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Abstract In this work, LQR method is proposed for controlling and synchronizing newly developed chaotic
system. The developed 4-D chaotic system has been investigated via time series, phase portraits and
bifurcation diagrams. Calculation of the gain of linear control has been designed by LQR method, which
is an optimal control method. For understanding active controller’s impact on global asymptotic stability
of synchronization and control errors, the Lyapunov function has been used. Numerical analyses have
demonstrated to reveal the effectiveness of the applied active control method and the results have been
discussed. Besides, the new chaotic system has been modeled utilizing FFANN architecture. As a result, the
output response of FFANN converges to the real output response of 4-D new chaotic system obtained using
Dormand–Prince numerical algorithm. The obtained good results make the hardware design in efficient
manner. It has been performed using the network parameters from FFANN structure on FPGA in VHDL.
The performed design can be used with high clock frequencies up to 166.3 MHz. In addition, PRNG has
been implemented and synthesized using FFANN-based chaotic oscillator for Xilinx Virtex-6 FPGA chip.
The output rate of the designed FFANN-based PRNG is 166.3 Mbps.

1 Introduction

The existence of chaotic attractor in the atmospheric
convection system proposed by Lorenz has been the pio-
neering work which has motivated studies in proposing
a horde of chaotic systems in the last 50 years. Chaotic
behavior of a nonlinear system is analyzed based on the
presence of attractors wherein an attracting fixed point
is called sink and it is stable, whereas a repelling fixed
point is called source regarded unstable. Leonov and
Kuznetsov categorized periodic and chaotic attractors
as self-excited attractors (SA) and hidden attractors
(HA) [1–3], and they proved that when an attractor
basin is associated with an unstable equilibrium, it is
denoted as SA whereas basin of attraction that does not
intersect with neighborhoods of any equilibrium points
is said to have HA. The existence of hidden oscillations
will end up in potentially disastrous response to pertur-
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bations. Such classes of self-excited and hidden oscil-
lations of different systems are discussed in [4]. Most
of the well-known chaotic attractors have well-defined
equilibrium points like the Lorenz system [5]. Recent
years have seen many chaotic systems with different
types of equilibrium points and even systems with no
equilibrium points. A universal example of chaotic sys-
tems with variable equilibrium which deals with differ-
ent families of hidden attractors has been discussed in
[6]. Motivated by Sprott Case-A hidden attractors [7],
many systems with no equilibrium points and systems
with only one stable equilibrium which exhibits hid-
den attractors were identified. The well-known model of
memristor was first proposed and it leads to the emer-
gence of many known memristor-based chaotic oscilla-
tors [8,9]. A system with no equilibrium using memris-
tor was designed and its chaotic behaviors were ana-
lyzed by treating it in fractional-order form [10]. A
no equilibrium system with boostable variable, which
shows chaotic attractor, was framed and was found
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that it can be used in different chaos-based applica-
tions like image encryption and secure communication
[11,12]. Fractional-order chaotic system with two equi-
librium and no equilibrium were discussed and FPGA
implementation has been done in [13,14]. Chaotic sys-
tem with a finite number of equilibrium points has been
formulated and studied in [15,16]. Systems with infi-
nite number of equilibrium points were identified and
discussed in [17,18]. Jafari and Sprott articulated sim-
ple chaotic systems with strange attractors with infinite
unstable points on the equilibrium line of which is not
intersect the basin of attraction in [19].

A system with infinite number of equilibrium located
on a line and a hyperbola, formulated and dynamic
behaviors were analyzed and the results have been
found interesting while it is considered as fractional
order in [20]. Jafari and Sprott formulated nine chaotic
systems with line equilibria in [21]. Eight chaotic sys-
tems with infinite number of equilibrium formulating
a line, two parallel lines, a piece-wise linear curve, a
parabola and a hyperbola have been introduced, and
circuital implementations have been done in [22]. A
chaotic system possessing circle-, ellipse-, square-, and
rectangle-shaped equilibria was formulated in [23]. A
3D quadratic flow was reported in which periodic,
quasi-periodic and chaotic attractors coexist with a sin-
gle unstable node, and the system exhibits different
properties such as symmetry breaking, attractor merg-
ing, attracting tori and multistability in [24]. A 4D
chaotic flow with plane of equilibria was reported and
the trajectory in the system does not intersect with
the surface of equilibria in [25]. An attempt has been
made to derive a chaotic system with no equilibrium
from Wang-Chen system which with only one stable
equilibrium, and then, its dynamic analysis and circuit
realization have been carried out in [26]. Chaotic flows
can be categorized into four types from the view point
of fixed points and perpetual points and found that the
existence of strange attractors cannot be demonstrated
by the existence of fixed points and perpetual points
in [27]. To visualize the complex behaviors, the sys-
tems were treated in fractional order and the control-
ling is achieved using advanced control methods like
adaptive sliding mode control [28–30] and genetically
optimized PID control in [31,32]. Recently authors pro-
posed a chaotic system which has a camouflaged behav-
ior, such that it shows both self-excited and hidden
chaotic flows in [33]. Similarly, a simple chaotic sys-
tem showing topologically different chaotic attractors
has also been proposed as in [34]. The above said lit-
eratures have discussed many special chaotic systems
but not many of them have discussed a single chaotic
system showing different types of equilibrium points.
Hence, we are interested in proposing such a system
which can show plane, line and no equilibrium for differ-
ent choices of parameters. Also, it is worth to note that
the system has hidden oscillations for all three types of
equilibrium points.

Random Number Generators (RNGs) are defined as
systems producing numbers that are statistically inde-
pendent of each other and do not have autocorrelation

between them [35]. These generators are structures that
can generate numbers in random manner where subse-
quent data cannot be predicted and cannot be fore-
seen by utilizing the previous data. For these prop-
erties of RNGs, they have been used in many areas
including the applications where Monte Carlo method
used, computer simulations and modeling, the appli-
cations of numerical analysis, and statistical analyses
[36,37]. In cryptography, random number requirements
have been met by these generators [38,39]. The use of
random numbers is a must for various cryptographic
applications, because cryptography needs random num-
bers in key generation and distribution, generation of
initial vectors, authentication protocols, generation of
prime numbers and passwords. The security of a crypto-
graphic system depends on the randomness of the gen-
erated random numbers. For this reason, RNGs are the
most important part of many security areas [40].

Probing a nonlinear dynamical system with complex
characteristics has become a research paradigm after
thriving of secure communication and RN generation.
The novelty in the proposed chaotic system is hold-
ing plane, line and no equilibrium based on particular
(three) parameter values, and in all these three cases,
the proposed system shows hidden oscillations. The
dynamics of the system have been analyzed using bifur-
cation diagram and the existence of antimonotonicity
has been revealed. Chaotic systems can be implemented
on FPGA with numerical algorithms including Euler,
Heun, RK4, RK5B and Dormand Prince [41]. Many of
the numerical algorithms use less FPGA resources than
ANN (Artificial Neural Networks)-based implementa-
tions do. There are many studies stated in the litera-
ture on the direct implementation of chaotic systems on
FPGA [41,42]. In this study, unlike many studies in the
literature on the direct implementation of chaotic sys-
tems on FPGA, this Pseudo Random Number Genera-
tor (PRNG) design has been carried out using a newer
field, ANN-based chaotic oscillator, with respect to the
mentioned studies. The rest of the paper is organized as
follows: an overview of the related work is mentioned
in Sect. 2. The dynamic analyses of the novel chaotic
system are presented in Sect. 3. Control and synchro-
nization of the novel chaotic system using LQR (Lin-
ear Quadratic Regulator) method are demonstrated
in Sect. 4. ANN-based design and implementation of
the novel chaotic system and FFANN (Feed Forward
Artificial Neural Network)-based PRNG on FPGA are
given in Sect. 5. The NIST statistical test suite results
of FFANN-based PRNG on FPGA are explained in
Sect. 6. Finally, concluding remarks are presented in
Sect. 7.

2 Related works

Random number sequences are generally one of the
essential components for cryptographic, simulation,
modeling and analysis processes. There are basically
two different random number generation methods,
namely True RNG (TRNG) and PRNG [43]. The ran-
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dom number sequences produced by TRNG structures
are completely unpredictable and nonrepeatable, and
these structures can only be implemented using phys-
ically based methods. PRNG can be defined as struc-
tures that are based on a deterministic equation, have a
limited number of states, and perform random bit gen-
eration using this deterministic structure in their seed
[44]. Deterministic numerical algorithms are generally
used in the production of PRNG-based random number
sequences. They appear as random in general appear-
ance and must pass the relevant international standard
statistical randomness tests [45]. Another advantage of
PRNG structures is that they can be implemented eas-
ily and faster than other structures [46,47]. In PRNG
structures, the same bit sequence is continuously pro-
duced with the same initial state and it is aimed to
have a uniform distribution of the generated random
numbers. A strong PRNG should have a long period,
high throughput and reliability [48]. Besides, the ran-
dom numbers generated by PRNG must be independent
of each other and have equal distribution between 0 and
1 [49,50]. In practice, there are some situations that
prevent the bit streams produced by many PRNG from
being successful in international statistical randomness
tests. For instance, the random number sequences pro-
duced are not independent from each other, and they
lack uniform distribution and the seed values have a
shorter period than expected [51,52]. In the literature,
there are many PRNG studies carried out using dif-
ferent methods to eliminate the stated weaknesses of
PRNG structures [51,53]. To increase the security and
randomness of the PRNG structures, chaotic systems
are included to the system as an entropy source [54–
56]. In addition, since chaotic systems can operate at
high frequencies on hardware systems such as hardware-
based PC, ASIC and FPGA, chaos-based PRNG stud-
ies have been more effective [57–59]. The main pur-
pose of these studies is to obtain a stronger PRNG
structure using the chaotic oscillator as the determin-
istic seed value of PRNG structures. As presented in
the literature by Faraga et al., 3 different chaotic sys-
tems and 3 PRNGs have been designed on FPGA in
2 different number formats [45]. The presented 3 dif-
ferent FPGA-based PRNG structures have passed all
NIST-800-22 tests, and in this study, the bit genera-
tion rates are given as 6–7 Mbps. In another study con-
ducted by Khanzadi et al., they performed chaos-based
PRNG designs on FPGA using 2 different chaotic maps.
PRNG designs have been successful in all NIST and
FIPS tests. The operating frequency of the designs pre-
sented in the study was specified as 92.6 MHz [47]. In
another study presented by Avaroğlu et al., they pro-
posed a hybrid system by adding the 3D chaotic system
that they designed on FPGA to the pure PRNG struc-
ture [50]. In another study presented by Elmanfaloty et
al., PRNG design has been performed using 1D chaotic
system on FPGA [53]. The design was successful in all
international NIST-800-22 statistical tests and the bit
rate of the design was given as 289 Mbps. In another
study by Tuna, a secure PRNG structure was realized
by combining ANN-based 2D chaotic system and ring

oscillator on FPGA. The proposed design has passed
the NIST tests successfully and the generated bit rate
is given as 241 Mbps [57]. In the study proposed by Li
et al., chaos-based PRNG was implemented on PC. The
bit generation rate of the designed system is specified as
9 Mbps [60]. Garcia-Bosque et al. performed the chaotic
map-based PRNG design on the Virtex-7 FPGA chip.
The implemented PRNG was successful in all NIST-
800-22 tests. They stated the operating frequency of
the designed structure as 132 MHz. In another study
presented to the literature, chaos-based PRNG was
designed on PC using multiple chaotic map structure by
Garcia-Martinez et al. The designed system has passed
all international NIST-800-22 tests [61]. Merah et al.
designed Chua chaotic system-based PRNG on FPGA
in their studies and the structure they proposed was
successful in all tests. They stated the operating fre-
quency of the system as 30.02 MHz [62]. In the study
presented by Palacios-Luengas et al., they have imple-
mented a chaotic map-based PRNG design on FPGA
[63]. The operating frequency of the design that was
successful in NIST tests was given as 60 MHz and the
bit generation rate as 0.145 Mbps. In another study
conducted by Rezk et al. in the literature, they per-
formed a chaotic PRNG design on the FPGA [64]. They
stated that the operating frequency of the design, which
passed all tests successfully, was 78.149 MHz.

In the ANN-based RNG designs on FPGA presented
in the literature, the bit streams produced by RNG
designs may not obtain successful results from NIST
tests. In order for these ANN-based RNG designs to
pass NIST tests, bit generation rates are usually cut in
half using post-processing [65]. Another method used
for the designs to be successful in NIST tests is to
design RNG without reducing the bit generation rate
by adding ring oscillator [66,67]. In this way, the ran-
domness of the bit streams produced by the designed
RNG has been increased and successful results from the
NIST tests have only been achieved with the addition
of the ring oscillators to the design. In this presented
study, unlike the PRNG structures presented in the lit-
erature, chaotic PRNG design was carried out using
the FFANN-based 4D chaotic system on the FPGA.
The random bit streams obtained from the designed
system have successfully passed all international statis-
tical NIST-800-22 tests. The operating frequency of the
designed system was 166.3 MHz and the bit generation
rate was 166.3 Mbps.

3 Dynamic analyses of novel chaotic system

Jafari et al. proposed a plane equilibria system [25]
described by the mathematical form
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Table 1 Different types of equilibriums shown by the sys-
tem (2)

System Parameters Type of equilibrium

PE a3 = 0; a4 = 0; a8 = 0; Plane equilibrium
IE a3 �= 0; a4 �= 0; a8 = 0; Line equilibrium
NE a3 �= 0; a4 �= 0; a8 �= 0; No equilibrium

ẋ = y
ẏ = z
ż = a1yw − a2zw
ẇ = a3xz − a4y

2 + a5z
2,

(1)

where a1, a2, a3, a4, a5 are the system parameters and
the system shows a plane of equilibria located in the
entire x − w plane. Inspired by the system (1), we pro-
pose a modified system (2) which is designed by adding
a state feedback w to the z state and adding two param-
eters in the w and z states as in (2)

ẋ = y
ẏ = z
ż = a1yw − a2zw − a3w − a4

ẇ = a5xz − a6y
2 + a7z

2 + a8,

(2)

where a1, a2, a3, a4, a5, a6, a7 and a8 are the system
parameters. The system (2) shows three different cases
of equilibrium points, as shown in Table 1 for different
choices of the parameters.

When the choice of the parameters are a3 = 0, a4 =
0, a8 = 0, the system becomes the original system
proposed in [1] showing a plane of equilibriums in
x − w plane. As the choice of the parameters are
a3 �= 0; a4 �= 0; a8 �= 0, the system shows infinite num-
ber of equilibrium points on the x plane and when
a3 �= 0; a4 �= 0; a8 �= 0, and the system does not
have any equilibrium points. In all three cases, the sys-
tem shows hidden attractors. There have been several
reports on plane, line and no equilibrium systems in the
literature, but to the best of our knowledge, they have
not been reported in a single system like in (2) and this
satisfies the 2nd condition for a new chaotic system:
“The system should exhibit some behavior previously
unobserved” as in [68].

An exhaustive computer search has been done to find
the parameter values that could not make the system
(2) to exhibit chaotic oscillations, and it is found that
for the parameter values of a1 = a6 = a7 = 1, a2 =
4, a5 = 0.1 and the parameters a3, a4 and a8 as given
in Table 2, the system shows chaotic oscillations as in
Fig. 1. We use the Wolf’s algorithm [69] to find the finite
time Lyapunov exponents (LEs) of (2) for run time of
20,000 s. The LEs for three cases are given in Table 2.

To understand the dynamic behavior of the system
(2) in parameter space, we derive and investigate the
bifurcation plots. We discuss the bifurcation plots in
two cases, namely the line equilibrium (IE) and no equi-
librium (NE). To analyze the bifurcation of the system

in IE case, we fix the parameters as a1 = a6 = a7 =
1, a3 = 0.01, a2 = 4, a5 = 0.1, a8 = 0 with a4 taken as
the bifurcation parameter varied between [0, 0.035] and
initial conditions for the first iteration is [− 22, 0.15,
0.02, 0.44] and is reinitialized to the end values of the
state trajectories in every iteration with the local max-
ima plotted as shown in Fig. 2. The IE system takes a
period doubling limit cycle route to chaos and increase
in parameter a4 leads to a torus and then to a period
1 limit cycle which goes unbounded when a4 > 0.035
and decreasing the parameter below zero destroys the
attractor in boundary crisis. Similarly, Fig. 3 shows
the bifurcation of the system with a4 for NE system.
The parameter a4 is varied between [0.017, 0.0275] and
the chaotic attractor dies due to boundary crisis when
a4 < 0.017 or a4 > 0.0275.

4 Control and synchronization of novel
chaotic system using LQR method

The control design for synchronization consists of active
control linearization and then a linear control design.
Calculation of the gain of linear control will be designed
by the LQR method, which is a high-performance
method that provides optimally controlled feedback
gains to enable closed-loop stability. In this section,
synchronization of the novel chaotic system with active
control will be discussed. The linear optimal con-
troller (linear quadratic regulator) is used for suppress-
ing chaos in novel chaotic system. Assuming following
chaotic dynamic system:

ẋ = Ax + f (x) . (3)

Here, the system consists of linear and nonlinear com-
ponents. x ∈ Rn shows state vector, A ∈ Rn ×n resem-
bles the system matrix and f(x) ∈ Rn is the nonlinear
function of the system. Let the system given by Eq. (3)
taken as the master system and Eq. (4) taken as slave
system as follows:

ẏ = Ay + f (y) + u; (4)

y ∈ Rn shows state vector of the slave system and
u ∈ Rr is proposed controller. Synchronization error
between the master and the slave becomes as follows:

e = y − x. (5)

From Eqs. (3) and (4), dynamic error expression
becomes as follows:

ė = Ae + g (x, y) + u. (6)

Here

g (x, y) = f (y) − f (x) . (7)
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Table 2 Lyapunov exponents of the system (2)

System Parameters LE Figure

PE a3 = 0; a4 = 0; a8 = 0; 0.0118, 0,−0.0355,−2.095 1a
IE a3 = 0.01; a4 = 0.015; a8 = 0; 0.0105, 0,−0.0373,−2.295 1b
NE a3 = 0.01; a4 = 0.015; a8 = 0.01; 0.0112, 0,−0.0367,−2.264 1c

Fig. 1 Different types of chaotic attractors shown by system (2) for the parameters as in Table 2 and initial conditions
[−22, 0.15, 0.02, 0.44]

The aim of controller -u is to satisfy lim t → ∞, e(t)→0.
For this purpose, if u is separated as the sum of two
linear and nonlinear terms, u can be written as below

u = −g (x, y) − BuL; (8)

B ∈ Rn×r is the control matrix and to design the linear
state feedback of uL (A, B), pair matrix should satisfy

control condition [1]. Then, substituting Eq. (8) into
Eq. (6), dynamic equation of error is obtained

ė = Ae + BuL; (9)

K ∈ Rr×nis linear gain matrix and linear control term
is

uL = −BKe. (10)
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Then, dynamic error expression can be written as fol-
lows:

ė = (A − BK) e. (11)

Therefore, the dynamic nonlinear equation of error is
transformed into a linear feedback system. Here, the K
gain matrix can be determined by linear control meth-
ods. The LQR method will be applied.

4.1 Optimal linear controller design with LQR

Let linear dynamic system is given as follows:

ẋ = Ax + BuL, x (t0) = x0. (12)

Here, x ∈ Rn and uL ∈ Rn×r state vector and control
input vector, A ∈ Rn×n and B ∈ Rr×n constant matrix;
x0 ∈ Rn initial state vector, respectively. Proposed con-
trol is

uL = −Kx (13)

The aim is to calculate the gain matrix of K bringing
the system (12) to the origin for linear control of (13).
In addition, designed control will make the closed-loop
system Lyapunov stable and Q = QT � 0, R = RT �
0, definite positive symmetric matrices, respectively, as
the selected state vector error and control vector weight
matrixes make the value of the performance index to
minimum

J =
∫ ∞

0

(
xTQx + uT

LRuL

)
dt. (14)

For the selected system (12), calculation of the con-
troller (13) that will make (14) as minimum

ATP + PA + Q − PBR−1BTP = 0. (15)

Using PT � 0 positive definite symmetric matrix that
gives solution of Algebraic Riccati Matrix Equation
(ARE)

K = −R−1BP (16)

is calculated as shown in Eq. (5). Thus, for (12) and
(13), closed-loop system becomes as follows:

ẋ = (A − BK) x. (17)

If the determinant of the system matrix shown above is
like below

|A − BK| �= 0, (18)

all state of the system can be controlled (controllability
condition). The dynamic system can be taken to zero by
the appropriate choice of the K state feedback control
gain matrix (Figs. 4, 5).

The master (3) and slave (4) of novel chaotic system
with control become as follows:

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 −a3
0 0 0 0

⎤
⎥⎥⎦ , f (x) =

⎡
⎢⎢⎣

a3x3x4

a5x3x4

0
0

⎤
⎥⎥⎦ andf (y) =

⎡
⎢⎢⎣

a3y3y4
a5y3y4
0
0

⎤
⎥⎥⎦ .

Fig. 2 Bifurcation of the IE system with parameter a4

Fig. 3 Bifurcation of the NE system with parameter a4

In the control matrix In×n, n×n is a unit matrix, and
let is chosen as B = I4×4. Because condition (18) is
satisfied, then all state of the system can be controlled.
For u controller (8), nonlinear control term (7) is found.

The simulation block diagram based on these values
is given in Figs. 6 and 7. According to the LQR method
(3) given in the previous section, the performance index
(3) needs to be determined to calculate the linear con-
trol uLK gain matrix. For this, it is possible to take
Q = q · I4×4, R = I4×4 where q is the positive scalar
design parameter to be set. Let choose q = 10. P and
K matrices can be found easily by command (2) [P, K,
eig] = lqr (A, B, Q, R) in MATLAB

P =

⎡
⎢⎣

9.9875 0.4988 0.0125 0.0000
0.4988 10.024 0.5000 0.0000
0.0125 0.5000 10.037 0.0000
0.000 0.0000 0.0000 10.000

⎤
⎥⎦ , (19)

so that the control design is completed. In the MAT-
LAB/SIMULINK system, the initial values of the mas-
ter and slave system were taken as x (0) = [− 22 0.15
0.02 0.44] and y(0) = [− 10 1 0 −1], respectively. Sim-
ulation was performed by 0.01 step value and Runge–
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Fig. 4 Simulink model of
designed master–slave
system

Fig. 5 Simulink model of
master system

Fig. 6 Simulink model of
slave system

Kutta ODE4 solver for 50 ms and the results are given.
The controller is active at tc = 150 ms.

The simulation results carried out in MATLAB/Sim-
ulink validate the effectiveness of the proposed con-
troller for destroying chaos. Figure 8 shows the mas-
ter/slave system trajectories. Figure 9 shows that as
soon as the controller starts to work, the error vector
goes to zero. In Fig. 10, the change of the control vector
is shown. By increasing the constant q, the continuous
time to reach steady state will be shortened and the size
of control will increase. As seen in Fig. 10, when the
feedback control inputs are applied, all state variables
of master and slave systems are completely overlapped.

5 ANN-based design and implementation
of the novel chaotic system on FPGA

In this part, the 4-D novel chaotic system (NCS)
has been modeled using FFANN structure, and then,
the hardware design of the NCS has been imple-
mented using this FFANN model on FPGA. Very High-
Speed Integrated Circuits Hardware Description Lan-
guage (VHDL) and Verilog are among the most pre-
ferred hardware description languages in FPGA-based
designs. VHDL and Verilog languages each have their
own advantages. VHDL is generally a hardware descrip-
tion language close to Ada and Pascal languages, while
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Fig. 7 Controller model for synchronization

Fig. 8 Time series for state vector of master–slave system (x(t) solid line, y(t) dashed line, (start of control tc = 15ms)

Verilog is a hardware description language close to
C language. Also, both of them are IEEE industry
standards (VHDL: IEEE 1076-2008 and Verilog: IEEE
1364-2005). VHDL is a rich and powerfully written lan-
guage according to the Verilog. In addition, VHDL is
more specific and more detailed than Verilog. VHDL
catches errors that are often overlooked by Verilog at
the very beginning of the design process due to its
nature. As a result, projects designed in VHDL are
considered self-documenting. The designed architecture
has been described using VHDL.

Recently, it has been observed that ANN can present
solutions to many problems in a broad spectrum
of learning, signal processing, forecasting problems,

pattern recognition, classification, generalization, time
series analysis, image processing and control applica-
tions [70–73]. The desire to solve solutions in these
areas has demonstrated that the mapping, modeling
and classifying nonlinear systems using ANNs are quite
convenient [74]. The most frequently used ANN model
is FFANN. FFANN has a full connection architecture
that utilizes sigmoid transfer functions in their hidden
layers [75]. In general, ANNs include simple processing
elements called neuron, similar to biological neurons in
human brain [76,77]. Figure 11 shows the neuron model
which is commonly used in ANNs with little modifica-
tions [74].
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Fig. 9 Time series for e = y—x state error vector

Fig. 10 Time series for control vector (start of control tc = 15 ms)

The artificial neuron illustrated in this figure includes
m inputs, given as x1, x2 . . . xm. Each line connect-
ing these inputs to the neuron has a weight, given
as wk1, wk2, . . . wkN , respectively [76]. vk is the linear
adder output of the weighted input signals; bk is the
bias; φ(.) is the transfer function; and yk is the out-
put of the neuron [79]. Equations (20) and (21) define
a neuron k in terms of mathematical equations

vk = bk +
∑N

j=1
wkj .xj (20)

yk = ϕ(vk). (21)

Logistic Sigmoid (LogSig) and Tangent Sigmoid (Tan-
Sig) functions, given in Eqs. (22) and (23), can be used
as transfer functions in FFANNs structures [80]
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Fig. 11 Artificial neuron
model [78]

ϕ (v) =
1

1 + exp (−ζv)
(22)

ϕ (v) =
1 − exp (−ζv)
1 + exp (−ζv)

, (23)

where parameter ζ determines the slope in transition
region [80]. Hardware implementation of an FFANN-
based NCS heavily depends on the efficient design of a
single neuron [81]. As can be observed from Eqs. (22)
and (23), since sigmoid functions contain infinite expo-
nential terms, there is a problem for the direct imple-
mentation of these functions on hardware architectures.
Instead, simplified approximations of sigmoid functions,
namely Piece-Wise Linear approximation (PWL) [80],
Lookup Tables (LUT) [82], Taylor series approxima-
tion [83], Elliot sigmoid approximation [84] and COor-
dinate Rotation DIgital Computer (CORDIC)-based
exponent calculator approximation [79] have been used
in the literature. Although many applications have gen-
erally used ANNs in software, hardware-based ANNs
have faster response time compared with software-
based ANNs in real-time applications due to parallel
data flow in ANN’s nature that can be compatible with
hardware-based ANNs [85,86]. Hardware-based ANNs
can be performed with either analog or digital electron-
ics. The digital implementation of ANN is more effi-
cient comparing to analog one, since it presents higher
accuracy, lower noise sensitivity and better repeatabil-
ity [86]. Microprocessors and Digital Signal Processors
(DSPs) do not have efficient architecture for parallel
designs, since they are sequential. The architectures of
Application-Specific Integrated Circuits (ASICs) and
Very-Large-Scale Integration (VLSI) are convenient for
parallel designs; however, they need more time and cost
than the others. Apart from alternatives, Field Pro-
grammable Gate Arrays (FPGAs) are not only suitable
for parallel designs but also modular in reconfiguration
and time saving. Besides, FPGAs provide high speed in
real-time applications [87,88]. As a result, FPGA-based
implementations have been well suited to design ANN
in a more efficient way.

5.1 Offline training step

In this step, the training of FFANN-based NCS has
been performed externally in a personal computer (PC)
using Matlab Neural Network Processing Toolbox to
decrease the design circuitry. Since accuracy has a great
effect in the training step, the precision of the num-
bers has been chosen as high as possible. As the most
appropriate FFANN-based NCS has been determined
to successfully model the chaotic behavior of NCS, the
training has been completed. Indeed, there is no single
network model or learning method that can be suffi-
ciently used for whole applications by the reason of each
having its own advantages and disadvantages. Figure 12
depicts the network structure of FFANN (4-8-4) which
has 4 neurons, 8 neurons and 4 neurons in input, hid-
den and output layers, respectively. While 4 neurons in
input and output layers represent state variables, 8 neu-
rons in hidden layer have been utilized to provide the
ability for generalization. There is a trade-off between
the number of hidden neurons and the response time
of FFANN-based NCS. Therefore, the number of neu-
rons in hidden layer could be higher to obtain higher
precision, but the response time could be lower. As a
result of several trials, 8 neurons have been chosen for
the hidden layer.

As shown in Fig. 12, Tan-Sig and Purelin transfer
functions have been used in hidden and output layers,
respectively. Input and output data include 10000 sam-
ples that have been produced using Dormand–Prince
algorithm. Inputs and outputs of the FFANN-based
NCS stand for state variables of NCS and iterative val-
ues of related inputs, respectively. Table 3 gives the
model parameters of FFANN-based NCS related to
offline training step. As can be observed from Table 3,
since MSE reaches 1.8E−08 degree, it can be concluded
that the real output response of NCS converges to the
desired output response of FFANN. That means that
this model gives enough precision for this implementa-
tion.
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Fig. 12 The network structure of FFANN-based NCS

Table 3 Model parameters of FFANN

Training function Trainlm

Performance function MSE: 1.8E−08
Number of epochs used in training 200,000
Error tolerance 1E−15

5.2 The design of FFANN-based NCS on FPGA

After the training has been completed and the cor-
rect network parameters (weights and biases) have been
obtained, these parameters have been converted to hex-
adecimal values and then they have been written to a
VHDL file. The converted values of the correct network
parameters, including weight (w) and bias (b) values of
hidden layer and output layer have been illustrated in
hexadecimal form in Tables 4 and 5, respectively.

These values are required in hardware implementa-
tion of the FFANN-based NCS using VHDL with IEEE-
754 32-bit single precision floating point format on Xil-
inx Virtex-6 (XC6VCX240T) chip. All VHDL coding
has been compiled, synthesized and Placed&Routed
with Xilinx ISE design tools. For the approximation
of Tan-Sig transfer function, CORDIC based exponent

calculator has been utilized because of having an advan-
tage of higher precision than the alternatives [79].

CORDIC IP-core structure can calculate Sinh (x )
and Cosh (x ) values only in the range of −π/4 to
π/4. In other words, CORDIC can only calculate val-
ues between e−0.785398 and e0.785398. In this presented
study, a unit that can calculate ex value for any real
number between e−48 and e47.25 is designed by com-
bining CORDIC and LUT-based approaches. In this
method, the process of calculating the ex value is
divided into two parts as given in Eq. (24)

ex = eint(x/µ) · e(x mod µ). (24)

In the first part, the x number is divided by a constant μ
and the ex value corresponding to the integer part of the
obtained part is found from the LUT. Since CORDIC
can calculate values up to 0.78539 at the most, μ is
taken as 0.75. The 32-bit x number coming to the unit
is first divided by 0.75 using a floating point divider to
determine how many times 0.75 is. Here, 27 × 32-bit
Read Only Memory (ROM) has been used as LUT. The
values of ej·0.75(j = −64 . . . + 63) were pre-calculated
and recorded into the ROM. The result of x/μ opera-
tion has been transmitted to the LUT unit. The result
of eint(x/µ) operation related to the LUT unit has been
transferred from the first part to the output.

In the second part, the modulo operation of x signal
has been performed with respect to μ value. Since the
μ value obtained here will be less than 0.75, it can be
easily calculated by CORDIC. CORDIC calculates the
value of e(xmodµ) and transfers the obtained result to
the output of the second part.

In the last part, the result of the eint(x/µ) operation
as the output of the first channel received from the LUT
unit and the result of the e(xmodµ) operation from the
CORDIC unit, as the output of the second channel has
been multiplied and the exvalue has been calculated
with an accuracy of 4–5 digits in the decimal point. The
calculated ex value has been used in the calculation of
TanSig (x ) activation function given in Eq. (25)

TanSig (x) =
2

( 1 + e (−2x) )
− 1. (25)

Table 4 The converted values of the correct network parameters, including weight (w) and bias (b) values of hidden layer

Weight (w) and bias (b) values of output layer

x0 Floating point y0 Floating point z0 Floating point w0 Floating point Bias values Floating point

IW11 3C9DC148 IW12 BD15086C IW13 3953954A IW14 39CDBC84 IB1 BE613B39
IW21 3A39FC0A IW22 BB9A3FDA IW23 3C9A4FF6 IW24 3CCF5AB2 IB2 3F010DF8
IW31 BA634C33 IW32 3D0AD54B IW33 BCB9065C IW34 BBB9CA86 IB3 3E18B113
IW41 BA74CCAB IW42 3B07434F IW43 BC8EC2AA IW44 BCDF9A12 IB4 BE78B7A9
IWS1 3917F995 IW52 3CA23FB5 IW53 B9B2DB9B IW54 BA0D139E IB5 3C126CB0
IW61 BC8CF7C3 IW62 3D050175 IW63 B93E2AD2 IW64 B9B4F4CF IB6 BF8650E7
IW71 BABB0194 IW72 BB80142F IW73 3D16F4A5 IW74 BDB124D7 IB7 BF71AB07
IW81 3B099CDF IW82 BCA5125A IW83 3D2707DF IW84 3C07CB07 IB8 BEBDBA5B
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Fig. 13 Top-level block diagram of FFANN-based NCS
unit designed on FPGA

The outputs of the Sinh and Cosh channels of the
CORDIC IP core are summed with a fixed-point-based
adder. Subsequently, an IP-core that converts the fixed-
point standard to the floating point standard has been
created with the IP-core Generator developed by Xil-
inx ISE Design Tools. Using this converter IP-core, the
fixed point-based signal coming out of the fixed point-
based adder unit has been converted to the floating
point number standard which is generally used in the
design. The top-level block diagram of the FFANN-
based NCS unit designed on FPGA is given in Fig. 13.
The implemented design can be used with a clock fre-
quency up to 166.3 MHz.

The timing diagram obtained from Xilinx ISE Simu-
lator related to FFANN-based NCS unit has been illus-
trated in Fig. 14. There are 2 inputs as 1 bit Start and
1 bit Clk signals locating in the input of the design.

As can be seen from the Xilinx ISE timing diagram
for FFANN-based NCS unit, logic ‘1’ value and global
clock pulse have been applied to the control signals of
the design, Start and Clk, respectively. To increase the
visibility of 4 ANN inputs, they have been utilized at
outside of the design. The initial conditions have been
applied to these inputs which are in 32-bit floating point
number standard. However, since Hexadecimal format
presents ease in reading and controlling, it has been
chosen instead of using binary format. Here are 4 out-
puts each having 32 bit and one ready signal for out-
puts in the FFANN-based NCS unit. However, to make
the appearance of the figure simpler, one ready signal
has been added into the timing diagram. When the
oscillator generates a result, this signal takes ‘1’ value.
Although the outputs of FFANN-based NCS unit have
32-bit floating point number standard, hexadecimal for-
mat has been preferred in the presentation.

The implemented design provides the exact reproduc-
tion of the output time series (w, x, y and z) as gener-
ated by Dormand–Prince algorithm. After the startup,
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Fig. 14 The timing diagram obtained from Xilinx ISE simulator related to FFANN-based NCS unit

Table 6 The area utilization report of FFANN-based NCS unit on FPGA

Logic utilization Used Available Utilization %

Number of Slice Registers 103,729 301,440 34
Number of Slice LUTs 104,730 150,720 69
Number of fully used LUT-FF pairs 82894 125,565 66
Number of bonded IOBs 259 600 43
Number of Block RAM/FIFO 4 416 1
Number of BUFG/BUFGCTRLs 1 32 3
Number of DSP48E1s 8 768 1

it takes only 145 clock cycles for FFANN-based oscil-
lator to generate the first outputs. Then, each output
has been generated once per 145 clock cycle. The area
utilization report of FFANN-based NCS unit on FPGA
is presented in Table 6. Efficient resource utilization
has been performed using optimum number of neurons
in hidden layer during the implementation of FFANN-
based oscillator on FPGA. It provides not only high
precision but also low response time with a lower num-
ber of bits.

5.3 The design and implementation of
FFANN-based PRNG on FPGA

The implemented FFANN-based PRNG on FPGA is
simulated and synthesized for Xilinx Virtex-6 (XC6V-
CX240T-1ff1156) chip. The elapsed time for data pro-
cessing of the designed units is achieved with Xilinx
ISE Design Tools 14.2. The system operates in pipelined
manner. The block schema of the FFANN-based PRNG
on FPGA is shown in Fig. 15. In this study, units includ-
ing adder and multiplier used for floating point number
standard operations have been created using the IP-
Core Generator developed by Xilinx ISE Design Tools.
These IP-core units have been added to the designs
using VHDL and the processes have been coded in
VHDL.

The FFANN-based PRNG includes 3 parts; FFANN-
based NCS Oscillator, Sampler and Post Processor.
Floating Point Number (FPN)-based model has been

used for sampling. The Sampler contains 4 number
generators (X -Number Generator, Y -Number Gener-
ator, Z -Number Generator and W -Number Genera-
tor), a MUX and a counter. The number generators
include X0, Y0, Z0, and W0 signals that are acquired
from FFANN-based NCS Oscillator and XR, YR, ZR

and WR. The X0, Y0, Z0 and W0 signals are suited with
the single precision IEEE 754 32 bit floating point nota-
tion. The XR, YR, ZR and WR signals have been used
for controlling the X0, Y0, Z0 and W0, respectively. As
the Least Significant Bit (LSB) in the fraction part of
the number (b0) is the most sensitive bit with high bit
encoding, the value of b0 varies very often. FFANN-
based PRNG uses the bits in fraction part that are 32
bit FPN format. MUX unit includes 5 input signals;
XRS, YRS, ZRS, WRS and WRS H that are responsi-
ble for controlling. The counter serves as a 0–2 counter
in binary format. The XRS, YRS, ZRS and WRS sig-
nals can be picked with related to the values (“00”,
“01”, “10” and “11” , respectively) generated by the
counter. After that, these signals are forwarded to the
output of MUX. The XRS, YRS, ZRS and WRS signals
remark whether the results have been ready in reply
to XRS, YRS, ZRS and WRS. WRS H is responsible
for controlling. Since number generation parts run in
parallel, instead of using XRS H, YRS H, ZRS H and
WRS H, using one of them is adequate. WRS H has
been chosen for this study. Because of including four
outputs, the data rate value changes four times greater
than the previous value. On the other hand, there is a
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Fig. 15 The block
schema of the
FFANN-based PRNG on
FPGA
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Fig. 16 The simulation result for FFANN-based PRNG on FPGA chip

handicap founding in nearly all PRNG implementations
that the generated numbers cannot have good random-
ness properties. Post-processor is needed for enhancing
the randomness of the generated bit streams.

In order for random bit streams obtained from PRNG
designs in the literature to pass the statistical tests,
post-processing step has been applied. In this way, the
quality of the random bits has been increased. How-
ever, during the utilization of the post-processing step,
the operating frequencies and the throughputs of the
designs generally decrease. In the design of FFANN-
based PRNG on FPGA, one data flip flop (DFF) has
been used for post-processing step. Therefore, there was
no decrease in both the operating frequency and the
bit rate of the incoming signal. In other words, the ran-
dom bits, obtained from the design of FFANN-based
PRNG on FPGA, have successfully passed the statis-
tical tests without the need of performing the post-
processing step. The post-processor includes one DFF
unit. The global clock pulse is not the input of this unit.
To make the appearance of figure simpler, global clock
pulse is illustrated in Fig. 15. RS H is utilized by DFF
obtained from the sampler. For this reason, the output
of DFF has been created at each ascending edge of the
global clock pulse. The DFF has hanged on RS for a
clock pulse. After that, DFF sends this signal to the
output as the RS output. Output ready is determined
‘1’, while RS output has been generated.

Figure 16 illustrates the simulation result for FFANN-
based PRNG that is acquired using Xilinx ISE Simula-

tor. Test bench architecture is generated in VHDL for
verifying the implementation produced by Xilinx ISE
Design Tools 14.2. As can be observed from Fig. 16,
there are 2 inputs as Start and Clk each having one
bit at the top level of the design. For the output of
the system, there are 2 outputs as Output ready and
RS output each having one bit. To run the FFANN-
based PRNG unit, global clock signal and logic ‘1’ sig-
nal have been applied to Clk and Start inputs, respec-
tively. As the design produces the first result, out-
put ready signal takes ‘1’ value. Since the maximum
operating frequency of the system is approximately 166
MHz, the designed unit generates 166 million clock
pulses in 1 s. As can be seen from Fig. 16, the fre-
quency of the random bit streams produced by FFANN-
based PRNG unit equals the Clk frequency (operat-
ing frequency). As a result, since FFANN-based PRNG
unit generates one random number per one clock pulse,
the throughput reaches approximately 166 Mbit/s. The
design utilization result of the FPGA is given in Table 7.
As stated before, system runs in pipelined manner.

6 NIST statistical test suite and results

To test the randomness quality of produced bit streams
generated by PRNGs, NIST 800-22 Statistical Test
Suite has been extensively used when compared with
other test suites. For this reason, to certify the pre-
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Table 7 The design utilization result of FFANN-based PRNG

Chaotic
oscillator

Number of slice
registers

Number of
LUTs

Number of
IOBs

Maximum fre-
quency (MHz)

Throughput
(Mbit/s)

4D-NCS Used 103,891 104,878 4 166.303 166.3
Usage Rate 34 69 1

Table 8 The results of NIST-800-22 test suite with related
to FFANN-based PRNG

Statistical tests p value Result

Frequency (monobit) test 0.5632 Successful
Block-frequency test 0.1841 Successful
Cumulative-sums test 0.5180 Successful
Runs test 0.7141 Successful
Longest-run test 0.0466 Successful
Binary matrix rank test 0.0413 Successful
Discrete Fourier transform test 0.6132 Successful
Nonoverlapping templates test 0.8564 Successful
Overlapping templates test 0.2246 Successful
Maurer’s universal statistical test 0.8749 Successful
Approximate entropy test 0.2913 Successful
Serial test-1 0.2590 Successful
Serial test-2 0.3481 Successful
Linear-complexity test 0.6992 Successful
Random-excursions test 0.5970 Successful
Random-excursions variant test 0.4470 Successful

sented PRNG to be utilized in secure communication,
the sequence of bit streams generated by the presented
PRNG should pass NIST 800-22 test suite. NIST 800-22
test suite include 16 tests, and some of them are part-
ible into a diversity of subtests. 1 Mbit bit sequences are
required to perform NIST tests. After designing PRNG
using FFANN-based chaotic oscillator, a test bench file
has been coded in VHDL to test the required random
number sequences for NIST tests. The written codes
have been compiled by Xilinx ISE design tools and
the random bit sequences obtained from the simula-
tion of the FPGA-based design have been automatically
saved into a .txt file with Xilinx ISE. For the tests that
have multiple subtests, the p value has been assessed as
their arithmetic average. Table 8 presents the results of
NIST-800-22 Test Suite with related to FFANN-based
PRNG. During the Random Excursions Test which is
one of the tests of NIST 800-22 test suite, 18 test results
have been produced for x value in -9≤x≤-1 and 1≤x≤9
in the PRNG designed with chaotic entropy seed. To
avoid increasing the dimension of the table, only the
test result when x = −9 is given. The other 17 test
results have provided the tests conditions. The results
of the 16 different tests have been evaluated by pay-
ing attention to the p value (probability values). For
all of the tests of NIST-800-22 Test Suite, since the p
values have been greater than 0.01, it proves that the
produced bits show good statistical features. Thus, the
produced bits pass the whole NIST-800-22 Test Suite.

7 Conclusion

The paper summarizes a novel chaotic system with
intricate dynamic behaviors, and proposes optimal con-
trol method for global asymptotic stability of synchro-
nization, and finally, FFANN-based chaotic oscillator
is used for hardware implementation of PRNG. LQR
method is proposed for controlling and synchronizing
new 4D chaotic system. Mentioned chaotic system is
investigated via time series, phase portraits and bifurca-
tion diagrams. Calculation of the gain of linear control
will be designed by LQR method, which is an optimal
control method. For understanding active controller’s
impact on global asymptotic stability of synchroniza-
tion and control errors, the Lyapunov function is used.
It has been observed that the applied LQR method sup-
presses all chaotic behaviors of the examined chaotic
system. Numerical analyses are demonstrated to reveal
the effectiveness of applied active control method and
the results are discussed. Additionally, modeling of the
new chaotic system has been performed using FFANN
structure. As a result, the output response of FFANN
has been well suited to the real output response of
NCS obtained using Dormand–Prince numerical algo-
rithm. Thus, the results enable performing the next
step. Finally, the hardware design has been carried out
by utilizing the network parameters from this FFANN
model on FPGA in VHDL. The performed design can
be used with high frequencies up to 166.3 MHz. Fur-
thermore, PRNG has been implemented using FFANN-
based chaotic oscillator on Virtex-6 FPGA chip. The
output rate of PRNG designed using FFANN-based
chaotic oscillator is approximately 166 Mbps.

In future work, the novel chaotic system will be mod-
eled using FFANN structure that has LogSig trans-
fer functions in its hidden layer and different PRNG
application using FFANN-based novel chaotic system
on FPGA will be performed. Then, the comparison
of this PRNG application and the proposed paper
will be carried out. In addition, apart from the pro-
posed system, instead of implementing the PRNG
with 32-bit IEEE-754-1985 floating point number stan-
dard, different PRNG application that utilizes 32-bit
IQ-Math fixed-point number standard will be imple-
mented. Then, the performance analysis of this PRNG
application and the proposed study will be performed.
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Dyn. 82, 239 (2015)

51. M.O. Meranza-Castillón, M.A. Murillo-Escobar, R.M.
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