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a b s t r a c t 

Memelements play an important part in the design of high density memory systems and low power 

memory. In this paper, we created a novel fractional-order chaotic circuit with a memristor and a mem- 

capacitor with a linear inductor. The various dynamical properties of the fractional-order system are in- 

vestigated by using some dynamic analysis methods like Lyapunov exponents and bifurcation after the 

numerical solution for the fractional-order system. In addition, to show the applicative advantages of the 

proposed chaotic system, we have realized about the synchronization of fractional-order chaotic systems 

and used it in secure communication systems first time in the literature according to our knowledge. The 

results of the theoretical analysis and simulation show that the simple fractional-order chaotic system 

has very rich dynamic properties and can be used in different engineering applications. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Memristor was proposed as a two-terminal circuit element by 

eon Chua in 1971 [1] that relates electrical charge to magnetic 

ux and was first physically manufactured at the HP Laboratory in 

008 [2] .The memristor has been used in many memristor-based 

esign applications in the literature with its characteristic features, 

uch as computer architectures, neuromorphic structures, and dig- 

tal circuits [3–7] . One of these application areas is memristor- 

ased chaotic systems. Its nonlinear feature has shown that the 

emristor can be used in chaotic circuits, and recently the design 

f memristor-based chaotic circuits with various nonlinear equa- 

ions has received considerable attention. Several memristor-based 

haotic/hyper-chaotic circuits have been developed and extensively 

xplored in recent years, using memristors instead of nonlinear re- 

istors used in classical chaotic circuits [8–11] .The numerical sim- 

lation of such intricate systems are discussed in few literatures 

12,13] and identified with challenges in obtaining results. In [6,14–
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8] stochastic models with memelements and significance of hys- 

eresis effect in dynamic behavior were discussed. 

Zhou et al. suggested a smooth nonlinear four-wing hyper- 

haotic system by introducing only a flux-controlled memristor to 

 pseudo-four-wing, three-dimensional (3D) chaotic structure. The 

ynamic behavior of the new memristive system, in which the cir- 

uit is also developed, has been confirmed by theoretical analy- 

is and simulation. With the proposed system, four-wing attrac- 

ors were produced, and thanks to this system, it can also produce 

rom two to four-wing chaotic attractors by adjusting the parame- 

er [19,20] . Ma et al. suggested the application of a flux-controlled 

emristor to a three-dimensional autonomous chaotic system as a 

ew hyper-chaotic attractor. The transition from chaos to hyper- 

haos has been observed as the control parameters in the sys- 

em decreased. Additionally, it was shown thatit was shown that 

he hyper-chaotic state persists throughout the entire process. As a 

onsequence of the experiments, it was shown that the newly de- 

eloped method has a richer dynamic nature than other literature 

tudies [21] . 

Bao et al. engineered an unbalanced hyper-chaotic memris- 

ive system that combines an infinite number of hidden attrac- 

ors, using a memristor instead of a coupling resistor in a three- 

https://doi.org/10.1016/j.chaos.2021.111306
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111306&domain=pdf
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imensional chaotic system’s realization circuit. Hardware tests 

nd simulations of Power Simulation (PSIM) circuits were per- 

ormed to check the simulation results of the system developed 

22] . Li et al. modified the 3-dimensional chaotic system devel- 

ped by Lu and Chen [23] and transformed it into a 4-dimensional 

emristive chaotic system. While the system maintained its sym- 

etry after the modification process, it was added to the new 

ystem in abundantly complex dynamics, such as boundary loops, 

haos, and even hyperchaos. The developed system has an infinite 

umber of stable equilibria that cannot be counted in comparison 

ith other studies in the literature [24] . Njitacke et al. have devel- 

ped a new system by replacing the memristive diode bridge on 

he circuit they made before [25] with a flux-controlled memristor. 

he new memristor oscillator developed has been described as a 

ontinuous-time autonomous system with a four-dimensional bal- 

nce line. The analyzes of the realized system were carried out us- 

ng the bifurcation diagram, Poincar sections, and graphics of Lya- 

unov bases. It was simulated on PSIM to verify that an infinite 

umber of attractors were formed from the developed system [26] . 

Kuate et al. proposed a new non-equilibrium hyper-chaotic sys- 

em using the Lorenz equations. A low-cost microcontroller was 

sed to make the developed system in real-time. The system is 

xplained with a very simple mathematical model. The difference 

rom other Lorenz-based systems is that there are no balance 

oints. The system also differs from other memristive chaotic sys- 

ems in that it has very long-lasting transient chaotic states, ver- 

atility, and three different erupting oscillation modes [27] . Sahin 

t al. have developed a 4-dimensional chaotic system with flux- 

ontrolled memristor. It has been observed that two optimization 

ethods solve the synchronization problems of chaotic circuits. As 

 result, an optimized Proportional-Integral-Derivative controlled 

haotic circuit and the information signal masked on the transmit- 

er are recovered with the chaotic system in the receiver, and a 

ecure communication system is designed [28] . 

Most of the literatures discussed chaotic circuits with mem- 

istor, memcapacitor or meminductor but only few were reported 

ircuits with combination of these mem-elements. The complica- 

ions in circuit implementation and challenges in dynamical analy- 

is methods made the progress slowdown in this research direction 

29,30] . In [31] a simple chaotic circuit with meminductor a lin- 

ar resistor and a linear capacitor is presented and brings out rich 

ynamical behaviors as well as showed the circuit hardware real- 

zable. A chaotic circuit designed with two memcapacitors is in- 

estigated and portrayed with three different attractors, circuit im- 

lementation also carried out [32] . This discussion lay a platform 

o us towards proposing a simple chaotic circuit with combination 

f mem-elements. Configuration of systems with noise effects and 

nfluence of electromagnetic flux were investigated in [33–37] the 

esults laid a platform to refine the dynamic analysis with experi- 

ental values. 

The basic property of memristor is its pinched hysteresis loop 

r remembrance of previous states hence the chaotic circuits with 

emristor needs to be analyzed with a tool which consider mem- 

ry effects and provide more degree of freedom for analysis. Frac- 

ional calculus is identified with advantages of such kinds and 

t can be considered as generalization of method to describe 

he characteristics including integer-order values. The differential 

quations formulated with fractional derivatives enhanced the de- 

ree of freedom of the system with more fractional parameters. 

ecent studies reveled many unidentified characteristics such as 

ariable-boostable feature, chaos bursting phenomenon, phase di- 

gram offsets, coexisting attractors, and transient and local sus- 

ained chaotic states are exposed while the model treated with 

ractional calculus. 

Rajagopal et al. in their study, explored the dynamic properties 

f memcapacitor-based chaotic oscillator’s and obtained and ana- 
2 
yzed its fractional-order model. They improved the hyper-chaotic 

emcapacitor oscillator fractional-order model. The developed os- 

illator was integrated into Field Programmable Gate Arrays [38] . 

i et al. have developed an algorithm on encrypting RGB images by 

sing DNA sequence operations with a fractional-order 4-D hyper- 

haotic memristive system. The images encrypted as a result of the 

lgorithm have been successfully passed through security analysis 

39] . 

In a different study, Tsafack et al. crafted a new 4-dimensional 

haotic circuit by replacement an RLCC-diode-opamp with an anal- 

gous hybrid memristive circuit. The difference in the literature 

rom the recent studies is that there are six and four disconnected 

haotic attractors. A chaos-based image encryption algorithm has 

een developed using S-Box and Pseudo Random Number Gen- 

rator from the chaotic series of attractors. With the developed 

haotic encryption algorithm, it has been proved with various an- 

lyzes that the gray level and color images are successfully en- 

rypted [40] . Toopchi and Wang proposed a synchronization appli- 

ation of hyper-chaotic Zhou systems [41] . Lu et al. proposed the 

ynchronization of a unified chaotic system and the application in 

ecure communication [42] . Memristor-based fractional-order com- 

etitive neural networks is studied with and without the inclu- 

ion of impulsive effects and the results revealed fractional-order 

reatment can expose different dynamical properties of the system 

hile integer-order treatment is no longer useful to analyze mem- 

istor based chaotic circuits [43] . 

In this study, we focus on a fractional-order chaotic circuit with 

 memristor and a memcapacitor with a linear inductor. The var- 

ous dynamical properties of the fractionalorder system are in- 

estigated by using some dynamic analysis methods such as Lya- 

unov exponents and bifurcation after the numerical solution for 

he fractional-order system. Numerical solution for the fractional- 

rder system and the fractional memristor-fractional memcapacitor 

ircuit (FMFMC) model in section 2, dynamical properties of the 

MFMC system in section 3, synchronization of FMFMC system in 

ection 4 and finally the conclusion are presented. 

. The Fractional Memristor-Fractional Memcapacitor Circuit 

FMFMC) model 

By using the current through inductor, the internal state of 

emristor, the electromagnetic flux and the internal state vari- 

ble of the memcapacitor the state equations of the memristor- 

emcapacitor circuit was derived in appendix-1 using some def- 

nitions from [44] as, 

˙ 
 L = 

1 

L 
M 

q 
C 
φ

 

q y = −a 2 M 

q 
C 
φ − a 3 y + a 4 M 

q 2 

C 
φ2 y 

 

q φ = −i L − M 

q 
R 
M 

q 
C 
φ

 

q w = φ

 

q 
C 

= α + βw 

 

q 
R 

= χy 2 − δ

(1) 

here i L , y, φ, w denotes the current through the inductor, mem- 

istor internal state, the flux and state variable of the memcapaci- 

or respectively while M 

q 
C 
, M 

q 
R 

are the memcapacitor and memristor 

unctions [44] . In the [44] , it was considered that both memristor 

nd memcapacitor are integer-order elements as shown in Fig 1. It 

as in [45] that the authors have discussed about the importance 

f fractional-order analysis in devices such as memristor. Hence 

y using fractional-order memristor and memcapacitor [46,47] we 

ave derived the state equations as in (1) . 

To derive the dimensionless model we redefine the state vari- 

bles as i = x ; φ = z the Fractional Memristor-Fractional Memca- 
L 
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Fig. 1. The simple chaotic circuit with fractional-order memristor ( M 

q 
R 
) and mem- 

capacitor ( M 

q 
C 

). 
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s

t

acitor circuit (FMFMC) can be modified from (1) as, 

˙ 
 = a 1 M 

q 
C 
z = F x 

 

q y = −a 2 M 

q 
C 
z − a 3 y + a 4 M 

q 2 

C 
z 2 y = F y 

 

q z = −x − M 

q 
R 
M 

q 
C 
z = F z 

 

q w = z = F w 

 

q 
C 

= α + βw 

 

q 
R 

= χy 2 − δ

(2) 

The other parameters values used in the simulations are given 

n (3) 

 1 = 0 . 01 ; a 2 = 0 . 5 ; a 3 = 0 . 54 ; a 4 = 4 ;
= β = 1 ;χ = 0 . 001 ; δ = 0 . 005 ;

(3) 

There has been several methods to numerically solve the in- 

ommensurate fractional-order systems, but we have used the 

redictor-corrector method [4 8,4 9] to discretize the FMFMC sys- 

em (2) and the predict-evaluate-correct-evaluate (PECE) method 

f Adams-Bashforth-Moulton studied in [50,51] is used. Let us de- 

ne a generalized fractional-order differential equation as; 

 

q y = f (t, y ) , 0 ≤ t ≤ T , (4) 

here y m (0) = y m 

0 
for m ∈ (0 , n − 1) the initial point of (4) can be

efined as; 

 ( t ) = 

n −1 ∑ 

m =0 

y m 

0 

t m 

m ! 
+ 

1 

�(q ) 

∫ t 

0 

f (τ, y ) 

(t − τ ) 
1 −q 

dτ. (5) 

For the numerical integration, we use the predictor-corrector 

ethod [4 8,4 9] whose predictor form at t m +1 is given by 

 

P ( t m +1 ) = y 0 + 

1 

�(q ) 

m ∑ 

k =0 

βk,m +1 f ( y t k ) , 0 ≤ t ≤ T , (6) 

nd the corrector form can be defined by 

 

C ( t m +1 ) = y 0 + 

h 

q 

�( q + 2 ) 

{ 

f 
(
y P t m +1 

)
+ 

m ∑ 

k =0 

αk,m +1 f ( y t k ) 

} 

(7) 
3 
here α and β are the corrector and predictor weight whose nu- 

erical values are calculated as; 

k,m +1 = 

h 

q 

q (q + 1) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

m 

q +1 − (m − q ) (m + 1) 
q 
, 

k = 0 

(m − k + 2) 
q +1 + ( m − k ) 

q +1 −2 (k − j + 1) 
q +1 

,

1 ≤ k ≤ m 

1 

k = m + 1 

k,m +1 = 

h 

q 

q 

(
( m − k + 1 ) 

q − ( m − k ) 
q 
)
. (8) 

The estimated error is e = Max | z ( t k ) − z h (t k ) | = 0(h p ) while k = 

 , 1 , . . . , N and p = Min (2 , 1 + q ) . The term z h (t k ) denotes the dis-

rete form of (5) derived as defined in [46] as 

 h ( t n +1 ) = 

n −1 ∑ 

k =0 

z (k ) 
0 

t k +1 
n 

k ! 
+ 

h 

q 

�( q + 2 ) 
f 
(
t n +1 , z 

p 

h 
( t n +1 ) 

)
+ 

h 

q 

�( q + 2 ) 

∑ 

a j,n +1 f 
(
t j , z h 

(
t j 
))

(9) 

The first state of the FMFMC system (2) is solved using 

he fourth-order Runge-Kutta (RK4) method and the other three 

ractional-order states are solved using PECE derived in (6-9). The 

iscretized FMFMC system (2) can be derived as, 

 ( n + 1 ) = x ( n ) + 

1 

6 

[
C (1) 

x ( n ) + 2 C (2) 
x ( n ) + 2 C (3) 

x ( n ) + C (4) 
x ( n ) 

]

 ( n + 1 ) = 

{ 

y (n ) + 

h 

q 

�( q + 2 ) 
F P y n +1 

+ 

h 

q 

�( q + 2 ) 

n ∑ 

k =0 

[
αk,n +1 F y k 

]} 

 ( n + 1 ) = 

{ 

z(n ) + 

h 

q 

�( q + 2 ) 
F P z n +1 

+ 

h 

q 

�( q + 2 ) 

n ∑ 

k =0 

[
αk,n +1 F z k 

]} 

 (n + 1) = 

{ 

w (n ) + 

h 

q 

�( q + 2 ) 
F P w n +1 

+ 

h 

q 

�( q + 2 ) 

n ∑ 

k =0 

[
αk,n +1 F w k 

]} 

(10) 

here q considering only the commensurate order case. The pre- 

ictor and the corrector weight ( α and β) are calculated using 

6-9).The coefficients of the RK4 method ( C (i ) 
x ( n ) ) are calculated 

nd updated alongside the fractional-order responses for each it- 

ration. In the entire paper, the step size used is h = 0.01 and we

ave used the modified fde12 function [52] to have the algorithm 

ork alongside RK4 to have the desired simulation results for the 

ystem defined in (9) . In Fig. 2 , we have shown the attractors for

wo different fractional-orders. In [44] , the authors used combi- 

ations of parameters to achieve different attractors but includ- 

ng fractional-order will increase the topologically different attrac- 

ors. In this case for a particular value of parameters as in [50] ,

he integer-order system shows a single attractor with two scrolls 

hereas the fractional-order systems will show both single and 

wo scroll attractors for the same parameter sets but with different 

nitial conditions. 

. Dynamical properties of the FMFMC system 

As mentioned in the previous section, we have used commen- 

urate order for our analysis and various dynamical properties of 

he FMFMC system are investigated in the following subsections. 
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Fig. 2. 2D phase portraits of the FMFMC system for the initial conditions [0.1;0.1;0.1]. The phase plots are for two values of fractional-order q = 0.95 and q = 0.97. We could 

see that the FMFMC systems shows different attractors for the fractional-orders mentioned. 
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.1. Stability of equilibrium points 

It could be easily verified from that the FMFMC system has 

 line of equilibria given by E L = [0 , 0 , 0 , w e ] derived equating

he left hand side of (1) to zero. The generalized characteristic 

olynomial of the FMFMC system is calculated using the relation (
diag ( λ, λq , λq , λq ) − J E L 

)∣∣ = 0 which is derived using q = 0 . 9 as, 

37 + a 3 λ
28 − αδλ28 − βδλ28 w e − a 3 αδλ19 − a 3 βδλ19 w e 

+ a 1 αλ18 + a 1 βλ18 w e + a 1 a 3 αλ9 + a 1 a 3 βλ9 w e 

(11) 

The equilibrium point of the FMFMC is unstable equilibrium if; 

 arg( λi ) | < q 
π

2 

(12) 

Using (11) we could show that the FMFMC system is unstable 

hen the fractional-order q > 0 . 9 . 

.2. Lyapunov exponents 

To calculate the Lyapunov exponents (LEs) of the FMFMC, we 

se the well-known Wolf’s algorithm [51] and a modified solver 

sing the RK4 for the first state and the fractional-order predictor- 

orrector [50] solver fde12 [50,52,53] for the remaining three 

tates. We used a finite time of 10 0 0 0s with a step size for in-

egration as 0.01 and the LEs for the FMFMC system are calculated 

s [0.041;0;-0.0050;-0.14] for fractional-order q = 0.98 and parame- 

er values are given in (3) . 

.3. Bifurcation 

The bifurcation transitions of the FMFMC system is investigated 

ith two approaches: (Case:1) To understand the parameter de- 

endence of the system, we derive and investigate the bifurcation 

lots for the parameter a 3 variation and other parameter values as 

hown in (3) with fractional-order q = 0 . 98 (Case:2) For fractional- 

rder and parameter values are taken as in (3) . 

Case 1: The parameter a 3 is varied with a range 0 . 1 ≤ a 3 ≤ 1 . 3

o analyze the dynamical behavior of the system. Fig. 3 shows the 
4 
ifurcation diagram plotted between a 3 against the local maximum 

alue of the state variable y . Numerical simulations are performed 

hrough the Runge-Kutta algorithm and fractional-order predictor- 

orrector solver fde12. The initial condition for the first iteration 

s taken as [0.041;0;-0.0050;-0.14] and are reinitialized at the end 

f each iteration to the final values of the state variables. From the 

ifurcation diagram we could observe that while increasing the pa- 

ameter till 0.63, the system shows chaotic oscillations. Further in- 

rease results with period halving and the system behave with pe- 

iodic oscillations. In the window from 0.83 to 1.15 again the sys- 

em enters to chaotic behavior, but we can see some breaks near 

o 0.85 and 1.12. After the parameter reaches 1.16 slowly the sys- 

em shows periodic oscillations as period halving occurs. Multista- 

ility in FMFMC system can be seen from Fig. 3 .a. The evidence of 

ultistability can be seen by comparing the forward (blue color) 

nd backward (red color) bifurcation diagrams. The corresponding 

oexisting attractors are shown in Figs. 3 .b and 3 .c. 

Case 2: When investigating a fractional-order system, the im- 

act of the order needs to be studied and we present the bifurca- 

ion plot of the system. In order to illustrate the bifurcation phe- 

omenon intuitively, we generate the bifurcation of FMFMC system 

ith fractional-order for 0 . 88 ≤ q ≤ 1 range with step size h = 0 . 01

nd initial conditions [0 . 041 ; 0 ; −0 . 0050 ;−0 . 14] with reinitializing

he initial conditions in every iteration to the end values of the 

tate variables. As can be seen from the bifurcation plot the system 

hows the period doubling route to chaos for change in fractional- 

rder. System oscillates with chaotic attractor only for q > 0 . 94 . Pe-

iodic oscillation is observed for the value q < 0 . 932 and for the

indow 0 . 9325 ≤ q ≤ 0 . 938 the system shows period doubling os- 

illation. A small window of periodic oscillation is identified for 

he value 0 . 978 ≤ q ≤ 0 . 982 in Fig. 4 . 

. Synchronization of the FMFMC system 

Pecora and Carroll [54] demonstrated that two identical au- 

onomous chaotic systems can be synchronized with a common 

ignal or signals when the Lyapunov exponent signs for subsys- 

ems are all negative. Synchronization means that two identical 
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Fig. 3. a) Bifurcation diagram of the FMFMC system with a 3 ; b) The coexisting attractor for q = 0 . 98 and a 3 = 0 . 663 for the initial conditions [0 ; −0 . 39 ; 0 . 01 ; 42 . 85] shown 

in red plot and [ −0 . 001 ; −0 . 03 ; 0 . 003 ; 36 . 12] for blue plot; c) The coexisting attractor for q = 0 . 98 and a 3 = 0 . 8 for the initial conditions [0 ; 2 . 9 ; −0 . 007 ; 40 . 65] shown in red 

plot and [0 ; −5 . 08 ; 0 . 01 ; 35 . 95] shown in blue plot. 

Fig. 4. Bifurcation diagram of the FMFMC system with q . 
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ξ

r

[

a

p

n

haotic systems at different initial conditions come under the same 

onditions as a common signal and produce the same signals. Pec- 

ra and Carroll applied their proposed method to the well-known 

orenz [55] and Rssler [56] chaotic systems. They have also shown 

hat synchronization works in practice by applying it with real cir- 

uits [54] . 
5 
Pecora and Carroll handled the autonomous n-dimensional dy- 

amic system in (13) in their proposed method. 

˙ 
 = f (u ) (13) 

It is obtained by dividing the system in (13) arbitrarily into two 

ubsystems in the form of [u = (v, w)] (14) . 

˙ 
 = g(v , w ) , ˙ w = h (v , w ) (14) 

After this step, they created a new w 

′ system identical to the 

ecora-Carroll w system. Here, if (14) is rewritten by replacing the 

 

′ variables corresponding to the h function with v , (15) is ob- 

ained. 

˙ 
 = g(v , w ) , ˙ w = h (v , w ) , ˙ w 

′ = h 

(
v , w 

′ ) (15)

Pecora and Carroll studied the difference between the two sys- 

ems, �w = w 

′ − w . These two systems w and w 

′ subsystem com- 

onents are synchronized only when the difference �w → 0 and 

 → ∞ for infinite time. At the infinitesimal limit, this is expressed 

y the variational equations given in (16) for the subsystem [54] . 

˙ = D w 

h (v (t) , w (t)) ξ (16) 

Here D w 

h is the Jacobian of the w subsystem vector field with 

espect to w only. The behavior of (16) or its matrix version 

57] depends on the Lyapunov bases of the w subsystem. These 

re called sub-Lyapunov bases. Accordingly, Pecora and Carroll pro- 

osed the following theorem, w and w 

′ subsystems will synchro- 

ize only if all of the sub Lyapunov bases are negative [54] . 



A. Akgül, K. Rajagopal, A. Durdu et al. Chaos, Solitons and Fractals 152 (2021) 111306 

Fig. 5. The block diagram of P-C Synchronization [54] . 
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Pecora-Carroll (P-C) synchronization block diagram in Fig. 5 is 

iven. In Fig. 5 , X, Y and Z status variables directly stimulate the

ubsystem. The response system is divided into two subsystems 

s X and Y status. The P-C process synchronizes two similar dis- 

rderly processes, with separate initial conditions [58] . In the P-C 

ethod, when the X status variable in the driver and response sys- 

em is operated under different starting conditions, the two iden- 

ical systems synchronize after a certain time. In data communica- 

ion, the message signal encrypted with the chaotic X status vari- 

ble in the driver system is transmitted securely to the other party. 

he X” status variable of the response system on the opposite side 

s removed from the transmitted encrypted signal and the original 

essage is obtained. This way secure communication is provided. 

he synchronization of the two systems in the shortest time makes 

he communication faster and more accurate. Delays prevent com- 

unication from being healthy. 

In this study, the fractional-order FMFMC system was synchro- 

ized using the P-C synchronization method. Although the P-C 

ethod is used in integer-order chaotic systems, it also works well 

n fractional-order systems. Accordingly, no change was made in 

he working logic of the P-C method, only two identical chaotic 

nteger-order systems were converted to fractional-order system. 

ere, the P-C method works in the integer-order chaotic system 

s well as in the fractional-order chaotic system and makes more 

recise synchronization. The reason for this is fractional-order, 

he chaotic system gives more sensitive results. Fractional-order 

haotic systems synchronize faster in the P-C method compared to 

nteger-order chaotic systems. 

In Fig. 6 , Matlab Simulink model of the proposed fractional- 

rder system is given. In Matlab Simulink application FMFMC sys- 

em is modeled with the system Nid toolbox [59] . Nid toolbox 

s used to perform fractional-order modeling in Matlab Simulink 

nvironment. In order to explain the synchronization of the pro- 

osed FMFMC system with the P-C method, driver and response 

quations of the representative chaotic system are given in (17), 

18) and (19) . The proposed fractional-order chaotic system driver 

ircuit equation of the system is given in (18) . 

d q x 

dt q 
= a 1 M c z, 

d q y 

dt q 
= −a 2 M c z − a 3 y + a 4 M 

2 
C z 

2 y, 

d q z 

d t q 
= −x − M R M C z, 

d q w 

dt q 
= z 

(17) 

The first-order ( ̇ y , ˙ z , ˙ w ) state variables of the driver system are 

sed in the first sub system of the response system given in (18) .
6 
d q ˙ y 

dt q 
= −a 2 M c ̇ z − a 3 ̇ y + a 4 M 

2 
C ˙ z 

2 ˙ y , 

d q ˙ z 

d t q 
= −x − M R M C ̇ z , 

d q ˙ w 

dt q 
= 

˙ z 

(18) 

In the second sub system of the fractional-order chaotic re- 

ponse system given in (19) , the ˙ y state variable in the first sub- 

ystem is used in the second-order ( ̈x , z̈ , ẅ ) state variables [54,58] .

d q ẍ 

dt q 
= a 1 M c ̈z , 

d q z̈ 

d t q 
= −ẍ − M R M C ̈z , 

d q ẅ 

dt q 
= z̈ 

(19) 

Finally, in the synchronized fractional-order chaotic response 

ystem, x r = ẍ , y r = ÿ , z r = z̈ and w r = ẅ are used in the system. 

In the P-C synchronization method, identical fractional-order 

haotic systems are synchronized using different initial condi- 

ions. The initial conditions were selected as (x 0 , y 0 , z 0 , w 0 ) =
 0 , −4 , −0 . 01 , 43 } and (x r , y r , z r , w r ) = { 1 , −4 , −0 . 01 , 43 } , respec-

ively. 

In this study, a secure communication application was also 

erformed. Identical fractional-order chaotic system synchronized 

ith P-C method is used in secure communication application. In 

he secure communication application, communication is provided 

y using synchronized y and y r state variables. 

MATLAB Simulink models of secure communication applications 

f FMFMC system using P-C method are given in Figs. 8 and 9 . 

In the chaotic system proposed in Fig. 8, Matlab Simulink model 

f the secure communication application obtained without using 

ractional-order is given. In Fig. 9, Matlab Simulink model of the 

ecure communication application obtained using fractional-order 

s given. The only difference between the two Matlab Simulink 

odels in Figs. 8 and 9 is that the Nid function [59] is used in

ne and not in the other. The fractional-order function is provided 

hrough the Nid function. While secure communication applica- 

ion is made in Figs. 8 and 9 , driver and receiver systems are de-

igned by using P-C synchronization in Fig. 5 . In both Figs. 8 and

, the driver system is shown with a blue frame, the response sys- 

em with a green frame and the secure communication application 

ith a red frame. The receiving system is divided into two sub- 

ystems. In the first subsystem, x state variable is provided from 

he driver system, while in the second subsystem, y state variable 

s provided from the first subsystem. The synchronization applica- 

ions in both Fig. 8 and Fig. 9 provide secure communication. How- 

ver, the delay time is shorter in the synchronization application 

sing fractional-order. 

A new fractional chaotic system has been established as the 

haotic method of encrypted data transmission for secure commu- 

ication and the relevant equations are given in (20) . The equa- 

ions of the transmitter circuit are given in (20) . 

d q ˙ x r 

dt q 
= a 1 M c z, 

d q ˙ y r 

dt q 
= −a 2 M c z − a 3 y + a 4 M 

2 
C z 

2 y, 

d q ˙ z r 

dt q 
= −s (t) − M R M C z, 

d q ˙ w r 

dt q 
= z 

(20) 

The principle scheme of the chaotic information hiding method 

s given in Fig. 7 . The sine signal i (t) with a value of 10V-amplitude



A. Akgül, K. Rajagopal, A. Durdu et al. Chaos, Solitons and Fractals 152 (2021) 111306 

Fig. 6. Matlab Simulink model of FMFMC system. 

Fig. 7. Principle scheme for chaotic secure communication [60] . 
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s sent through the FMFMC system. The information signal i (t) 

s summed with the chaotic signal ( x (t) ) and the signal s (t) ob-

ained is transmitted to the communication line. The chaotic sig- 

al obtained from the y r (response system) state variable is ex- 

racted from the encrypted signal s (t) . The received signal i c (t) is

btained. The difference between the sent i (t) signal and the re- 

eived i c (t) signal indicates the secure communication ( esc) error. 

he difference of y r and y status variables gives synchronization 

rror ( esy ). 

Using the Matlab Simulink models in Figs. 8 and 9 , the 

MFMC system phase portraits without (q = 1) and with ( q = 0 . 98 )
7 
ractional-order are given in Fig. 10 . The X − Y phase portrait taken 

ithout a fractional-order and the proposed fractional-order sys- 

em X − Y phase portrait with a value of q = 0 . 98 display differ-

nt chaotic behaviors. When q = 0 . 98 , the density of the x axis

ncreases in negative values. On the contrary, in the phase por- 

rait received without using q = 1 fractional-order, the density of 

he positive values of the x axis increases. In the FMFMC system, 

 1 = 0 . 24 , a 2 = 0 . 5 , a 3 = 1 , a 4 = 4 , α = β = 1 , χ = 0 . 001 and δ = 0

as taken. There are four state equations: x, y, z and w . 

In Fig. 11 , the FMFMC system (q = 1 and q = 0.98) synchro-

ization error graphs synchronized with the P-C method are given. 

n Fig. 11 .a, graphs of error signals resulting from secure commu- 

ication and proposed system synchronization without fractional- 

rder are given. In Fig. 11 .b, graphs of the error signals result- 

ng from the secure communication and proposed system synchro- 

ization with fractional-order are given. In all graphics, the error 

aused by Esy and the error caused by Esc created a mirror image 

ue to the compatibility between each other. The proposed system 

ithout fractional-order (q = 1) is synchronized in 13.5 time units 

 Fig. 11 .a), and with fractional-order (q = 0.98) - in 13.1 time units

 Fig. 11 .b). In the FMFMC system, the fractional-order value only 

ffected 0.4 time units. 

Time-Error analysis is given in Table 1 to theoretically ana- 

yze the secure communication error (Esc) and variable y synchro- 

ization error (Esy) values of integer-order and fractional-order 

q = 0 . 98) of the proposed chaotic FMFMC system. In the Table 1 ,

he process until the FMFMC system is synchronized in both cases 

etween 1 − 13 . 5 ms time value is examined. The integer-order 
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Fig. 8. Matlab Simulink model of secure communication proposed system without fractional-order. 

8 
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Fig. 9. Matlab Simulink model of secure communication FMFMC system. 
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ystem synchronized in 13.5 ms (which is 0.04 ms longer than 

he fractional-order system). Both the fractional-order and integer- 

rder systems are synchronized sinusoidally, with error values ap- 

roaching zero. Fractional order systems work more precisely be- 

ause of their fractional structure and synchronize the chaotic sys- 

em faster.One of the reasons why the results are so close to 
9 
ach other is that the complex structure of the state variables 

n the equation of the FMFMC system causes the chaotic system 

o behave almost like fractional-order, even when integer-order is 

sed. The fact that Esc and Esy error values are parallel to each 

ther in all values is an important proof that the systems are 

ynchronized. 
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Fig. 10. 2D state portraits (xy planes) of FMFMC system with different q values 

( q = 1 and q = 0 . 98 ): a) q = 1 without fractional-order, b) q = 0 . 98 with fractional- 

order. 

Fig. 11. Synchronization error of FMFMC system (q = 1 and q = 0.98).(Esc - secure 

communication error, Esy - variable y synchronization error); a) without fractional- 

order (q = 1); b) with fractional-order (q = 0.98). 

Table 1 

Time-Error analysis of integer-order and fractional-order FMFMC system. 

Integer-Order Fractional-Order 

Time (ms) Esc Esy Esc Esy 

1 -0.86 0.86 -0.81 0.81 

2 -0.22 0.22 -0.18 0.18 

3 0.32 -0.32 0.25 -0.25 

6 -0.11 0.11 -0.09 0.09 

9 0.07 -0.07 0.05 -0.05 

12 -0.04 0.04 -0.02 0.02 

13.1 0.02 -0.02 0 0 

13.5 0 0 0 0 
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. Conclusion 

While the existing studies in the literature do not include 

ractional-order systems, in this study the system was studied as 

ractional order. In the study, memristor and memcapacitor ele- 

ents were used together and synchronization application was 

ade.In this paper, we presented a novel fractional-order chaotic 

ystem based on memristor-memcapacitor with a linear inductor. 

he dynamical analysis results showed the complexity of the sys- 

em and sensitivity to various parameters. Stability analysis, bi- 

urcation and Lyapunov exponents are used to discuss behavioral 

hanges for different scenario of the circuit. We proposed a syn- 

hronization methodology to synchronize the master and slave 

ractional-order systems and implement the system in secure com- 

unication. The presence of rich dynamical behaviors showed the 

ystem is suitable for various applications such as random number 

enerator, cryptography and data hiding. The simplicity in system 
10 
tructure will allow us to overcome the challenges in real time ap- 

lication. 
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ppendix-1 

The current through a voltage controlled memristor can be de- 

ned as [1] 

 M 

q 
R 

= M 

q 
R 
V M 

q 
R 

 

q y = −a 2 V M 

q 
R 
− a 3 y + a 4 V 

2 
M 

q 
R 

y 

 

q 
R 

= χy 2 − δ

. (A-1) 

here i 
M 

q 
R 
, V 

M 

q 
R 
, M 

q 
R 

represents the current, voltage and the memre- 

istance of the voltage controlled memristor. 

Similarly, by the definition of memcapacitor [61] , the expression 

f memcapacitance in a charge controlled memcapacitor is 

 (t) M 

q 
C 

= M 

q 
C 
Q (t) M 

q 
C 

 

q 
C 

= α + βw 

 (τ ) M 

q 
C 

= 

t 
t 0 

D 

q w (τ ) 

. (A-2) 

here V 
M 

q 
C 

and Q 

M 

q 
C 

represents the voltage and charge of the mem- 

apacitor at time t. The rate of change of state w represents the 

harge in the memcapacitor at time τ . 

From Fig. 1 , we could derive the state equations using Kirch- 

off’s Voltage Law and Kirchhoff’s Current Law considering the cur- 

ent across the inductor i L , memristor internal state (y), the flux 

 φ) and the internal state of memcapacitor (w) as the states as be- 

ow 

˙ 
 L = 

1 

L 
M 

q 
C 
φ

 

q y = −a 2 M 

q 
C 
φ − a 3 y + a 4 M 

q 2 

C 
φ2 y 

 

q φ = −i L − M 

q 
R 
M 

q 
C 
φ

 

q w = φ

 

q 
C 

= α + βw 

 

q 
R 

= χy 2 − δ

. (A-3) 
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