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In this paper, we have proposed a new chaotic megastable oscillator which has both

conservative and dissipative characters depending on the selection of parameters. Various
dynamical characteristics including megastability of the new system are investigated

and presented. The bifurcation plots and the corresponding Lyapunov exponents (LEs)

confirm the existence of both dissipative and conservative oscillations in the system. The
proposed megastable oscillator is used as a carrier generator in a differential chaos shift

keying (DCSK). Another application of the new chaotic oscillator is shown by using it in

developing a random number generator (RNG) and the NIST test results are presented
to show the statistical complexity of the new system.

Keywords: Chaos; chaotic systems; megastable oscillator; bifurcation; DCSK; RNG.

1. Introduction

The exploration of nonlinear oscillators is a significant milestone in the develop-

ment of theories of dynamical systems. During an experimental study,1 Van der

Pol and Van der Mark considered the nonlinearity in a simple electronic circuit

and found peculiar behavior (later named as “Chaos”). In 1945, Cartwright and

Littlewood2 identified a similar behavior in a nonlinear oscillator and documented

it as a noisy structure with a determined pattern. The work of Lorenz’s3 revealed

the deterministic nature of the behavior and portrayed the first known “Chaotic

attractor”.

2150007-1

M
od

. P
hy

s.
 L

et
t. 

B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 T

H
E

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 S

O
U

T
H

 W
A

L
E

S 
on

 0
9/

25
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

https://dx.doi.org/10.1142/S021798492150007X
mailto:aakgul@sakarya.edu.tr; akgulakif@ieee.org


September 21, 2020 12:42 MPLB S021798492150007X page 2

K. Rajagopal et al.

Nonlinear dynamical systems have various responses starting from different ini-

tial conditions. Fixed points are those points where the solution does not change in

time. The occurrence of more than one attractor in a nonlinear dynamical system

and switching between one another for a change in the initial condition is defined as

“Multistability”. Such behavior is noted while investigating the dynamic behavior of

various systems.4–11 In Ref. 12, Li and Sprott investigated the classic Lorenz’s sys-

tem with unusual parameter values (negative and zero) and new-fangled attractors

were captured. Additionally, the co-existence of limit cycles and strange attractors

were identified. After the study of multistability, its popularity picked up among

the researchers.6–8 Many chaotic systems were developed so far with multistability

which is found very useful in various fields including neuroscience,? laser optics,4

reaction-diffusion systems,13 etc.

Initially, multistability property is recognized with symmetric systems because

the system equations remain unchanged to sign change of the variables.6,12,14 Sym-

metric systems generally have symmetric pairs of the coexisting attractors, includ-

ing equilibrium points, limit cycles, and strange attractors. Some asymmetric sys-

tems are also reported with multistability.15–17 Recently, many chaotic systems

were reported with multistability which will be useful in various fields of applica-

tion.6,7,9–11 Sprott et al.18 extracted a type of multistability that holds a countable

number of infinite coexisting attractors and named “Megastability”. A temporally-

periodic forcing function is added with the classic Vander-Pol oscillator, and the

coexistence of countable infinity nested attractors is captured. Similarly, some more

papers are available in the literature that exhibits “Megastability” using period-

ically forced function with nonlinear oscillators.19–22 These megastable oscillators

provide a platform to generate complex system which posses a variety of properties.

In Ref. 23, quasiperiodic excitation function was included to get “megastable at-

tractors”. A quasiperiodic force term is introduced in a conservative and dissipative

chaotic system and observed a countable infinity of nested coexisting attractors.24

The characteristics of megastable oscillators can be easily modified and can be cho-

sen by selecting the parameter values and initial conditions. Applications which re-

quire complex nature and sensitive characteristics can be modeled with megastable

oscillators. Since the megastable oscillators can provide infinitely countable attrac-

tors, we can easily alter the system behavior based on the situation (Parameter

values, initial condition, variation in excitation).

From the literatures, we could observe that most of the megastable attractors,

the unforced systems do not exhibit chaos but will show multiple coexisting peri-

odic limit cycles; however, by forcing the attractor with an external excitation, we

can achieve multiple coexisting chaotic attractors depending on the chosen initial

conditions. But such systems found least importance in applications such as Neuron

modeling, secure communication, and random number generations. Thus, a ques-

tion raises in our minds. “Is external excitation, a mandatory criterion to impinge

the property “Megastability” into a nonlinear oscillator?” This curiosity motivated
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us to propose an unforced nonlinear oscillator that possesses both conservative and

dissipative natures for different parameter values along with “Megastability”.

In this paper, we proposed an unforced nonlinear megastable oscillator which

posses dissipative and conservative based on the parameter selection. Complete

dynamical analysis is carried out and numerical simulations are presented. In order

to show the significance of parameter variation and its effects on the behavior of

the system, we generated bifurcation diagrams with the corresponding Lyapunov

spectrum. In Sec. 3, a potential application of the proposed megastable oscillator is

discussed for differential chaos shift keying (DCSK). In Sec. 4, we show how efficient

the system can be used in Random Number Generator (RNG) application.

2. Unforced Megastable Oscillator (UMO)

Chaotic oscillators with infinitely coexisting attractors have been of interest in re-

cent years19,25,26 and most of them have infinite number of equilibrium points. Some

oscillators have finite equilibrium points and still exhibit infinitely the coexisting

attractors; such oscillators are termed as “Megastable”.18 All those megastable os-

cillators discussed in the literature are forced with an external excitation to show

chaotic attractors.20,23,24,27 Hence, we are interested in proposing a new megastable

oscillator which can show infinitely coexisting chaotic attractors without external

excitation. The proposed system is derived from the modified Rossler system28 by

replacing (y− y2) term by sin(y) and adding state feedbacks to the third and fourth

state equations. The new unforced megastable oscillator (UMO) is defined as

dx

dt
= −y − z

dy

dt
= x− w

dz

dt
= −a sin(y) − bz

dv

dt
= cy − dv

(1)

where a, b, c, d are the system parameters. The Jacobian matrix of the UMO system

is given as follows: 
0 −1 −1 0

1 0 0 −1

0 −a cos(y) −b 0

0 c 0 −d

 (2)

The equilibrium points of the system are derived from two different cases. In

the first case, we consider d = 0 and the UMO system shows a line equilibria on

the x = w line. In the second case, we consider b = 0 and the system shows infinite

equilibrium points given by
(
cnπ
d , nπ,−nπ, cnπd

)
. The parameter value of a and c is
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Table 1. Dissipative and conservative UMO.

Parameter Lyapunov Sum of Nature of

values exponents (LEs) the LEs the system

b = 0 L1 = 0.035

d = 0.01 L2 = 0

L4 = −0.035 −0.01 Dissipative

L4 = −0.035

b = 0.0001 L1 = 0.016 0 Conservative

d = 0 L2 = 0

L3 = 0

L4 = −0.016

Table-1: Dissipative and conservative UMO 

Parameter values Lyapunov exponents 

(LEs) 

Sum of the LEs Nature of the 

system 

' = 0, + = 0.01 

,� = 0.035 

,� = 0 

,� = −0.01 

,& = −0.035 

−0.01 Dissipative 

' = 0.0001, + = 0 

,� = 0.016 

,� = 0 

,� = 0 

,& = −0.016 

0 Conservative 

 

The phase portraits of the UMO for both the dissipative and conservative natures are shown in 

Fig. 1. 

 

 

Fig. 1.Phase portrait of the UMO for 10 initial conditions located on the x-axis (from x = −5 to 

x = +5 with steps equal to 1 for the dissipative system, shown in (a) and 10 initial conditions 

located on the x-axis (from x = −1 to x = +1 with steps equal to 0.1 for the conservative 

system, shown in (b) while the initial conditions of other states are kept to 0. 

 

 

Fig. 1. (Color online) Phase portrait of the UMO for 10 initial conditions located on the x-axis

(from x= −5 to x= +5 with steps equal to 1 for the dissipative system, shown in (a) and 10 initial

conditions located on the x-axis (from x= −1 to x= +1 with steps equal to 0.1 for the conservative
system, shown in (b) while the initial conditions of other states are kept to 0.

taken as 0.5 and 0.08, respectively. For Case-1, the eigenvalues of the UMO system

are λ1 = 0.4025; λ2,3 = −0.2013 ± 1.0960i;λ4 = 0 with b = 0.0001. For Case-2

(with d = 0.01), the characteristic polynomial of the UMO is given by

λ4 + 0.01λ3 + 1.08λ2 − (0.5 cos(nπ) − 0.01)λ− 0.005 cos(nπ) (3)

Depending on the values of the parameters b and d, the UMO system shows

both conservative and dissipative natures, as shown in Table 1.

The phase portraits of the UMO for both the dissipative and conservative na-

tures are shown in Fig. 1.

The dynamical behavior of the UMO is investigated using the bifurcation plots.

We have done the bifurcation analysis of the UMO with the variation of a parameter

and also of initial conditions. By fixing d = 0, we have derived the bifurcation of

the UMO with parameter b as shown in Fig. 2(a). In Fig. 2(b), we have plotted
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The dynamical behavior of the UMO is investigated using the bifurcation plots. We have done the 

bifurcation analysis of the UMO with the variation of a parameter and also of initial conditions. 

By fixing + = 0, we have derived the bifurcation of the UMO with parameter ' as shown in Fig.2a. 

In Fig.2b, we have plotted the respective finite time LEs. For 0 ≤ ' < 0.002, the system shows a 

conservative chaotic attractor as seen from Fig.2b and for 0.002 ≤ ' ≤ 0.007, the system shows 

a dissipative chaotic attractor.  

 

Fig.2a: Bifurcation of the UMO with parameter ' for + = 0; Fig.2b: The corresponding LEs.  

 

In the next investigation, we consider the parameter + = 0.01 and derive the bifurcation of the 

UMO with parameter '. The system shows a dissipative chaotic attractor for 0 ≤ ' < 0.009, as 

shown in Fig.3a and Fig.3b. 

Fig. 2. (Color online) (a) Bifurcation of the UMO with parameter b for d = 0; (b) the corre-
sponding LEs.

the respective finite time LEs. For 0 ≤ b < 0.002, the system shows a conservative

chaotic attractor as seen from Fig. 2(b) and for 0.002 ≤ b ≤ 0.007, the system

shows a dissipative chaotic attractor.

In the next investigation, we consider the parameter d = 0.01 and derive the

bifurcation of the UMO with parameter b. The system shows a dissipative chaotic

attractor for 0 ≤ b < 0.009, as shown in Figs. 3(a) and 3(b).

To understand the importance of parameter d we have plotted the bifurcation

of the UMO with the variation of d as shown in Fig. 4(a). For 0 ≤ d ≤ 0.15, we see

chaotic regions and the same can be confirmed with the respective LEs plotted in

Fig. 4(b). Especially, for 0 ≤ d < 0.05 the UMO system shows dissipative chaotic

attractor and for 0.05 ≤ d ≤ 0.15, it shows conservative chaotic attractor.
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Fig.3a: Bifurcation of the UMO with parameter ' for + = 0.01; Fig.3b: The corresponding LEs. 

 

To understand the importance of parameter +, we have plotted the bifurcation of the UMO with 

the variation of +, as shown in Fig.4a. For 0 ≤ + ≤ 0.15, we see chaotic regions and the same can 

be confirmed with the respective LEs plotted in Fig.4b. Especially for 0 ≤ + < 0.05, the UMO 

system shows dissipative chaotic attractor and for 0.05 ≤ + ≤ 0.15, it shows conservative chaotic 

attractor.  

Fig. 3. (Color online) (a) Bifurcation of the UMO with parameter b for d = 0.01; (b) the corre-

sponding LEs.

As the UMO is a megastable system, the importance of the role played by

the initial conditions is also investigated. We have considered the initial condi-

tion of y z w is and derive the bifurcation of the system with x0. In Fig. 5(a),

we have considered b = 0 and d = 0 and the initial condition of the state x is

varied from −5 to 5. For the entire region from −5 ≤ x0 ≤ 5, the system shows

conservative attractor which can be verified by the corresponding LEs, as shown

in Fig. 5(b).

In our next discussion about the bifurcation of the UMO with initial conditions,

we consider b = 0 and d = 0.01 and derive the bifurcation of the system with

x0 as shown in Fig. 6(a). It can be easily verified that the UMO system shows

dissipative chaotic attractor for −5 ≤ x0 ≤ 5 as seen from the respective LEs plots

in Fig. 6(b).
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Fig.4a: Bifurcation of the UMO with parameter + for ' = 0; Fig.4b: The corresponding LEs.  

 

As the UMO is a megastable system, the importance of the role played by the initial conditions is 

also investigated. We have considered the initial condition of �, 2, ( is 0 and derive the bifurcation 

of the system with 34. In Fig.5a, we have considered ' = 0 and + = 0 and the initial condition of 

the state 3 is varied from −5 to 5. For the entire region from −5 ≤ 34 ≤ 5, the system shows 

conservative attractor which can be verified by the corresponding LEs, shown in Fig.5b.  

Fig. 4. (Color online) (a) Bifurcation of the UMO with parameter d for b = 0; (b) the corre-
sponding LEs.

3. A Potential Application of the New System in DCSK

In this section, a potential application of the proposed system is discussed for

DCSK.

3.1. Principle of DCSK

A periodic signal is commonly used as a transmission carrier in communication sys-

tems. This signal has a relatively narrow bandwidth after being modulated.29 It is

expected that such type of carrier signals may be degraded during the transmission

through the multipath channel.
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Fig.5a: Bifurcation of the UMO with initial condition 34 and other initial conditions are taken as 

0 and parameters ' = 0 and + = 0; Fig.5b: The corresponding LEs. 

 

In our next discussion about the bifurcation of the UMO with initial conditions, we consider ' =
0 and + = 0.01 and derive the bifurcation of the system with 34, as shown in Fig.6a. It can be 

easily verified that the UMO system shows dissipative chaotic attractor for −5 ≤ 34 ≤ 5 as seen 

from the respective LEs plots in Fig.6b. 

Fig. 5. (Color online) (a) Bifurcation of the UMO with initial condition x0 and other initial

conditions are taken as and parameters b = 0 and d = 0; (b) the corresponding LEs.

A chaotic signal produced by a nonlinear system has a broadband noise-like

power spectrum and has good statistical properties. Chaotic signal has a noise-

like autocorrelation waveform. This helps in good rejection of multipath fading.

The chaotic signal has negligible cross-correlation that helps to better suppress

the interference from the other users.29 It is easy to generate in real-life. Another

interesting feature is the high sensitivity to the initial condition. It is difficult to

be deciphered. Therefore, the applications of a chaotic signal in communication

become interesting.

The primary work in chaos shift keying was reported by Parlith and Dedieu

in 1993.30 In their work, the chaotic signal was used as an information carrier.

During that time, the demodulation method was coherent demodulation. Coherent

demodulation uses chaotic signal as a transmitter to send the binary (or hex) digital
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Fig.6a: Bifurcation of the UMO with initial condition 34 and other initial conditions are taken as 

0 and parameters ' = 0 and + = 0.01; Fig.6b: the corresponding LEs.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) Bifurcation of the UMO with initial condition x0 and other initial conditions are

taken as and parameters b = 0 and d = 0.01; (b) the corresponding LEs.

information using a chaos shift keying. This is done by synchronizing the sending

and receiving end chaotic signals by synchronization method based on one-way

coupling and demodulate the signal at the receiving end. Practically, the chaotic

synchronization is complex and costly.

Another method that overcomes the defects of the above, a DCSK was proposed

by Kolumban in 1996.30 Figure 7 shows the process of DCSK.31–34

It is seen from Fig. 7 that the signal of the chaotic system is used to transmit

the information signal. Based on the above explanation, a chaotic signal is used as

a carrier in DSCK for the following reasons:

(1) It is difficult to be deciphered.

(2) Good rejection of multipath fading.

(3) Better suppress the interference from the other users.

(4) It is easy to generate in real-life.
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1. It is difficult to be deciphered.  

2. Good rejection of multipath fading.  

3. Better suppress the interference from the other users.   

4. It is easy to generate in real-life. 

 

          

 

Fig. 7: DCSK modulation technique. 

 

Fig. 8: DCSK demodulation technique. 

 

In this technique, two-time slots are used for every bit. Chaotic sequence transmission, as a 

reference, is done in the first time-slot. The second time-slot is used for sending another chaotic 

signal to be used as a reference, having the same length as that in the first time-slot. The second 

time-slot is used as a reference. If the information signal and the reference signal are the same then 

the value of the information bit is +1. And if the information signal is negative of the reference 

signal then the value of the information bit is -1. The expression of a signal at time ) for bits '5 is 

given by   

67 =  837                       1 < % ≤ 9              
':37;<                 9 < % ≤ 29                    

(4) 

 

Fig. 7. DCSK modulation technique.
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2. Good rejection of multipath fading.  

3. Better suppress the interference from the other users.   

4. It is easy to generate in real-life. 

 

          

 

Fig. 7: DCSK modulation technique. 

 

Fig. 8: DCSK demodulation technique. 

 

In this technique, two-time slots are used for every bit. Chaotic sequence transmission, as a 

reference, is done in the first time-slot. The second time-slot is used for sending another chaotic 

signal to be used as a reference, having the same length as that in the first time-slot. The second 

time-slot is used as a reference. If the information signal and the reference signal are the same then 

the value of the information bit is +1. And if the information signal is negative of the reference 

signal then the value of the information bit is -1. The expression of a signal at time ) for bits '5 is 

given by   

67 =  837                       1 < % ≤ 9              
':37;<                 9 < % ≤ 29                    

(4) 

 

Fig. 8. DCSK demodulation technique.

In this technique, two-time slots are used for every bit. Chaotic sequence trans-

mission, as a reference, is done in the first time-slot. The second time-slot is used

for sending another chaotic signal to be used as a reference, having the same length

as that in the first time-slot. The second time-slot is used as a reference. If the

information signal and the reference signal are the same then the value of the infor-

mation bit is +1. If the information signal is negative of the reference signal then

the value of the information bit is −1. The expression of a signal at time t for bits

bk is given by {
xi 1 < i ≤ β ,

btxi−β β < i ≤ 2β ,

where β is the number of sampling points.

In Fig. 8, demodulation case, where the correlation between the received signal

ri and the delayed signal ri−β is done. The output of the correlator after time t is

given by

zt =

β∑
i=1

(ri)(ri−β) .

The restored bit (bt) is obtained as

b̂t = sgn[zt] .

The chaotic signal used as a carrier in the above DCSK has a random num-

ber like signal/bit. The randomness of the bits is proved and validated using the

standard statistical tests. This requires the complete description of the generation

and validation of a RNG using the proposed chaotic system. Section 4 discusses the

RNG and its statistical test using the proposed system.
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4. RNG Using the Proposed Chaotic System

It is known that chaotic systems are unpredictable and have random-like behavior.

Such natures of chaotic systems are suitable for a RNG. Some applications like

encryption, decryption of images or signals are done using an RNG. Various pa-

pers are available on the applications of chaotic system-based RNGs.35–51,53,54 It is

observed from the literature that most of the chaotic systems used for RNGs are

chaotic maps. Only limited numbers of continuous-time chaotic systems are used as

an RNG.35–45 It is also observed that a few papers have shown the effectiveness and

security analysis of the generated random number using the standard internation-

ally accepted randomness test like FIPS-140-1 and NITS-800-22. Motivated with

the above-status in the literature, here, the new continuous-time chaotic system is

used to show its application in an RNG.

The following process is carried out to use the proposed system for the ran-

dom number generation. Since the proposed chaotic system is a continuous-time

dynamical system, the discretization process is carried out to use it in the random

number generation. Chaotic systems are very sensitive to initial conditions and the

numbers generated using them are random. Here, floating point numbers are gen-

erated from the proposed chaotic system by using the Runge–Kutta fourth-order

algorithm. Table 2 shows the sampled floating-point numbers generated from the

proposed system and their corresponding binary version. We consider a set of binary

numbers which is the most complicated set. If the considered set of binary numbers

satisfies the RNG test/statistical test, then such a set of binary numbers is termed

as the most complicated set. But, for the RNG test/statistical test, a very large

amount of binary numbers are to be generated. For example, the number of bits

should be in the range 10,000–200,000. The most trusted and commonly used tests

for an RNG are the FIPS-140-1 test51 and the NIST-800-22 test.52 The FIPS-140-1

test requires 20,000 bits and the NIST-800-22 test requires a minimum of 100,000

numbers for the better result. To know the performance of the generated random

numbers using the proposed system, the internationally standard NIST-800-22 test

is used here.

Table 2. The floating-point number and binary number generated from the
proposed chaotic system.

Serial No. Numerical outcomes Transformation to a binary value

1 0.108325913612001 00011011101110110011111101000000
2 0.108958019990783 00011011111001001010110000111100

3 0.109594267464085 00011100000011100101111010110010

4 0.121786886477246 00011111001011010110110011100110
5 0.122507221551773 00111001001100010111000111011101

6 0.123232281147370 00111001111010010011111100010000

7 0.223410717326336 01001110011110001100011100101110
8 0.224808247172077 01001111011111001011000101101010

9 0.226215306751362 01101100110001010001001011100010

10 0.424882107133949 01101110001110010110011100010011
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Fig.9: Flow chart for generating a random number using a chaotic system. 

 

The results of the NIST-800-22 statistical test for the RNG of the proposed system are given in 

Table 3. The results reveal that the designed RNG is successful since the obtained p-values are 

Fig. 9. Flow chart for generating a random number using a chaotic system.

It is apparent from Table 2 that the most significant bits have a similar pattern,

but the least significant bits have fewer similarity patterns. It suggests that the use

of the least significant bit of the generated random numbers may be more appro-

priate for the NIST statistical test. If the result is not successful, the randomness

can be increased by using logical operations between the numbers like AND, OR

and XOR, or by changing the bit’s positions. It may be noted that the RNG using

the proposed system passed the NIST-800-22 test. The complete flow chart for a

RNG using a chaotic system is shown in Fig. 9.

The steps the RNG design process are as follows:

(1) Table 2 (please refer paper) shows sampled floating-point numbers generated

from the proposed system and their corresponding binary numbers.

(2) It may be observed from Table 2 (please refer paper) that the most significant

bits have similar patterns, but the least significant bits have fewer similar pat-

terns. It suggests that the use of the least significant bits for the generation of

the random numbers may be more appropriate.

(3) If the generated random numbers do not pass the NIST statistical tests, the

randomness may be increased by using logical operations between the generated

random numbers like AND, OR and XOR, or by choosing a different bit’s

position.
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(4) We consider a set of binary numbers which is the most complicated set. The

set of binary numbers that satisfy the standard statistical tests are termed as

the most complicated set and qualify as a random number sequence.

The results of the NIST-800-22 statistical test for the RNG of the proposed

system are given in Table 3. The results reveal that the designed RNG is successful

since the obtained p-values are more than 0.001. Thus, the proposed system can be

used as a carrier signal bit in DCSK and provide high data security.

Table 3. Random number generation (RNG)*NIST-800-22 tests of the
proposed system in (1).

Statistical tests p-values Outcomes of the result

Frequency (Monobit) test 00.520495 Positive

Block-frequency test 0.0462 Positive

Cumulative-sums test 00.4165 Positive
Runs test 00.4641 Positive

Longest-run test 00.7176 Positive
Binary matrix rank test 00.7419 Positive

Discrete Fourier transform test 00.0516 Positive

Non-overlapping templates test 00.0121 Positive
Overlapping templates test 00.4867 Positive

Maurer’s universal statistical test 00.3715 Positive

Approximate entropy test 00.1634 Positive
Random excursions test 00.5025 Positive

Random excursions variant test 00.6803 Positive

Serial test-1 00.5654 Positive
Serial test-2 00.0165 Positive

Linear-complexity test 00.4732 Positive

The energy distribution of x and y states of System (1) is depicted in Fig. 10.

If a chaotic sequence has a more probability density of bit energy, it will give good

performance in the application of a bit error ratio.31–34

 

Fig. 10: Energy distribution of signals 3 and � of System (1). 

 

5. Conclusion 

A new megastable chaotic oscillator which exhibits both dissipative and conservative oscillations 

for different values of parameters is presented in this paper. The proposed chaotic oscillator 

exhibits megastability without a forcing function. Various analyses of the system like equilibrium 

points, Lyapunov exponents, bifurcation diagrams, and Lyapunov spectrum are presented to show 

the complex behavior of the system. A differential chaos shift keying modulation using the 

proposed megastable oscillator as the carrier generator is investigated and presented. Also, a 

random number generator using the new megastable oscillator is presented and the complexity of 

the random number is investigated using the NIST tests. The simulation results confirm the 

claimed properties of the new chaotic oscillator. 

 

 

 

 

bit energy

Fig. 10. Energy distribution of signals x and y of System (1).
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5. Conclusion

A new megastable chaotic oscillator which exhibits both dissipative and conserva-

tive oscillations for different values of parameters is presented in this paper. The

proposed chaotic oscillator exhibits megastability without a forcing function. Var-

ious analyses of the system like equilibrium points, LEs, bifurcation diagrams and

Lyapunov spectrum are presented to show the complex behavior of the system. A

DCSK modulation using the proposed megastable oscillator as the carrier generator

is investigated and presented. Also, a RNG using the new megastable oscillator is

presented and the complexity of the random number is investigated using the NIST

tests. The simulation results confirm the claimed properties of the new chaotic

oscillator.
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