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Abstract. Recent developments in the applications of neural networks
in various engineering and technology applications have motivated
researchers to study the nonlinear behavior of such networks. In this
work we investigate a fractional-order Hopfield neural network with
memristor synaptic weight. The dynamical properties of the proposed
system are examined and the memristor neural network shows hyper-
chaotic attractors in fractional orders with hidden oscillations. We also
propose an adaptive sliding mode control technique to synchronize the
proposed fractional-order systems with uncertainties. Numerical sim-
ulations are derived to show the effectiveness of the synchronization
algorithm. Moreover, the designed chaotic memristor Hopfield neural
network system is realized on FPGA using the 4th-order Runge–Kutta
(RK4) numerical algorithm. The FPGA-based chaotic memristor HNN
is coded in VHDL using the 32-bit IEEE-754-1985 floating point stan-
dard. The chaotic memristor neural network designed on FPGA is
synthesized and tested using Xilinx ISE. The chip statistics of Xil-
inx XC6VLX240T-1-FF1156 kit obtained from Place & Route opera-
tion for the designed RK4-based system is presented. The operating
frequency of newly modeled FPGA-based memristor neural network
chaotic signal generator is 231.616 MHz.

1 Introduction

Chua postulated a resistive device with potential hysteresis behavior and derived
a series of rigorous mathematical proofs for the fourth fundamental circuit element
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named “Memristor”. Its unique property to remember the last functional state in
the form of resistance widely opens up new functionalities in both analog and digital
electronics [1,2]. The advent of these memristor endows the researches with promising
access to mimic the behavior of neuron’s synapse. Various memristor techniques are
used to study the behavior as an artificial synapse [3–5]. Dynamical studies of neural
network (NN) reveal that this technique is very effective [6,7]. The Hopfield Neural
Network (HNN) identified a simple way of setting up connections between nodes so
that “stable firing patterns” can be made [8].

According to initial research results [9–14], it appears that 3-Dimension (3D) con-
tinuous time HNNs do not display chaotic behavior especially in 3D piecewise linear
networks of genes [15]. Recent numerical experiments prove that chaos can take place
in some simple HNNs [7–9,16–18]. Sun and Shi worked the effect of channel blocks on
the spiking regularity in clustered neural networks [19]. Yang and Huang discussed
complex dynamics in simple HNNs [8]. Waser et al. identified high nonlinearity in
iconic drift-diffusion, at the nanoscale level [3,20].

Fractional-order (FO) treatment of complex dynamic systems provides efficient
computational results for information processing and frequent independent phase
shifts in oscillating neuronal firing [21]. Kaslik et al. developed an FO-HNN model
[22]. Dynamic analysis of such a model was studied and the stability and multista-
bility properties found [23]. Especially Boroomand discussed the stability of FO-NNs
[24]. The existence of a nontrivial solution of FO-HNN was analyzed [25]. FO bidi-
rectional associative memory network stabilization was studied [26]. Hu Wang et al.
introduced time delay in FO-HNN and global asymptotic stability conditions were
obtained [21]. Global projective synchronization of FO-NN was studied [27]. In FO
recurrent NNs, multiple Mittag-Leffler stability analyses were carried out [28]. The
existence of stability and dissipative study on FO complex-valued NNs with time
delay was studied [29,30].

Authors concentrated more on the self-excited attractors on the FO-HNN. How-
ever, to the best of our knowledge, hidden attractors influenced the system dynamics
significantly. This paper was devoted to presenting the dynamic analysis and syn-
chronization of FO-HNN with line equilibrium and no equilibrium using adaptive
sliding mode controller (SMC).

2 Fractional-order memristor neural network (FOMNN)

The memristive neural network (MNN) model is defined [18] as

ẋ = −x+ 1.6 tanh(x) + 2 tanh(y) + tanh(z)
ẏ = −y + (M(w)) tanh(x) + 1.5 tanh(y)
ż = −z + 3 tanh(x)− 2 tanh(y) + tanh(z) + c

ẇ = tanh(x) (1)

where M(w) = aw + bw
2 is the memristor element. System (1) shows chaotic attrac-

tor for a = −0.001, b = −0.05, c = −0.001, and initial conditions (IC) [0, 0.01, 0.01,
0]. In this paper, we derive and investigate the fractional-order model of system (1)
and derive their dynamic properties.

Caputo method is popular in the literature. It has been shown that the GL method
of solving FO systems has smoothness over other methods due to the smoothness in
the coefficients [31]. Hence, we chose the GL method to obtain the FOMNN. It can
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be defined as
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where a and t are limits, ∆q
hf(t) is the generalized difference, h is the step size and

q is the FO.
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As the memory required for the calculation of binomial coefficients is theoretically
infinite, we truncate the number of samples for calculation using

N = min
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]
,
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]}
(4)

The binomial coefficients used in (3) are calculated as

βj =
(

1− a+ q

j

)
βj−1 (5)

Let us define the FOMNN oscillator as

Dqxx = −x+ 1.6 tanh(x) + 2 tanh(y) + tanh(z)
Dqyy = −y + (M(w)) tanh(x) + 1.5 tanh(y)
Dqzz = −z + 3 tanh(x)− 2 tanh(y) + tanh(z) + c

Dqww = tanh(x) (6)

To simulate system (8) using the GL method, we use the discretization method
discussed [31,32]:

x(tk) = A(x(tk−1), y(tk−1), z(tk−1), w(tk−1))hqx −
N∑
j=1

βqx

j x(tk−j)

y(tk) = B(x(tk−1), y(tk−1), z(tk−1), w(tk−1))hqy −
N∑
j=1

β
qy

j y(tk−j)

z(tk) = C(x(tk−1), y(tk−1), z(tk−1), w(tk−1))hqz −
N∑
j=1

βqz

j z(tk−j)

w(tk) = C(x(tk−1), y(tk−1), z(tk−1), w(tk−1))hqw −
N∑
j=1

βqw

j w(tk−j)

(7)

where β is the binomial coefficient (5). N is taken as the truncation window size L
if the available memory is not fully used as k. Using (7) in (6), the discrete form of
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Table 1. Types of equilibrium in FOMNN

Case Condition Type of equilibrium Lyapunov Exponents Figure
Case 1 c = 0 Line equilibrium (0, 0, 0, w) 0.0289,0.0107,0,−0.115 1a
Case 2 c 6= 0(c = 0.001) No equilibrium 0.0287,0.0071,0, −0.111 1b

the FOMNN is given by

x(tk) =
(
−x(tk−1) + 1.6 tanh(x(tk−1))
+2 tanh(y(tk−1)) + tanh(z(tk−1))

)
hqx −

N∑
j=1

βqx

j x(tk−j)

y(tk) = (−y(tk−1) + (M(w(tk−1))) tanh(x) + 1.5 tanh(y(tk−1)))hqy −
N∑
j=1

β
qy

j y(tk−j)

z(tk) = (−z(tk−1) + 3 tanh(x(tk−1))− 2 tanh(y(tk−1)) + tanh(z(tk−1)) + c)hqz

−
N∑
j=1

βqz

j z(tk−j)

w(tk) = (tanh(x(tk−1)))hqw −
N∑
j=1

βqw

j w(tk−j)

(8)
where M(w) = aw(tk−1) + bw(tk−1)2 is the memristor element.

For the parameters values given in (2) and Table 1, the FOMNN oscillator shows
different behaviors like the integer-order MNN. For FO, q = 0.995, h = 0.001 a =
−0.001, b = −0.05, c = −0.001, and ICs [0, 0.01, 0.01, 0]; system (9) shows a chaotic
attractor as in Figure 1. As discussed in [18], the system shows two types of equilib-
rium points as in Table 1. The finite-time Lyapunov exponents (LEs) are obtained
using [33,34] for 20 000 s and is presented in Table 1.

We derive the bifurcation of the FOMNN with c and ICs [0,0.01,0.01,0] reinitial-
ized in every loop to the end values of the trajectories and plotting the local maxima
as given in Figure 2a. This kind of bifurcation is commonly known as forward con-
tinuation. The corresponding LEs of the FOMNN are given in Figure 2b. When
investigating a FO system, it is very important to study the importance of the FO’s
q on the system. To investigate, we consider the commensurate FO of the system with
parameter values taken as a = −0.001, b = −0.05, c = −0.001 and reinitialize the ICs
in every loop. Figure 3 shows the bifurcation of the FOMNN with the commensurate
FO q and as seen from the plot, the FOMNN shows chaotic oscillations for q ≥ 0.961.

3 Synchronization of FOMNN using Fractional-order adaptive
sliding mode control

Chaotic systems are used to synchronize active control [35–38], adaptive control
[39,40], extended back stepping control [41,42], sliding mode control [43,44], and
adaptive sliding mode [45–47]. But synchronization in FO systems is very difficult
because of its complexity [48,48,50–52] and hence has applications in developing
robust cryptography algorithms [50].

The master system be defined as

Dqmx = f(x) + F (x)a (9)

and the slave system as
Dqsy = g(y) +G(y)b+ u (10)
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Fig. 1. Phase portraits of FOMNN as given in Table 1.

where f(x), g(y) are n × 1 row vector and F (x), G(y) are m × n matrix elements,
qm, qs are the FOs of the master and slave systems respectively, a, b are the unknown
parameters of the systems and u is the controller to synchronize the systems.

With IC y(0) with master system of IC x(0), the synchronization errors (11)
approach zero:

lim
t→∞

e = y − x (11)
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Fig. 2. a: Bifurcation of FOMNN with parameter c and FO kept at q = 0.995 for ICs
[0, 0.01, 0.01, 0] for first iteration and reinitialized to end values of state trajectories in every
iteration. b: Corresponding LEs of FOMNN (fourth LE is out of scale).

Fig. 3. Bifurcation of FOMNN with commensurate FO q with parameters a = −0.001, b =
−0.05, c = −0.001 for ICs [0, 0.01, 0.01, 0] for first iteration and reinitialized to end values
of state trajectories in every iteration.

The proportional integral sliding surface [37] is defined as

s = e+K

∫
e(τ)dτ (12)

where K is the proportional constant vector. The fractional first derivative of the
sliding surface is obtained as

Dqs = Dqe+Ke (13)
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The FO error dynamics can be derived using (9), (10), (11) as

Dqe = g(y) +G(y)b+ u− f(x)− F (x)a (14)

The master and slave systems are chosen as

u = −g(y)−G(y)b̂+ f(x)− F (x)â− ke− ηsgn(s)− ρs (15)

where k, η, ρ are positive gain values, â, b̂ are parameter estimates of the master and
slave systems respectively, and s is the sliding surface. Using (15) in (14), the error
dynamics simplifies to

Dqie = G(y)
[
b− b̂

]
− F (x) [a− â]− ηsgn(s)− ρs (16)

V =
1
2
s2 +

1
2

(b− b̂)2 +
1
2

(a− â)2 (17)

V̇ = s.ṡ+ (b− b̂)(− ˙̂
b) + (a− â)(− ˙̂a) (18)

By definition of fractional calculus

ẋ(t) = D1−q
t ·Dq

tx(t) (19)

Using (19) in (18),

V̇ = s.D1−q
t ·Dq

t s− (b− b̂)(D1−q
t ·Dq

t b̂)− (a− â)(D1−q
t ·Dq

t â) (20)

Solving (20) to obtain the sign of the Lyapunov first derivate is complex and hence
we use the modified FO Lyapunov method [36] as

1
2
Dq
tx

2(t) ≤ x(t)
1
2
Dq
tx(t), q ∈ (0, 1) (21)

Using (21), (13), (14) in (20),

V̇ ≤ ks
[
G(y)(b− b̂)− F (x)(a− â)− ηsgn(s)− ρs

]
− (b− b̂)(Dq b̂)− (a− â)(Dqâ)

(22)
In order to make (22) a negative definite, we have to cancel terms G(y)(b− b̂), F (x)
(a− â) against (b− b̂)(Dq b̂), (a− â)(Dqâ)and hence we define the parameter estimate
laws as

Dq b̂ = Kas.G(y)
Dqâ = Kbs.F (x)

(23)

where Ka,Kb are positive constants. Using (23) in (22) the Lyapunov function
dynamics is defined as

V̇ ≤ −η |s| − ρs2 (24)

as η and ρ are all positive, V̇ is negative definite.
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3.1 Synchronization of FOMNN systems

We use the FOMNN systems as master and slave for numerical validation of syn-
chronization. Let us define the FOMNN master system as

Dqxmxm = −xm + 1.6 tanh(xm) + 2 tanh(ym) + tanh(zm)
Dqym ym = −ym + (M(wm)) tanh(xm) + 1.5 tanh(ym)
Dqzm zm = −zm + 3 tanh(xm)− 2 tanh(ym) + tanh(zm) + c

Dqwmwm = tanh(xm) (25)

where M(wm) = awm+bw2
m is the memristor element of the master FOMNN system.

The FOMNN slave system with the adaptive SMCs (ui) is defined as

Dqxsxs = −xs + 1.6 tanh(xs) + 2 tanh(ys) + tanh(zs) + ux

Dqys ys = −ys + (M(ws)) tanh(xs) + 1.5 tanh(ys) + uy

Dqzs zs = −zs + 3 tanh(xs)− 2 tanh(ys) + tanh(zs) + ĉ+ uz

Dqwsws = tanh(xs) + uw (26)

where M(wm) = âwm + b̂w2
m is the memristor of the slave FOMNN system. The

parameters of the slave system are assumed to be unknown with parameter estimates
â, b̂, ĉ. Using master system (25) and slave system (26) the error dynamics can be
derived as

Dqxex = â(ys − xs) + ws − a(ym − xm)− wm + ux

Dqyey = ĉys − xszs − cym + xmzm + uy

Dqzez = xsys − b̂zs + ys − xmym + bzm − ym + uz

Dqwew = xszs + r̂ws − xmzm − rwm + uw (27)

Let the adaptive SMCs be chosen as

ux = ex − 1.6f(x)− 2f(y)− f(z)− γxsgn(sx)− ρxsx − kxex

uy =
(
ey − 1.5f(y) + a(wm tanh(xm)−
ws tanh(xs)) + b(w2

m tanh(xm)− w2
s tanh(xs))

)
− γysgn(sy)− ρysy − kyey

uz = ez − 3f(x) + 2f(y)− f(z)− γzsgn(sz)− ρzsz − kzez
uw = −f(x)− γwsgn(sw)− ρwsw − kwew (28)

where ρi > 0, γi > 0 are the sliding surface gains and ki is the controller gain for
i = x, y, z, w. Using (27) and (28) with (23), the parameter update laws can be
defined as

Dqy â = −syws tanh(xs)

Dqy b̂ = −syw2
s tanh(xs)

Dqz ĉ = −sz (29)

where Dqy â, Dqy b̂, Dqz ĉ are the dynamics of the parameter estimates â, b̂, ĉ. For
numerical simulations, we take the ICs of the master (25) as [−0.1, 0.1, 0.2, 0.3], slave
as [0.4, 0.4, 0.4, 0.4], parameter estimates as â(0) = 0, b̂(0) = 0.01, ĉ(0) = 0.01, the
proportional constants as K = [1, 1, 1, 1]. The FOs of the master and slave are taken
as qx = 0.995, qy = 0.997, qz = 0.998, qw = 0.999. Figure 4 shows the dynamics of
the synchronization errors and Figure 5 shows the estimated parameters of the slave
system using the updated parameter law (29).
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Fig. 4. Dynamics of synchronization errors.

Fig. 5. Estimated parameters of slave system.

4 Implementation of novel chaotic MNN on FPGA

In recent years, chaotic generators are performed with different types of digital plat-
forms such as microprocessor and FPGA. As FPGA chips have parallel signal process-
ing and high speed properties, FPGAs are commonly employed in the applications
that require high performance and processing power [31,53–55]. Hence, the study of
FPGA-based modeling of chaotic systems has become very important in the literature
[56–62]. Rajagopal et al. studied the chaotic chameleon attractors has been realized
using VHDL [63]. Alçın et al. designed the PU system in VHDL with artificial neural
network (ANN) on FPGA [64]. Tuna et al. realized their novel system with some
algorithms on FPGA [65]. Koyuncu et al. realized their newly proposed PW system
using Xilinx ISE on FPGA kit [66]. Azzaz et al. performed a three-dimensional system
on a Virtex II board using a fixed-point format [67]. Lai et al. successfully realized
a multi-butterfly system on a FPGA [68]. Koyuncu et al. implemented Burke–Shaw
system on Xilinx Virtex 6 using a fifth-order Runge–Kutta–Butcher (RK5-Butcher)
[69]. Rajagopal et al. realized memristor-based chaotic and hyperchaotic systems on
FPGA using the Adomian decomposition method [70]. Sadoudi et al. performed the
Chen system using FPGA for secure chaotic communications [71]. Akgül et al. real-
ized the design of a system with RK4 on FPGA [72]. In Table 2, the FPGA-based
chaotic generators realized, their properties, the algorithms used, and the properties
of the FPGA chip used in recent years studies are given.
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Table 2. Properties of some FPGA-based chaotic oscillators realized in the literature.

Authors Chaotic attractor Algorithm Numeric standard FPGA properties

Rajagopal et al. [63] A novel 3D chaotic RK5-Butcher 32-bit Floating point Xilinx XC6VLX240T

Chameleon system

Alçın et al. [64] PU chaotic System ANN 32-bit Floating point Xilinx-XC6VLX240T

Tuna et al. [65] A novel Heun 32-bit Floating point Xilinx-XC6VLX75T

chaotic system

Koyuncu et al. [66] Pehlivan-Wei Euler, Heun 32-bit Floating point Xilinx-XC6VLX240T

chaotic system and RK4

Azzaz et al. [67] 3D Hybrid Euler 32-bit Fixed-point Xilinx-Virtex II

chaotic system

Lai et al. [68] Multi-butterfly RK4 32-bit Floating point Xilinx-Kintex 7

chaotic systems

Koyuncu et al. [69] Burke-Shaw RK5-Butcher 32-Bit Floating point Xilinx-XC6VLX75T

Rajagopal et al. [70] Memristor-based Adomian 32-bit Floating point Xilinx Kintex 7 7k160t

decomposition

hyperchaotic sys. method

Tlelo-Cuautle 50-scroll – 32-bit Fixed-point Altera Cyclone IV

et al. [73] chaotic attractor

Sadoudi et al. [71] Chen chaotic system RK4 32-bit Floating point Xilinx Virtex II

Akgül et al. [72] 3-D chaotic system RK-4 32 bit Floating point Xilinx Virtex 6

Rajagopal et al. [74] 3D time-delayed MATLAB Xilinx – Xilinx Virtex

Chameleon system generator 7-XC7-VX980tffg

chaotic sys.

Tuna et al. [75] Lü-Chen Heun 32-bit Fixed-point Xilinx Virtex 6

Alçın et al. [76] PU chaotic System ANN 32-bit Floating point Xilinx Virtex 6

Karakaya et al. [77] Chua chaotic system Euler 32-bit Fixed-point Xilinx Kintex-7

In this study, the fourth-order Runge–Kutta (RK4) numerical algorithm is used
to model the chaotic MNN oscillator on FPGA numerically. The RK4 algorithm
produces results better than those of classic RK algorithms and the error margin is
quite lower in the RK4 algorithm.

yk+1 = yk +
1
6

(k1 + 2 · k2 + 2 · k3 + k4)

k1 = h · f(xk, yk)

k2 = h · f
(
xk +

h

2
, yk +

k1

2

)
k3 = h · f

(
xk +

h

2
, yk +

k2

2

)
k4 = h · f(xk + h, yk + k3) (30)

The RK4 algorithm is given in equation (30). ∆h is the step size of algorithm. In
order to calculate yk+1 value, the values of k1, k2, k3, and k4 must be found as the first
operation. Here, k1 is the initial gradient value at the end of ∆h, k2 is the gradient
calculated with the value of k1 at the midpoint of ∆h, k3 is the gradient calculated
with the value of k2 at the midpoint of ∆h and k4 is the gradient calculated with the
value of k3 at the midpoint of ∆h. In this way, the value of yk+1 is calculated with
yλ and ∆h [78].

ẋ = f(t, x, y, z, w) = −x+ 1.6 · tanh(x) + 2× tanh(y) + tanh(z)
ẏ = g(t, x, y, z, w) = −y +M(w) · tanh(x) + 1.5 · tanh(y)
ż = ρ(t, x, y, z, w) = −z + 3 · tanh(x)− 2 · tanh(y) + tanh(z) + c

ẇ = σ(t, x, y, z, w) = tanh(x)

M(w) = a · w + b · w2 (31)
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x(k + 1) = x(k) +
1
6
·∆h · [κ1(k) + 2 · κ2(k) + 2 · κ3(k) + κ4(k)]

y(k + 1) = y(k) +
1
6
·∆h · [λ1(k) + 2 · λ2(k) + 2 · λ3(k) + λ4(k)]

z(k + 1) = z(k) +
1
6
·∆h · [ξ1(k) + 2 · ξ2(k) + 2 · ξ3(k) + ξ4(k)]

w(k + 1) = w(k) +
1
6
·∆h · [ψ1(k) + 2 · ψ2(k) + 2 · ψ3(k) + ψ4(k)] (32)

The model of the discretized novel MNN oscillator with respect to functions
f , g, δ, and σ in equation (31) is given in equation (32). In equation (33), parameters
K1, K2, K3, and K4 are the coefficients of the MNN oscillator’s first equation, λ1,
λ2, λ3, and λ4 are the coefficients of the second equation, ξ1, ξ2, ξ3, and ξ4 are the
coefficients of the third equation and ψ1, ψ2, ψ3, and ψ4 are the coefficients of the
fourth equation. The coefficients in equation (32) are calculated. Then by substitut-
ing them in the RK4 algorithm, the next values of the MNN oscillator x(k+1), y(k+1),
z(k+1), and w(k+1) are calculated with the step size ∆h. The outputs of the every
iteration (x(k+1), y(k+1), z(k+1), and w(k+1)) are used as the ICs in the next iteration.
In the modeling of the new chaotic MNN, ∆h value is taken as 0.005. In Figure 6,
the top-level schema of the MNN unit realized on FPGA with VHDL are given:

κ1 = f(x(k), y(k), z(k), w(k))
λ1 = g(x(k), y(k), z(k), w(k))
ξ1 = δ(x(k), y(k), z(k), w(k))
ψ1 = σ(x(k), y(k), z(k), w(k))

κ2 = f(x(k) +
1
2

∆h · κ1, y(k) +
1
2

∆h · λ1, z(k) +
1
2

∆h · ξ1, w(k) +
1
2

∆h · ψ1)

λ2 = g(x(k) +
1
2

∆h · κ1, y(k) +
1
2

∆h · λ1, z(k) +
1
2

∆h · ξ1, w(k) +
1
2

∆h · ψ1)

ξ2 = δ(x(k) +
1
2

∆h · κ1, y(k) +
1
2

∆h · λ1, z(k) +
1
2

∆h · ξ1, w(k) +
1
2

∆h · ψ1)

ψ2 = σ(x(k) +
1
2

∆h · κ1, y(k) +
1
2

∆h · λ1, z(k) +
1
2

∆h · ξ1, w(k) +
1
2

∆h · ψ1)

κ3 = f(x(k) +
1
2

∆h · κ2, y(k) +
1
2

∆h · λ2, z(k) +
1
2

∆h · ξ2, w(k) +
1
2

∆h · ψ2)

λ3 = g(x(k) +
1
2

∆h · κ2, y(k) +
1
2

∆h · λ2, z(k) +
1
2

∆h · ξ2, w(k) +
1
2

∆h · ψ2)

ξ3 = δ(x(k) +
1
2

∆h · κ2, y(k) +
1
2

∆h · λ2, z(k) +
1
2

∆h · ξ2, w(k) +
1
2

∆h · ψ2)

ψ3 = σ(x(k) +
1
2

∆h · κ2, y(k) +
1
2

∆h · λ2, z(k) +
1
2

∆h · ξ2, w(k) +
1
2

∆h · ψ2)

κ4 = f(x(k) + ∆h · κ3, y(k) + ∆h · λ3, z(k) + ∆h · ξ3, w(k) + ∆h · ψ3)
λ4 = g(x(k) + ∆h · κ3, y(k) + ∆h · λ3, z(k) + ∆h · ξ3, w(k) + ∆h · ψ3)
ξ4 = δ(x(k) + ∆h · κ3, y(k) + ∆h · λ3, z(k) + ∆h · ξ3, w(k) + ∆h · ψ3)
ψ4 = σ(x(k) + ∆h · κ3, y(k) + ∆h · λ3, z(k) + ∆h · ξ3, w(k) + ∆h · ψ3) (33)

In Figure 7, the second-level structure of the MNN unit is given. The chaotic signal
generator given in Figure 7 is composed of three blocks, namely Multiplexer (MUX)
unit, Novel Chaotic MNN Oscillator unit, and Filter unit. The MUX block is used
to satisfy the initial values of the system while the Novel Chaotic MNN Oscillator
block generates the chaotic signals. The filter is designed to block undesirable signals
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Fig. 6. Top-level schema of novel MNN system on FPGA.

Fig. 7. Second-level block schema of MNN system on FPGA.

when the chaotic oscillator does not produce any results. When the MNN oscillator
unit receives the Run signal, the ICs become the predefined values in the oscillator.
As the designed unit generates the first results, XYZW Ready becomes “1” and the
outputs of the unit become the ICs of the unit in the next iteration.

In the designed system, there are four output signals in IEEE-754-1985 standard
as X out, Y out, Z out, and W out, and there is a control signal XYZW Ready.
The outputs of the Filter block are both the outputs of the MNN oscillator system
and the ICs, x(k+1), y(k+1), z(k+1), and w(k+1), that are sent to the MUX block for
calculations of the next iteration.

In Figure 8, the third-level schema of the MNN unit that is designed using RK4
numerical algorithm is given. There are six parts in the MNN unit: MUX, k1, k2, k3,
k4, and ys. The kς calculates the values of Kς , ξς , λς , and ψς given in the model of
the system for ς = 1, . . . , 4. The values of x(k+1), y(k+1), z(k+1), and w(k+1) given in
equation (31) are calculated in ys.

All designed, multiplication, subtraction and other modules are created with
Xilinx IP Core Generator. The MNN unit is run as a pipeline and the chaotic oscil-
lator generates the first result after 182 clock pulses. After this, new results are
generated every 182 clock pulses. The realized chaos-based generator is tested on
Xilinx XC6VLX240T FPGA chip. In Figure 9, the simulation results of the realized
new MNN oscillator are given.
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Fig. 8. Third-level schema of MNN system.

Fig. 9. Xilinx ISE Design Tool Simulator results for MNN system on FPGA.

4.1 FPGA-based modeling results of the novel chaotic MNN oscillator

In this study, discrete time design of the novel MNN oscillator is realized. In order
to realize the newly designed MNN system with the RK4 algorithm, chip statistics
are obtained. The operation frequency of the MNN oscillator designed on FPGA
with VHDL is 231.616 MHz. In Table 3, the chip statistics are given. The minimum
operating period of the MNN oscillator is 4.318 ns.

Finally, the output signals of the new MNN oscillator are saved on a file during
the testing stage. Then, these signals are converted to a real number to obtain the
time series of the chaotic oscillator. To plot the phase portraits of MNN, the first-
generated 4 × 1500 dataset is used. The phase portraits of the discrete time MNN
unit are given in Figure 10.
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Table 3. XC6VLX240T-1-FF1156 chip statistics for chaotic MNN oscillator designed with
RK4 algorithm.

Logic Used Available Utilization (%)
Slice registers 109734 301440 36
LUT-FF pairs 87190 140082 62
Slice LUTs 117538 150720 77
IOBs 163 600 27
DSP48E 12 288 4
BUFG/BUFGCTRLs 1 32 3
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Fig. 10. Phase portraits of new MNN unit on FPGA.

5 Conclusion

This paper investigated the FO-HNN with memristor synaptic weight. The proposed
system has no equilibrium points and hence shows hidden oscillations. Bifurcation
of the system with parameters and FOs is performed and the corresponding LEs are
also presented to show the existence of chaos. An adaptive sliding mode controller
is designed to synchronize the identical FOMNN systems with uncertainties. The
newly designed MNN oscillator unit is operated with RK4 numerical on FPGA. The
maximum operating frequency of the new MNN oscillator unit is 231.616 MHz for
Xilinx XC6VLX240T-1-FF1156 FPGA. The successful results obtained from the new
chaotic MNN oscillator introduced to the literature show that the memristor-based
structure can be used in engineering applications like cryptology. In future studies,
applications like data masking, random number generators, etc. can be performed
with the FPGA-based discrete time new chaotic MNN oscillator.
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58. Ü. Çavuşoğlu, A. Akgül, S. Kaçar, İ. Pehlivan, A. Zengin, Secur. Commun. Networks
9, 1285 (2016)
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