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Abstract
A simple jerk systemwith only one exponential nonlinearity is proposed and discussed. Dynamic analysis of the integer-order
jerk system shows the existence of chaotic oscillations. A model for the fractional-order jerk system is derived. The Adomian
decomposition method is used to analyse the fractional-order jerk system. Stability analysis of the fractional-order jerk system
shows that chaotic oscillations exist in orders less than one and bifurcation analysis shows the range of fractional orders for
periodic and chaotic oscillations. To show the randomness of the fractional-order jerk system, a pseudorandom number
generator is designed and tested. The NIST-800-22 tests show that the proposed fractional-order jerk system is effective in
showing randomness. Finally, an image hiding application to the audio data has been realized by using the developed RNG
algorithm. The encrypted image is hidden by being embedded in the audio data, and then, on the receiver side, the data are
recovered by taking the image data from the hidden audio file.

Keywords Exponential jerk system (EJS) · Fractional-order chaotic systems · Dynamic analyses · Random number generator
(RNG) · Sound steganography

1 Introduction

The construction of nonlinear systems with simple mathe-
matical expressions is still an important research problem.
The mathematical complexity of Lorenz system (Lorenz
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1963), which is one of the most popular chaotic systems,
is still an issue. Rossler introduced his system with only one
quadratic nonlinearity (Rössler 1976) and later announced
a 3D system with simpler dynamics (Rössler 1979). Sprott
announced chaotic systems with only six terms and one
quadratic nonlinearity (Sprott 1996).

Jerk systems include the third derivative of x , which is
rate of change of acceleration (Schot 1978; Sprott 1997a, b).
In different studies, snap systems were considered too (Mun-
muangsaen and Srisuchinwong 2011; Munmuangsaen et al.
2011; Sprott 2011; Vaidyanathan et al. 2015). Many cir-
cuitries for jerk systems were also discussed in the literature.
N scroll nonlinear systems on a general jerk system were
discussed in Yu et al. (2005), Chunxia et al. (2012), Srisuch-
inwong and Nopchinda (2013). A simple chaotic circuit with
hyperbolic sinusoidal nonlinear as discussed in Volos et al.
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(2017) and the different chaotic systems are applied in sound
encryption (Akgül et al. 2015).

In the recent studies, the fractional-order systems (FOS)
and their applications have been examined (Baleanu et al.
2016; Lakshmikantham and Vatsala 2008; Diethelm 2010).
FOS with different control approaches are considered in
Pourmahmood Aghababa (2012), Boroujeni and Momeni
(2012), Zhang andGong (2014).Memristor-based FOSwith-
out equilibriumare introduced (Rajagopal et al. 2017a, b, c, d;
Li and Chen 2013; Cafagna and Grassi 2015; Danca et al.
2016). Numerical methods and analyses are proposed,
and MATLAB solutions for FOS are discussed in Trza-
ska (2011), Petráš (2006), Charef et al. (1992), Adomian
(1990), Caponetto and Fazzino (2013), He et al. (2015),
Sun et al. (1984), Tavazoei and Haeri (2007), Shao-Bo et al.
(2014).

Steganography is described as science of writing secret
messages unaware of the contents of the confidential mes-
sage. The data to be transmitted are hidden in a suitable
media environment and transmitted in this way. One of the
most important points of steganography is that it cannot be
determined by statistical methods that data are placed in
the data used as a carrier, but it cannot be resolved even
if it is detected. Many different methods have been used in
steganography procedures (Frith 2007; Mahajan and Kaur
2012).When studies in the literature are examined, steganog-
raphy processes are commonly performed in the form of
data hiding on the image (Chang et al. 2006; Bailey and
Curran 2006; Chang and Tseng 2004; Chen 2007; Du and
Hsu 2003). Besides the work performed on the image, there
are also steganography works on the audio files (Agaian
et al. 2005; Matsuoka 2006; Pooyan and Delforouzi 2007;
Delforouzi and Pooyan 2007; Shah et al. 2008; Sun et al.
2012).

Motivated by the above, in this study a novel jerk sys-
tem obtained by replacing the hyperbolic sinusoid (Volos
et al. 2017) with an exponential nonlinearity is proposed.
The fractional-order model of the proposed exponential jerk
system is derived, and the dynamic properties of system
are analysed. A new RNG algorithm is developed using
fractional-order exponential jerk system (FOEJS) chaotic
systems, and NIST 800-22 tests are performed. After the
RNG design, an algorithm is presented to hide an encrypted
picture on the audio file using the random bit sequences from
obtained RNG.

2 Exponential jerk system (EJS)

In the study, an exponential jerk system is derived using
the system proposed in Volos et al. (2017) by replacing the
hyperbolic sinusoid with an exponential nonlinearity. The

proposed EJS is represented by the dimension model defined
as

ẋ = − y

ẏ = − z

ż = − x − bz + aey (1)

where a = 0.05 and b = 0.7 with initial values [0, 0.1, 1].
Figure 1 exhibits the 2Dphaseportraits of theEJSondifferent
planes.

3 Dynamic properties of the EJS

3.1 Equilibrium points and eigenvalues

The system (1) has an equilibrium point O at [a, 0, 0], and
the eigenvalues of the system at O are λ1 = − 1.276, λ2,3 =
0.2877± 0.8374i withλ2,3 as the saddle point of index2.The
characteristic equation of the EJS at O is λ3 +bλ2 +aλ+1.
The principal minors are
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∣
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(2)

where δ0 = 1, δ1 = b, δ2 = a, δ3 = 1. For a = 0.05, b =
0.7 and equilibrium point O , the values of �2 < 0, and
hence, the EJS is unstable and shows chaotic behaviour.

3.2 Dissipativity

The system (3) is define in vector notation as

Ẋ = f (X) =
⎡

⎣

f1(x, y, z)
f2(x, y, z)
f2(x, y, z)

⎤

⎦ (3)

where

⎧

⎨

⎩

f1(x, y, z) = −y
f2(x, y, z) = −z
f3(x, y, z) = −x − bz + aey

(4)

�(t) = �t (�), where �t is the flow of the vector field f .
Also, V (t) represents the hyper volume of �(t).

By Liouville’s theorem,

V̇ =
∫

�(t)

(∇ · f )dxdydz (5)
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Fig. 1 2D phase portraits of the EJS: a x − z; b y − z

where f is the divergence and it is easily calculated as

∇ · f = ∂ f1
∂x

+ ∂ f2
∂ y

+ ∂ f3
∂z

= − b ≤ 0 (6)

As b > 0, the EJS (1) is dissipative.

3.3 Lyapunov exponents (LEs) and Kaplan–Yorke
dimension (KYD)

LEs of a chaotic system give the convergence and divergence
of the states (Li et al. 2010; Wolf et al. 1985; Ellner et al.
1991; Maus and Sprott 2013; Tavazoei and Haeri 2007). A
definition of LEs for FOS was shown in Li et al. (2010). LE
calculation methods as time series based (Wolf et al. 1985)
and Jacobian method (Ellner et al. 1991) are commonly used
to obtain LEs for integer and FOS. The LEs of EJS system
are L1 = 0.1156, L2 = 0, L3 = − 0.8148, and the KYD is
2.142.

4 Fractional-order exponential jerk system
(FOEJS)

In this part, we show the FO model of the nonlinear
system. There are three differential operators, viz. Riemann–
Liouville (7),Grunwald–Letnikov (8) andCaputo (9) (Baleanu
et al. 2016; Lakshmikantham and Vatsala 2008; Diethelm
2010), as defined by

aD
q
t [x(t)] = 1

�(n − q)

⎛

⎝
dn

dtn

t∫

a

x(τ )

(t − τ)1−(n−q)
dτ

⎞

⎠ (7)

aD
q
t [x(t)] = lim

h→0

1

�(q)hq

�t− a
h �∑

k = 0

�(q + k)

�(k + 1)
x(t − kh) (8)

aD
q
t [x(t)] = 1

�(q − n)

⎛

⎝

t∫

a

x(τ )

(t − τ)q−n+1 dτ

⎞

⎠ (9)

where �(•) is the gamma function. We adopt the Caputo
derivative method (Trzaska 2011) for the fractional-order
exponential jerk system given by

Dqx x = − y

Dqy y = − z

Dqz z = − x − bz + aey (10)

To find the numerical solutions of the FOEJS (10), we
use the Adomian decomposition method (Adomian 1990;
Caponetto and Fazzino 2013; He et al. 2015). The general
form of a FOS can be written as

Dq
t x(t) = Lx(t) + Nx(t) + g(t) (11)

where Lx(t) represents the linear term, Nx(t) represents the
nonlinear term and g(t) represents the constants of the FOS.
Using (11), the FOEJS (10) can be written as

⎡

⎣

Lx(t)

Ly(t)

Lz(t)

⎤

⎦ =
⎡

⎣

− y
− z

− x − bz

⎤

⎦ ,

⎡

⎣

Nx(t)

Ny(t)

Nz(t)

⎤

⎦ =
⎡

⎣

0
0
aey

⎤

⎦ ,
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⎡

⎣

gx(t)
gy(t)
gz(t)

⎤

⎦ =
⎡

⎣

0
0
0

⎤

⎦ (12)

Using theADM, the discrete iterativemathematicalmodel
of the FOEJS is given by

x(n + 1) =
6

∑

j=0

A j
1

h jq

� ( jq + 1)

y(n + 1) =
6

∑

j=0

A j
2

h jq

� ( jq + 1)

z(n + 1) =
6

∑

j=0

A j
3

h jq

� ( jq + 1)
(13)

The initial conditions are taken as A0
1 = xn, A0

2 =
yn, A0

3 = zn . The Adomian polynomials can be obtained

as A j+1
1 = − A j

2; A j+1
2 = − A j

3, and the first six Adomian
polynomials for the nonlinear term (ey) can be derived as
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where h = tn+1 − tn . The discrete Adomian form (He et al.
2015) of the FOEJS can be given as

⎡

⎣
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⎤

⎦ =
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UsingEqs. (13) and (14), theFOEJS is solved numerically.
Figure 2 shows the 2Dphase planes of theFOEJS systemwith
h = 0.001, q = 0.99 and initial values [0, 0.1, 1].

5 Dynamic analysis of the FOEJS

In this section, the dynamic analysis of the FOEJS is intro-
duced. The equilibrium point O of the FOEJS system is the
same like the integer order at [a, 0, 0].

For commensurate FOEJS of order q, the system is stable.
It exhibits chaotic behaviour if |arg(eig(JO))| = |arg(λi )| >
qπ
2 . The EJS system has one equilibrium at [a, 0, 0] and the
characteristic equation q = 0.99 for the equilibrium point
O is given by λ297 + 3λ199 + 0.7λ198 + 3λ101 + 3λ101 +
1.4λ100 + 0.05λ99 +λ3 + 0.7λ2 + 0.05λ + 1.

The required condition for the FOEJS to show chaotic
behaviour in the incommensurate case is π

2M − mini
(|arg(λi)|) > 0. If qx = 0.99, qy = 0.98, qz = 0.97, then
M = 100. At the equilibriums are det(diag[λMqx , λMqy ,

λMqz ]− JO) = 0 and the FOdet(diag[λ99, λ98, λ97]− JO) =
0, and the characteristic equation at equilibrium point O is
λ294+λ198+1.7λ197+λ196+λ101+1.7λ100+1.75λ99+λ3+
0.7λ2+0.05λ+1. Theminimum argument of the roots of the
characteristic equation is 0.0112, and the required stability
condition is π

200 − 0.0112 > 0 which solves for 0.0045 > 0,
and thus, the incommensurate FOEJS shows a chaotic attrac-
tor similar to the integer-order EJS.

5.1 Lyapunov exponents

The LEs of the FOEJS are obtained with the ADM method
with QR decomposition (Caponetto and Fazzino 2013). For
the fractional-order q = 0.99, the LEs of the FOEJS system
are L1 = 0.1227, L2 = 0, L3 = −0.9214.

5.2 Bifurcation

To investigate the importance of the parameters a, b on the
FOEJS, the bifurcation diagrams are examined. First, the val-
ues of b and q are kept constant (b = 0.7, q = 0.99) and
the value of a is varied between [0, 0.2] with a very small
range. In Fig. 3a, the bifurcation diagram of FOEJS with
respect to the parameter a is shown. The FOEJS exhibits
chaotic behaviour for region 0 < a < 0.15. Figure 3b shows
the variation in maximum Lyapunov exponent (MLE) with
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Fig. 2 2D phase planes of the FOEJS for commensurate fractional-order q = 0.99: a x − z; b y − z

Fig. 3 a Bifurcation diagram of FOEJS for a; bMLE for change in a

respect to the parameter a. Similarly, bifurcation plots and
MLE for parameter b are derived and presented in Fig. 4a,
b. Both the bifurcation plots confirm that the FOEJS system
exits chaotic regime with inverse period doubling, and addi-
tionally, the bifurcation of parameter b shows that the FOEJS
system enters to chaos.

Another important bifurcation of interest when discussing
about a FOS is the bifurcation plots with FO. In Fig. 5a, the
bifurcation diagrams of the FOEJS and in Fig. 5b the MLE
for the FOEJS are given. The system shows positive LEwhen
the FO q > 0.935 and has a small band of periodic statewhen
the MLE is zero for 0.975 < b < 0.978. The most dominant

MLE (0.1227) of the FOEJS system is seen for the order
0.99 < q < 0.994.

6 Fractional-order-based RNG

In this part, aRNGhasbeendevelopedusing anew fractional-
order exponential jerk system (FOEJS) that is introduced in
the article. The pseudocode of RNG algorithm is shown in
Algorithm 1. In the RNG algorithm, the necessary system
values are entered in first. The appropriate step value used
by the system for sampling is determined. Unlike other chaos
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Fig. 4 a Bifurcation diagram of FOEJS for b; bMLE for change in b

Fig. 5 a Bifurcation plot of FOEJS for q; bMLE for change in q

basedonRNGs, orders of derivates values are determined and
binomial coefficients are calculated. Fractional-order (q1,
q2, q3) values are used as 0.99. The memo function used
in the algorithm is used to solve the system and to obtain
the values using the calculated binomial coefficients. The
Grunwald–Letnikov approach is used (Trzaska 2011; Kil-
bas et al. 2006) for the numerical analysis of FOEJS. In
this approach, the values that the memory function produces
are subtracted from the values obtained by the analysis of
the system. The float values obtained from the state vari-
ables are converted into a 32-bit binary sequence. The 5

bits of precision value are taken from the 32-bit array and
added to the 1 Mbit random numbers of the each phase.
NIST 800-22 tests are performed in order to evaluate the
randomness levels of the bit sequences. Bit sequences must
pass all NIST tests in order to have sufficient random-
ness.

The NIST 800-22 test (http://csrc.nist.gov/publications/
nistpubs/800-22/sp-800-22-051501.pdf) is an internation-
ally accepted test for the testing of random numbers. To show
that the number sequence has enough randomness, it has to
pass all the tests. Table 1 gives the results of the NIST 800-22
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Fig. 6 Embedded image in
audio file, a original, b
encrypted, c decrypted

Fig. 7 Block diagram of steganography application
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Table 1 NIST-800-22 test results

Statistical tests P value (X ) P value (Y ) P value (Z ) Result

Frequency (monobit) test 0.67010 0.76417 0.30772 Successful

Block frequency test 0.19758 0.85833 0.69606 Successful

Cumulative sum test 0.90531 0.87185 0.45733 Successful

Run test 0.20272 0.39861 0.68403 Successful

Longest run test 0.50888 0.71078 0.63111 Successful

Binary matrix rank test 0.77267 0.81909 0.08881 Successful

Discrete Fourier transform test 0.25134 0.09489 0.94878 Successful

Non-overlapping template test 0.23714 0.17303 0.36724 Successful

Overlapping template test 0.41498 0.57113 0.35443 Successful

Maurer’s universal statistical test 0.33627 0.58295 0.18886 Successful

Approximate entropy test 0.34760 0.57602 0.38637 Successful

Random excursion test (x = − 4) 0.14344 0.99249 0.88921 Successful

Random excursion variant test (x = − 9) 0.89966 0.60136 0.82653 Successful

Serial test 1 0.94233 0.41198 0.98634 Successful

Serial test 2 0.81474 0.31637 0.54675 Successful

Linear complexity test 0.17214 0.02525 0.10238 Successful

Algorithm 1 RNG Algorithm Pseudocode

1: Start
2: Entering system parameters (a, b)
3: Initial condition of chaotic systems (x0, y0, z0)
4: Determination of the orders of derivatives (q1, q2, q3)
5: Determination of the appropriate value of (�h)
6: Binomial coefficients calculation (c1, c2, c3)
7: rngx = []; rngy = []; rngz = [];
8: memo → (memory f unction)

9: for i = 2 : 1000000 do
10: x(i) = −y(i − 1) ∗ hq1 − memo(x, c1, i);
11: y(i) = −z(i − 1) ∗ hq2 − memo(y, c2, i);
12: z(i) = (−x(i) − b ∗ z(i − 1) + a ∗ exp(y(i))) ∗ hq3 −

memo(z, c3, i);
13: Convert float to binary array (32 bit) for each phase (x, y, z)
14: rngx+ = [x(LSB − 5bit)]
15: rngy+ = [y(LSB − 5bit)]
16: rngz+ = [z(LSB − 5bit)]
17: end for
18: The Implementation of NIST Tests to 1 M. bit for each phase

(rngx, rngy, rngz)
19: End

tests that are performed on the bit sequence obtained with the
RNG algorithm. As shown in Table 1, it can be seen that all
the numbers pass all the tests. As a result, it can be said that
the RNG algorithm produces enough randomness.

7 Fractional-order-based sound
steganography application

In this section, the image hiding application to the audio
file has been realized by using the developed RNG algo-
rithm. The encrypted picture shown in Fig. 6b is obtained

by encrypting the original ‘logo.bmp’ image file shown in
Fig. 6a. The encrypted image is hidden by being embed-
ded in the audio file. Then, on the receiver side, the data are
resolved by taking the image data from the hidden audio file.
Figure 6c shows the resolved image file.

Figure 7 gives the block diagram of the steganography
application. FOEJS based on RNG is used for random num-
ber generation in the steganography algorithm.

The working principle of the algorithm is explained in the
following items.

• The related files (image and sound) are read and trans-
ferred to the relevant variables.

• The image file is converted to a binary system for bit-
based encryption.

• The float values provided from the each phase of the
PRNG are converted to the binary system.

• A binary sequence is obtained by bit selection from each
phase, and this sequence is converted to a decimal value.
x = [0101101]y = [1010111]z = [0111100]
bin2dec(010110110101110111100) = 748,476

• The obtained decimal value is done mode operation with
the size value of the sound file string to determine the
location of the sound file where a bit in the encrypted
image file will be inserted.
mod(bin2dec([010110110101110111100]), length
(trans))
mod(748,476, 661,501) = 86,975

• In this way, a decimal array with singular values is
obtained in image file bit size.
array = [86,975, 5362, ........., 78,210]
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Fig. 8 Original and embedded audio file, a original sound file, b embedded sound file

Fig. 9 Histogram results, a original sound file, b embedded sound file

• PRNG is subjected to image bit-xor processing, and a
encrypted image file is obtained.
enc − img = bit xor(imgbin, rngx, rngy, rngz)

• The audio file is converted to binary form.
temp = f lt2bin(trans(array(i)));

• Each bit of the image file is placed in the 32nd bit of
the audio file in the binary format, using the random bit
values generated by the RNG and the random values gen-
erated by themodeoperation. In thisway, the entire image
file is completely randomly embedded in the audio file
in an encrypted form.
temp(32) = enc − img(i)

• Embedded sound file is obtained.
• To extract the embedded image in the audio file, the orig-
inal image is extracted from the audio file by performing
the reverse of the steps described above.

The sound file obtained after the encryption process is
shown in Fig. 8b, and the original sound file is shown in

Fig. 8a. When the original and buried sound file is examined,
it appears that there is no difference between the original
sound file and the sound file embedded in the image file.
In Fig. 9, the histogram diagrams of embedded and original
audio files are shown. When the histogram graphs are exam-
ined, it is seen that there is no change in the histogram after
data embedding. As a result, it has been determined that there
is no appreciable change in the audio file with the embedding
process. The steganography process has been successfully
accomplished.

8 Conclusions

In the study, a novel exponential jerk system with its
fractional-order form is proposed and discussed. Dynamic
analysis is examined for both integer- and fractional-order
cases.ADMis employed tonumerically analyse the fractional-

123



K. Rajagopal et al.

order jerk system. A PRNG is designed with the fractional-
order jerk system, and NIST-800-22 test results confirm that
the RNG is efficient in randomness. An image encryption
application is developed with the RNG algorithm, and the
encrypted image is embedded to a audio file. In the receiver
side, the encrypted image is obtained and decrypted with the
fractional-order RNG to recover the original image.
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