dimensional chaotic system’s realization circuit. Hardware tests
and simulations of Power Simulation (PSIM) circuits were per-
formed to check the simulation results of the system developed
[22]. Li et al. modified the 3-dimensional chaotic system devel-
oped by Lu and Chen [23] and transformed it into a 4-dimensional
memristive chaotic system. While the system maintained its sym-
metry after the modification process, it was added to the new
system in abundantly complex dynamics, such as boundary loops,
chaos, and even hyperchaos. The developed system has an infinite
number of stable equilibria that cannot be counted in comparison
with other studies in the literature [24]. Njitacke et al. have devel-
oped a new system by replacing the memristive diode bridge on
the circuit they made before [25] with a flux-controlled memristor.
The new memristor oscillator developed has been described as a
continuous-time autonomous system with a four-dimensional bal-
ance line. The analyzes of the realized system were carried out us-
ing the bifurcation diagram, Poincar sections, and graphics of Lya-
punov bases. It was simulated on PSIM to verify that an infinite
number of attractors were formed from the developed system [26].

Kuate et al. proposed a new non-equilibrium hyper-chaotic sys-
tem using the Lorenz equations. A low-cost microcontroller was
used to make the developed system in real-time. The system is
explained with a very simple mathematical model. The difference
from other Lorenz-based systems is that there are no balance
points. The system also differs from other memristive chaotic sys-
tems in that it has very long-lasting transient chaotic states, ver-
satility, and three different erupting oscillation modes [27]. Sahin
et al. have developed a 4-dimensional chaotic system with flux-
controlled memristor. It has been observed that two optimization
methods solve the synchronization problems of chaotic circuits. As
a result, an optimized Proportional-Integral-Derivative controlled
chaotic circuit and the information signal masked on the transmit-
ter are recovered with the chaotic system in the receiver, and a
secure communication system is designed [28].

Most of the literatures discussed chaotic circuits with mem-
ristor, memcapacitor or meminductor but only few were reported
circuits with combination of these mem-elements. The complica-
tions in circuit implementation and challenges in dynamical analy-
sis methods made the progress slowdown in this research direction
[29,30]. In [31] a simple chaotic circuit with meminductor a lin-
ear resistor and a linear capacitor is presented and brings out rich
dynamical behaviors as well as showed the circuit hardware real-
izable. A chaotic circuit designed with two memcapacitors is in-
vestigated and portrayed with three different attractors, circuit im-
plementation also carried out [32]. This discussion lay a platform
to us towards proposing a simple chaotic circuit with combination
of mem-elements. Configuration of systems with noise effects and
influence of electromagnetic flux were investigated in [33-37] the
results laid a platform to refine the dynamic analysis with experi-
mental values.

The basic property of memristor is its pinched hysteresis loop
or remembrance of previous states hence the chaotic circuits with
memristor needs to be analyzed with a tool which consider mem-
ory effects and provide more degree of freedom for analysis. Frac-
tional calculus is identified with advantages of such kinds and
it can be considered as generalization of method to describe
the characteristics including integer-order values. The differential
equations formulated with fractional derivatives enhanced the de-
gree of freedom of the system with more fractional parameters.
Recent studies reveled many unidentified characteristics such as
variable-boostable feature, chaos bursting phenomenon, phase di-
agram offsets, coexisting attractors, and transient and local sus-
tained chaotic states are exposed while the model treated with
fractional calculus.

Rajagopal et al. in their study, explored the dynamic properties
of memcapacitor-based chaotic oscillator’s and obtained and ana-
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lyzed its fractional-order model. They improved the hyper-chaotic
memecapacitor oscillator fractional-order model. The developed os-
cillator was integrated into Field Programmable Gate Arrays [38].
Li et al. have developed an algorithm on encrypting RGB images by
using DNA sequence operations with a fractional-order 4-D hyper-
chaotic memristive system. The images encrypted as a result of the
algorithm have been successfully passed through security analysis
[39].

In a different study, Tsafack et al. crafted a new 4-dimensional
chaotic circuit by replacement an RLCC-diode-opamp with an anal-
ogous hybrid memristive circuit. The difference in the literature
from the recent studies is that there are six and four disconnected
chaotic attractors. A chaos-based image encryption algorithm has
been developed using S-Box and Pseudo Random Number Gen-
erator from the chaotic series of attractors. With the developed
chaotic encryption algorithm, it has been proved with various an-
alyzes that the gray level and color images are successfully en-
crypted [40]. Toopchi and Wang proposed a synchronization appli-
cation of hyper-chaotic Zhou systems [41]. Lu et al. proposed the
synchronization of a unified chaotic system and the application in
secure communication [42]. Memristor-based fractional-order com-
petitive neural networks is studied with and without the inclu-
sion of impulsive effects and the results revealed fractional-order
treatment can expose different dynamical properties of the system
while integer-order treatment is no longer useful to analyze mem-
ristor based chaotic circuits [43].

In this study, we focus on a fractional-order chaotic circuit with
a memristor and a memcapacitor with a linear inductor. The var-
ious dynamical properties of the fractionalorder system are in-
vestigated by using some dynamic analysis methods such as Lya-
punov exponents and bifurcation after the numerical solution for
the fractional-order system. Numerical solution for the fractional-
order system and the fractional memristor-fractional memcapacitor
circuit (FMFMC) model in section 2, dynamical properties of the
FMFMC system in section 3, synchronization of FMFMC system in
section 4 and finally the conclusion are presented.

2. The Fractional Memristor-Fractional Memcapacitor Circuit
(FMFMC) model

By using the current through inductor, the internal state of
memristor, the electromagnetic flux and the internal state vari-
able of the memcapacitor the state equations of the memristor-
memecapacitor circuit was derived in appendix-1 using some def-
initions from [44] as,

.1
Dy = ;M — asy + a;ME %y
D¢ = —i; — MIMlg

Diw = ¢
M=o+ Bw
Mg =xy* -3

where i;,y, ¢, w denotes the current through the inductor, mem-
ristor internal state, the flux and state variable of the memcapaci-
tor respectively while Mg, Mﬁ, are the memcapacitor and memristor
functions [44]. In the [44], it was considered that both memristor
and memcapacitor are integer-order elements as shown in Fig 1. It
was in [45] that the authors have discussed about the importance
of fractional-order analysis in devices such as memristor. Hence
by using fractional-order memristor and memcapacitor [46,47] we
have derived the state equations as in (1).

To derive the dimensionless model we redefine the state vari-
ables as iy = x; ¢ =z the Fractional Memristor-Fractional Memca-
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Fig. 1. The simple chaotic circuit with fractional-order memristor (Mg) and mem-
capacitor (MQ).

pacitor circuit (FMFMC) can be modified from (1) as,

Xx=uMlz=F
Dy = —a;Miz — asy + a4Mgzzzy =F
Diz=-x-MiMiz=F

(2)
Diw=z=EF,
M=o + Bw
Mg = xy* =8

The other parameters values used in the simulations are given

n(3)

=0.01;a, =0.5;a3 = 0.54; a4 = 4;

oa=p=1;x =0.001;§ = 0.005; )

There has been several methods to numerically solve the in-
commensurate fractional-order systems, but we have used the
predictor-corrector method [48,49] to discretize the FMFMC sys-
tem (2) and the predict-evaluate-correct-evaluate (PECE) method
of Adams-Bashforth-Moulton studied in [50,51] is used. Let us de-
fine a generalized fractional-order differential equation as;

Dy = f(t,y),0 <t <T, (4)

where y™(0)
defined as;

=yg for m e (0,n—1) the initial point of (4) can be

n—-1
tm 1 T,
}’(t)=ZJ/81H+ A
m=0 )

F@ Jo ¢y )

For the numerical integration, we use the predictor-corrector
method [48,49] whose predictor form at t;,, is given by

1 m
yp(tm-H):.VO+WgIBk.m+1f(.Vtk), 0<t<T, (6)

and the corrector form can be defined by

=0

Y (tms1) =Yo + F(th—Z){ (ytm) Zak m+1f()’tk)} (7)
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where o and § are the corrector and predictor weight whose nu-
merical values are calculated as;

mi* — (m—q)(m+1)7,
k=0
ha (m—k+2)" 4 m—k)"™ 20k —j+ 1)1,
Hem = 0@+ D |1 <k<m
1
k=m+1
hd
Brmi1 = E((m—k+1)q—(m—k)q). (8)

The estimated error is e = Max|z(t,) — z,(t;)| = 0(hP) while k =
0,1,...,N and p=Min(2,1+ q). The term z,(t;) denotes the dis-
crete form of (5) derived as defined in [46] as

Wit P
Zy(tns1) = ZZ KU F(q 12) f(tnﬂazh(tnﬂ))
hd
+ INCES) > aina f(tj zu(t5)) (9)

The first state of the FMFMC system (2) is solved using
the fourth-order Runge-Kutta (RK4) method and the other three
fractional-order states are solved using PECE derived in (6-9). The
discretized FMFMC system (2) can be derived as,

x(n+1) =x(n)+ = [C“> (M) +2G7 (n) + 267 () + P ()]

ha ha n
y(n+1) = {y(n)+ F(q+2)FyﬁH *TarD g[ak,m&]}

ha ha n
z(n+1) = :Z(n) + Tq+ 2)FZI:+1 + T(q+2) g [ak,n+1F2k]}

ha ha «
wn+1) = {W(n) + mﬁﬁm + TQ+2) g [Olk.n+1Fw:<]}

(10)

where g considering only the commensurate order case. The pre-
dictor and the corrector weight (¢ and ) are calculated using
(6-9).The coefficients of the RK4 method (C,Si)(n)) are calculated
and updated alongside the fractional-order responses for each it-
eration. In the entire paper, the step size used is h=0.01 and we
have used the modified fde12 function [52] to have the algorithm
work alongside RK4 to have the desired simulation results for the
system defined in (9). In Fig. 2, we have shown the attractors for
two different fractional-orders. In [44], the authors used combi-
nations of parameters to achieve different attractors but includ-
ing fractional-order will increase the topologically different attrac-
tors. In this case for a particular value of parameters as in [50],
the integer-order system shows a single attractor with two scrolls
whereas the fractional-order systems will show both single and
two scroll attractors for the same parameter sets but with different
initial conditions.

3. Dynamical properties of the FMFMC system

As mentioned in the previous section, we have used commen-
surate order for our analysis and various dynamical properties of
the FMFMC system are investigated in the following subsections.
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Fig. 2. 2D phase portraits of the FMFMC system for the initial conditions [0.1;0.1;0.1]. The phase plots are for two values of fractional-order q=0.95 and q=0.97. We could
see that the FMFMC systems shows different attractors for the fractional-orders mentioned.

3.1. Stability of equilibrium points

It could be easily verified from that the FMFMC system has
a line of equilibria given by E; =[0,0,0,w,] derived equating
the left hand side of (1) to zero. The generalized characteristic
polynomial of the FMFMC system is calculated using the relation
| (diag(. 19,19, 19) — Jg, )| = 0 which is derived using g = 0.9 as,

A7 4 a3A?8 — S — BEABW, — azaSA1P — a3 BIA W,

(11)
+a1akls + a4 ﬂ)ﬂswe +aq a3C()L9 + a, (13,3)\,9We

The equilibrium point of the FMFMC is unstable equilibrium if;

T

larg(hi)l < a5 (12)

Using (11) we could show that the FMFMC system is unstable
when the fractional-order g > 0.9.

3.2. Lyapunov exponents

To calculate the Lyapunov exponents (LEs) of the FMFMC, we
use the well-known Wolf's algorithm [51] and a modified solver
using the RK4 for the first state and the fractional-order predictor-
corrector [50] solver fdel2 [50,52,53] for the remaining three
states. We used a finite time of 10000s with a step size for in-
tegration as 0.01 and the LEs for the FMFMC system are calculated
as [0.041;0;-0.0050;-0.14] for fractional-order q=0.98 and parame-
ter values are given in (3).

3.3. Bifurcation

The bifurcation transitions of the FMFMC system is investigated
with two approaches: (Case:1) To understand the parameter de-
pendence of the system, we derive and investigate the bifurcation
plots for the parameter as variation and other parameter values as
shown in (3) with fractional-order q = 0.98 (Case:2) For fractional-
order and parameter values are taken as in (3).

Case 1: The parameter as is varied with a range 0.1 <az <1.3
to analyze the dynamical behavior of the system. Fig. 3 shows the

bifurcation diagram plotted between a3 against the local maximum
value of the state variable y. Numerical simulations are performed
through the Runge-Kutta algorithm and fractional-order predictor-
corrector solver fdel2. The initial condition for the first iteration
is taken as [0.041;0;-0.0050;-0.14] and are reinitialized at the end
of each iteration to the final values of the state variables. From the
bifurcation diagram we could observe that while increasing the pa-
rameter till 0.63, the system shows chaotic oscillations. Further in-
crease results with period halving and the system behave with pe-
riodic oscillations. In the window from 0.83 to 1.15 again the sys-
tem enters to chaotic behavior, but we can see some breaks near
to 0.85 and 1.12. After the parameter reaches 1.16 slowly the sys-
tem shows periodic oscillations as period halving occurs. Multista-
bility in FMFMC system can be seen from Fig. 3.a. The evidence of
multistability can be seen by comparing the forward (blue color)
and backward (red color) bifurcation diagrams. The corresponding
coexisting attractors are shown in Figs. 3.b and 3.c.

Case 2: When investigating a fractional-order system, the im-
pact of the order needs to be studied and we present the bifurca-
tion plot of the system. In order to illustrate the bifurcation phe-
nomenon intuitively, we generate the bifurcation of FMFMC system
with fractional-order for 0.88 < q < 1 range with step size h = 0.01
and initial conditions [0.041; 0; —0.0050; —0.14] with reinitializing
the initial conditions in every iteration to the end values of the
state variables. As can be seen from the bifurcation plot the system
shows the period doubling route to chaos for change in fractional-
order. System oscillates with chaotic attractor only for g > 0.94. Pe-
riodic oscillation is observed for the value q < 0.932 and for the
window 0.9325 < q < 0.938 the system shows period doubling os-
cillation. A small window of periodic oscillation is identified for
the value 0.978 < g < 0.982 in Fig. 4.

4. Synchronization of the FMFMC system

Pecora and Carroll [54] demonstrated that two identical au-
tonomous chaotic systems can be synchronized with a common
signal or signals when the Lyapunov exponent signs for subsys-
tems are all negative. Synchronization means that two identical
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Fig. 3. a) Bifurcation diagram of the FMFMC system with as; b) The coexisting attractor for ¢ = 0.98 and a; = 0.663 for the initial conditions [0; —0.39; 0.01; 42.85] shown
in red plot and [-0.001; —0.03; 0.003; 36.12] for blue plot; c) The coexisting attractor for ¢ = 0.98 and a3 = 0.8 for the initial conditions [0; 2.9; —0.007; 40.65] shown in red

plot and [0; —5.08; 0.01; 35.95] shown in blue plot.

38 x10%

Fig. 4. Bifurcation diagram of the FMFMC system with q.

chaotic systems at different initial conditions come under the same
conditions as a common signal and produce the same signals. Pec-
ora and Carroll applied their proposed method to the well-known
Lorenz [55] and Rssler [56] chaotic systems. They have also shown
that synchronization works in practice by applying it with real cir-
cuits [54].

Pecora and Carroll handled the autonomous n-dimensional dy-
namic system in (13) in their proposed method.

u=f(u) (13)
It is obtained by dividing the system in (13) arbitrarily into two

subsystems in the form of [u = (v, w)] (14).

w=h(v,w) (14)

After this step, they created a new w’ system identical to the
Pecora-Carroll w system. Here, if (14) is rewritten by replacing the
v’ variables corresponding to the h function with v, (15) is ob-
tained.

V=g, w),

r=gw.w), w=hww), W=h(vw) (15)

Pecora and Carroll studied the difference between the two sys-
tems, Aw = w’ — w. These two systems w and w’ subsystem com-
ponents are synchronized only when the difference Aw — 0 and
t — oo for infinite time. At the infinitesimal limit, this is expressed
by the variational equations given in (16) for the subsystem [54].

£ = Dyh(v(t), w(t))E (16)

Here Dyh is the Jacobian of the w subsystem vector field with
respect to w only. The behavior of (16) or its matrix version
[57] depends on the Lyapunov bases of the w subsystem. These
are called sub-Lyapunov bases. Accordingly, Pecora and Carroll pro-
posed the following theorem, w and w’ subsystems will synchro-
nize only if all of the sub Lyapunov bases are negative [54].
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Fig. 5. The block diagram of P-C Synchronization [54].

Pecora-Carroll (P-C) synchronization block diagram in Fig. 5 is
given. In Fig. 5, X, Y and Z status variables directly stimulate the
subsystem. The response system is divided into two subsystems
as X and Y status. The P-C process synchronizes two similar dis-
orderly processes, with separate initial conditions [58]. In the P-C
method, when the X status variable in the driver and response sys-
tem is operated under different starting conditions, the two iden-
tical systems synchronize after a certain time. In data communica-
tion, the message signal encrypted with the chaotic X status vari-
able in the driver system is transmitted securely to the other party.
The X” status variable of the response system on the opposite side
is removed from the transmitted encrypted signal and the original
message is obtained. This way secure communication is provided.
The synchronization of the two systems in the shortest time makes
the communication faster and more accurate. Delays prevent com-
munication from being healthy.

In this study, the fractional-order FMFMC system was synchro-
nized using the P-C synchronization method. Although the P-C
method is used in integer-order chaotic systems, it also works well
in fractional-order systems. Accordingly, no change was made in
the working logic of the P-C method, only two identical chaotic
integer-order systems were converted to fractional-order system.
Here, the P-C method works in the integer-order chaotic system
as well as in the fractional-order chaotic system and makes more
precise synchronization. The reason for this is fractional-order,
the chaotic system gives more sensitive results. Fractional-order
chaotic systems synchronize faster in the P-C method compared to
integer-order chaotic systems.

In Fig. 6, Matlab Simulink model of the proposed fractional-
order system is given. In Matlab Simulink application FMFMC sys-
tem is modeled with the system Nid toolbox [59]. Nid toolbox
is used to perform fractional-order modeling in Matlab Simulink
environment. In order to explain the synchronization of the pro-
posed FMFMC system with the P-C method, driver and response
equations of the representative chaotic system are given in (17),
(18) and (19). The proposed fractional-order chaotic system driver
circuit equation of the system is given in (18).

dix
dta
diy
dta
diz
dta
diw
=

The first-order (y, z, w) state variables of the driver system are
used in the first sub system of the response system given in (18).

=a,M.z,
— 2,2
= —a;Mcz — asy + asM¢gz%y,

= —X — MpMcz,
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dly
dta
diz
dea
diw
qi =

In the second sub system of the fractional-order chaotic re-
sponse system given in (19), the y state variable in the first sub-
system is used in the second-order (X, Z, W) state variables [54,58].

= —@;M.z — azy + asM22%y,

= —x—MRMcz', (18)

dix

ﬁ = (11Mcz,

iz ,

T = %~ MeMcz, (19)
diw _

dts

Finally, in the synchronized fractional-order chaotic response
system, X, = X, yr =¥, z- =7 and wy = W are used in the system.

In the P-C synchronization method, identical fractional-order
chaotic systems are synchronized using different initial condi-
tions. The initial conditions were selected as (xg,Yq,Z2g, Wg) =
{0,-4,-0.01,43} and (xr,yr,zr, wr) ={1, -4, -0.01,43}, respec-
tively.

In this study, a secure communication application was also
performed. Identical fractional-order chaotic system synchronized
with P-C method is used in secure communication application. In
the secure communication application, communication is provided
by using synchronized y and y, state variables.

MATLAB Simulink models of secure communication applications
of FMFMC system using P-C method are given in Figs. 8 and 9.

In the chaotic system proposed in Fig. 8, Matlab Simulink model
of the secure communication application obtained without using
fractional-order is given. In Fig. 9, Matlab Simulink model of the
secure communication application obtained using fractional-order
is given. The only difference between the two Matlab Simulink
models in Figs. 8 and 9 is that the Nid function [59] is used in
one and not in the other. The fractional-order function is provided
through the Nid function. While secure communication applica-
tion is made in Figs. 8 and 9, driver and receiver systems are de-
signed by using P-C synchronization in Fig. 5. In both Figs. 8 and
9, the driver system is shown with a blue frame, the response sys-
tem with a green frame and the secure communication application
with a red frame. The receiving system is divided into two sub-
systems. In the first subsystem, x state variable is provided from
the driver system, while in the second subsystem, y state variable
is provided from the first subsystem. The synchronization applica-
tions in both Fig. 8 and Fig. 9 provide secure communication. How-
ever, the delay time is shorter in the synchronization application
using fractional-order.

A new fractional chaotic system has been established as the
chaotic method of encrypted data transmission for secure commu-
nication and the relevant equations are given in (20). The equa-
tions of the transmitter circuit are given in (20).
dax,
dta
diyr _ —@;Mz — azy + agM32z%y,
dta
diz,
dta
diw,

dta

The principle scheme of the chaotic information hiding method
is given in Fig. 7. The sine signal i(t) with a value of 10V-amplitude

=a;M,z,

(20)
= —S(t) — MgMcz,
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Fig. 7. Principle scheme for chaotic secure communication [60].

is sent through the FMFMC system. The information signal i(t)
is summed with the chaotic signal (x(t)) and the signal s(t) ob-
tained is transmitted to the communication line. The chaotic sig-
nal obtained from the y; (response system) state variable is ex-
tracted from the encrypted signal s(t). The received signal i.(t) is
obtained. The difference between the sent i(t) signal and the re-
ceived ic(t) signal indicates the secure communication (esc) error.
The difference of y, and y status variables gives synchronization
error (esy).

Using the Matlab Simulink models in Figs. 8 and 9, the
FMFMC system phase portraits without (g = 1) and with (g = 0.98)

fractional-order are given in Fig. 10. The X — Y phase portrait taken
without a fractional-order and the proposed fractional-order sys-
tem X —Y phase portrait with a value of g =0.98 display differ-
ent chaotic behaviors. When q = 0.98, the density of the x axis
increases in negative values. On the contrary, in the phase por-
trait received without using q = 1 fractional-order, the density of
the positive values of the x axis increases. In the FMFMC system,
a1 =024,a,=05a3=1,a4=4,0==1,x =0.001 and § =0
was taken. There are four state equations: x,y,z and w.

In Fig. 11, the FMFMC system (q = 1 and q = 0.98) synchro-
nization error graphs synchronized with the P-C method are given.
In Fig. 11.a, graphs of error signals resulting from secure commu-
nication and proposed system synchronization without fractional-
order are given. In Fig. 11.b, graphs of the error signals result-
ing from the secure communication and proposed system synchro-
nization with fractional-order are given. In all graphics, the error
caused by Esy and the error caused by Esc created a mirror image
due to the compatibility between each other. The proposed system
without fractional-order (q = 1) is synchronized in 13.5 time units
(Fig. 11.a), and with fractional-order (q = 0.98) - in 13.1 time units
(Fig. 11.b). In the FMFMC system, the fractional-order value only
affected 0.4 time units.

Time-Error analysis is given in Table 1 to theoretically ana-
lyze the secure communication error (Esc) and variable y synchro-
nization error (Esy) values of integer-order and fractional-order
(q =0.98) of the proposed chaotic FMFMC system. In the Table 1,
the process until the FMFMC system is synchronized in both cases
between 1-—13.5ms time value is examined. The integer-order
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Fig. 9. Matlab Simulink model of secure communication FMFMC system.

system synchronized in 13.5 ms (which is 0.04 ms longer than
the fractional-order system). Both the fractional-order and integer-
order systems are synchronized sinusoidally, with error values ap-
proaching zero. Fractional order systems work more precisely be-
cause of their fractional structure and synchronize the chaotic sys-
tem faster.One of the reasons why the results are so close to

each other is that the complex structure of the state variables
in the equation of the FMFMC system causes the chaotic system
to behave almost like fractional-order, even when integer-order is
used. The fact that Esc and Esy error values are parallel to each
other in all values is an important proof that the systems are
synchronized.
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Fig. 10. 2D state portraits (xy planes) of FMFMC system with different q values
(g=1 and q=0.98): a) g =1 without fractional-order, b) g = 0.98 with fractional-
order.
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Fig. 11. Synchronization error of FMFMC system (q=1 and q=0.98).(Esc - secure
communication error, Esy - variable y synchronization error); a) without fractional-
order (q=1); b) with fractional-order (q=0.98).

Table 1
Time-Error analysis of integer-order and fractional-order FMFMC system.

Integer-Order Fractional-Order

Time (ms) Esc Esy Esc Esy

1 -0.86 0.86 -0.81 0.81
2 -0.22 0.22 -0.18 0.18
3 0.32 -0.32 0.25 -0.25
6 -0.11 0.11 -0.09 0.09
9 0.07 -0.07 0.05 -0.05
12 -0.04 0.04 -0.02 0.02
13.1 0.02 -0.02 0 0
135 0 0 0 0

5. Conclusion

While the existing studies in the literature do not include
fractional-order systems, in this study the system was studied as
fractional order. In the study, memristor and memcapacitor ele-
ments were used together and synchronization application was
made.In this paper, we presented a novel fractional-order chaotic
system based on memristor-memcapacitor with a linear inductor.
The dynamical analysis results showed the complexity of the sys-
tem and sensitivity to various parameters. Stability analysis, bi-
furcation and Lyapunov exponents are used to discuss behavioral
changes for different scenario of the circuit. We proposed a syn-
chronization methodology to synchronize the master and slave
fractional-order systems and implement the system in secure com-
munication. The presence of rich dynamical behaviors showed the
system is suitable for various applications such as random number
generator, cryptography and data hiding. The simplicity in system
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structure will allow us to overcome the challenges in real time ap-
plication.
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Appendix-1

The current through a voltage controlled memristor can be de-
fined as [1]
iMZ = MZVM?z
qu = _avaZ —asy + a4V13Igy. (A‘])
M= xy*-§
where iyq, V)4, Mg represents the current, voltage and the memre-

R R

sistance of the voltage controlled memristor.
Similarly, by the definition of memcapacitor [61], the expression
of memcapacitance in a charge controlled memcapacitor is

V(O = MEQ(0)p
M=o+ Bw
QT =, DIw(7)

where V, 4 and Q,,q represents the voltage and charge of the mem-
C C

(A-2)

capacitor at time t. The rate of change of state w represents the
charge in the memcapacitor at time .

From Fig. 1, we could derive the state equations using Kirch-
hoff’s Voltage Law and Kirchhoff's Current Law considering the cur-
rent across the inductor i;, memristor internal state (y), the flux
(¢) and the internal state of memcapacitor (w) as the states as be-
low
: 1

2
Dy = —a;M{¢ — asy + asM{ %y
D¢ = —i, — MiM{¢
Diw = ¢
Ml =a+ pw
Mg = Xy2 )

(A-3)
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