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Abstract: Chaotic systems have several engineering applications such as cryptology, random 
number generators, image processing and secure communication. A basic structure used in these 
studies is a chaotic oscillator design that produces a chaotic signal. In this paper, 5-D 
hyperchaotic Lorenz system (Hu, 2009) has been implemented on FPGA using Heun algorithm to 
improve the chaos-based embedded engineering applications. The 32-bit IEEE-754-1985 floating 
point format has been used in the Heun-based design. The design has been coded in VHDL.  
The maximum operating frequency of FPGA-based 5-D hyperchaotic Lorenz system reaches 
430.146 MHz. In addition, a real circuit realisation of 5-D hyperchaotic Lorenz system has been 
performed using analogue circuit elements. The results of FPGA-based new 5-D hyperchaotic 
Lorenz system have been compared with the results of computer-based numerical simulation and 
then the error analyses (MSE and RMSE) have been carried out. 
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1 Introduction 

Hyperchaos is a non-linear phenomenon indicated by the 
presence of two or more Lyapunov characteristic exponents  
in non-linear systems of differential equations. Many 
hyperchaotic systems have been reported recently (Barboza, 
2008; Jia, 2007; Gao et al., 2006; Jia et al., 2010; Zeng, 2011; 
Qi et al., 2008). Higher dimensional hyperchaotic systems of 
order 5n   have been also proposed in the literature  
 

(Hu, 2009; Can and Uyaroglu, 2015; Kemih et al., 2015; Zarei, 
2015). Modelling and computer implementation of systems are 
important topics in engineering and technology (Beddad et al., 
2018; Xia et al., 2018; Vaidyanathan et al., 2018d; Tarkhaneh 
et al., 2018; Kumar and Khurana, 2018; Beddad et al., 2019). 

Chaos theory featuring chaotic and hyperchaotic systems 
has applications in several branches of science and engineering 
such as oscillators (Vaidyanathan and Rasappan, 2011; 
Vaidyanathan, 2015h; Vaidyanathan, 2012a; Pakiriswamy  
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and Vaidyanathan, 2012; Vaidyanathan, 2012b), robotics 
(Vaidyanathan et al., 2017; Celikovsky and Lynnyk, 2018), 
biology (Vaidyanathan et al., 2018f; Vaidyanathan, 2015f; 
Vaidyanathan, 2015b; Vaidyanathan, 2015c; Vaidyanathan, 
2015e), ecology (Vaidyanathan, 2015g; Vaidyanathan, 2015a), 
mechanical systems (Vaidyanathan, 2015d; Chlouverakis and 
Sprott, 2006), steganography (Vaidyanathan et al., 2018a), 
weather systems (Vaidyanathan et al., 2018e; Vallis, 1986), 
neural networks (Vaidyanathan, 2015i; Wang and Lu, 2019; 
Lahmiri and Bekiros, 2019), encryption (Vaidyanathan et al., 
2018b; Vaidyanathan et al., 2018c; Vaidyanathan and 
Rajagopal, 2017), secure communications (Wu et al., 2014; Li 
et al., 2005; Filali et al., 2014), finance (Tacha et al., 2016; 
Szuminski, 2018), circuits (Akgül et al., 2016b; Volos et al., 
2015, 2017; Pham et al., 2016), etc. 

Recently, the implementations related to the modelling 
of chaotic systems on FPGA has gained importance in 
Koyuncu et al. (2017), Rajagopal et al. (2017), Alcin et al. 
(2016), Tuna and Fidan (2016), Koyuncu et al. (2014), Lai 
et al. (2018), Koyuncu et al. (2013), Akgül et al. (2016a), 
Azzaz et al. (2013), Sadoudi et al. (2009), Tuna et al. 
(2018), Karthikeyan and Rajagopal (2018), Rajagopal et al. 
(2018), Koyuncu (2018) and Hua et al. (2018). Rajagopal et 
al. (2017) designed two new fractional-order 4D chaotic 
systems on Xilinx Kintex 7 FPGA chip using Matlab-Xilinx 
System Generator Toolbox. Alçin et al. (2016) proposed the 
design of Artificial Neural Networks (ANNs)-based 
Pehlivan-Uyaroglu Chaotic System (PUCS) using VHDL 
with IEEE-754 32-bit floating point arithmetic on Xilinx 
Virtex-6 FPGA chip. Tuna and Fidan (2016) accomplished 
the design of a new chaotic system using Heun algorithm on 

FPGA. This design has been coded in VHDL with IEEE-
754 floating point number format (Tuna and Fidan, 2016). 
Koyuncu et al. (2014) proposed the design of Pehlivan-Wei 
Chaotic System (PWCS) using Euler, Heun and RK4 
numerical algorithms on Virtex-6 FPGA chip in VHDL. Lai 
et al. (2018) designed the multi-butterfly chaotic system 
using VHDL on FPGA. Koyuncu et al. (2013) presented 
FPGA-based Burke-Shaw Chaotic System (BSCS) that uses 
RK5-Butcher (RK5B) numerical algorithm. The design has 
been created in VHDL with IEEE-754 floating point 
number standard on Virtex-6 chip (Koyuncu et al., 2013). 
Akgül et al. (2016a) accomplished the design of 3-D chaotic 
system using RK4 numerical algorithm on Xilinx FPGA 
chip. Table 1 presents the technical properties of the  
various FPGA-based chaotic oscillators implemented in 
recent years. 

The organisational structure of this work is given as 
follows. Section 2 details the 5-D hyperchaotic Lorenz 
system derived by Hu (2009). Section 3 contains a detailed 
description and results of the real-circuit realisation of 5-D 
hyperchaotic Lorenz system (Hu, 2009). In Section 4, the  
5-D hyperchaotic Lorenz system (Hu, 2009) has been 
implemented on FPGA using Heun algorithm in VHDL 
with 32-bit IEEE 754-1985 floating point number format. 
Additionally, the area utilisation report of the FPGA related 
to the chaotic system designed using Heun algorithm has 
been given. Mean Square Error (MSE) and Root Mean 
Square Error (RMSE) error analyses have been performed 
using the results obtained from both chaotic oscillator 
designs of the hyperchaotic Lorenz system. Finally, some 
concluding remarks are noted in the last section. 

Table 1 The technical properties of the various FPGA-based chaotic oscillators implemented in recent years 

References Chaotic system features FPGA-based design Oper. Freq. (MHz) 

Rajagopal et al. (2017) 4D Fractional order chaotic system Xilinx system generator toolbox in Simulink   

Alçin et al. (2016) 3D PU chaotic system ANN, IEEE-754 32-bit floating-point 266.429  

Tuna and Fidan (2016) 3D novel chaotic system Heun, IEEE-754 32-bit floating-point 390  

Koyuncu et al. (2014) 3D novel PW chaotic system 
Euler, Heun, RK4, IEEE-754 32-bit  
floating-point 

463.688  

Lai et al. (2018) 4D multi-butterfly chaotic system Xilinx System Generator toolbox in Simulink   

Koyuncu et al. (2013) 3D Burke-Shaw chaotic system RK5-Butcher, IEEE-754 32-bit floating-point 373.084  

Akgül et al.  
(2016a, 2016b) 

3D novel chaotic system 
RK4, VHDL, IEEE 754-1985 32-bit  
floating-point 

374.094  

Tlelo-Cuautle et al. 
(2016) 

50-scroll chaotic attractor   66  

Azzaz et al. (2013) 3D hybrid chaotic system Euler, IQ-Math fixed-point, 32-bit (16Q16) 38.860  

Sadoudi et al. (2009) Chen chaotic system RK4, IEEE-754 32-bit floating-point 22.850  

Hua et al. (2018) Sine-transform-based chaotic system IEEE-754 32- bit floating-point 22.850  

This paper 5-D hyperchaotic Lorenz system 
Heun numerical method, IEEE-754 32-bit 
floating-point 

430.146  
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2 Five-dimensional hyperchaotic Lorenz system 

This section gives a brief review of the 5-D hyperchaotic 
Lorenz system announced by Hu (2009). 

Jia (2007) proposed a 4-D hyperchaotic system by 
extending the famous Lorenz chaotic system (Lorenz, 1963) 
as follows:  

( )x x y w

y rx y xz

z xy z

w xz pw





   
   
  
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




 (1) 

In equation (1), , , ,x y z w  stand for the states and , , ,r p   

are positive constants. 
In Jia (2007), the system (1) was shown to be 

hyperchaotic when = 1.3p  and   8
, , = 10, 28,

3
r   

 
 

 as 

in Lorenz system (Lorenz, 1963). 
For the initial state (0) = (0, 0.01,9,1)X   and  , , , =r p   

8
10, 28, , 1

3
 
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 

, the Lyapunov exponents of the Jia system (1) 

are evaluated as  

1

2

3

4

0.3618

0.2096

0

12.9371







 
 
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 (2) 

The presence of two positive Lyapunov exponents 1  and 

2  in (2) pinpoints that the Jia system (1) is a 4-D 

hyperchaotic Lorenz system. 
Hu (2009) proposed a 4-D hyperchaotic system from the 

Jia system (Jia, 2007) as follows: 

( )x x y w

y rx y xz v

z xy z

w xz pw

v qy





   
      
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





 (3) 

In equation (3), , , , ,x y z w v  stand for the state variables 

and , , , ,r p q   are positive constants. 
In Hu (2009), the system (3) was shown to be 

hyperchaotic when the parameter values are chosen as  

8
= 10, = 28, = , = 2, = 8

3
r p q   (4) 

For the initial state (0) = (0, 0.01, 9, 1, 0)X   and the 

constants as in (4), the Lyapunov exponents of the  
Hu system (3) are evaluated as  

1

2

3

4

5

0.4895

0.3244

0.0554

0

12.5315






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 (5) 

The presence of three positive Lyapunov exponents 1 2,   

and 3  in (5) pinpoints that the Hu system (3) is a 5-D 

hyperchaotic Lorenz system. 
Figure 1 shows the 2-D projections of the Hu system (3) 

for (0) =(0, 0.091, 9, 1, 0)X   and 
8

, , , , )=(10, 28, , 2, 8
3

r p q  
 
 

. 

From Figure 1, it is seen that the Jia system (3, which is a 5-D 
hyperchaotic Lorenz system, exhibits a two-scroll attractor. 

Figure 1 Two-dimensional projections of the hyperchaotic 
Lorenz system (3) for (0) = (0, 0.01, 9, 1, 0)X   and 

8
, , , , ) = (10, 28, , 2, 8

3
r p q  

 
 

 

 

Next, we carry out a bifurcation analysis of the Hu system (3) 
by varying the parameter p  between 7.5  and 2.5 ,  

and keeping the other parameters fixed. For this analysis, the 
initial states of the 5-D system (3) are taken as 

(0) = 0, (0) = 0, (0) = 0,3. (0) = 0x y z w  and (0) = 0v . For a 

step size of 0.005 , the bifurcation diagram in Figure 2 is 
obtained. As seen in Figure 2, hyperchaos is observed for 

< 3.1p   and > 1p . 
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Figure 2 The bifurcation diagram of the Hu system (3) for (0) = (0, 0, 0.3, 0, 0)X  by varying p  in [ 7.5, 2.5] , and keeping other 

parameters fixed as   8
, , , = 10, 28, , 8

3
r q   

 
 

 

 

3 Electronic circuit implementation  
of the 5-D hyperchaotic  
Lorenz system 

The 5-D system (3) shows hyperchaotic oscillations when the 
parameters are chosen as =10, = 28, = 83, = 2, = 7.3r p q   

and the initial conditions are taken as (0) = (0, 0, 0, 1, 1)X . 

The hyperchaotic system must be rescaled for electronic circuit 
implementation. The amplitude values of the states , , , ,x y z w v  

are in the interval of ( 270, 230) . They are higher than the 

interval of ( 15, 15)  which are limitations of electronic 

materials. 
For scale process, we let = 2.5, = 2, = 4,X x Y y Z z  

= 20W w  and = 5V v . 
Then we adjust the original state variables , , ,x y z w  and 

v  instead of the new variables , , ,X Y Z W  and V . Thus, 

the scaled system is obtained as follows:  

 5 8

54 20 5 4

54

12

25

x x y w

y rx y xz v

z z xy

w xz pw

v qy





   


      
   









 (6) 

An electronic circuit is defined for the scaled system (6) as 
shown in Figure 3. 

The size of the circuit elements are 1 = 2 = 3 =C C C  
4 = 5 = 1C C nF , 1= 3= 50R R k , 2 = 40R k , 5 = 8R k , 

6=159.68R k , 7=11.4R k, 8= 32R k , 9=149.698R k, 

10 = 80R k , 11= 200R k , 12 = 136.7R k , 13 = 14 =R R  

15 = 16 = 17 = 18 = 19 = 20 = 21 = 22 = 100R R R R R R R R k . 

The phase-portraits on the oscilloscope for the 5-D 
hyperchaotic Lorenz system are shown in Figure 4. Also, 
the scaled hyperchaotic system is physically realised on the 
electronic card shown in Figure 5. 
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Figure 3 Electronic circuit scheme of the 5-D hyperchaotic Lorenz system (6) 

 
 

Figure 4 The phase plots of the 5-D hyperchaotic Lorenz system 
(6) on the oscilloscope 

 

 

Figure 5 Real-circuit design of the 5-D hyperchaotic Lorenz 
system (6) 

 

4 FPGA-based 5-D hyperchaotic Lorenz system 

In this section, the 5-D hyperchaotic Lorenz system  
(Hu, 2009) has been modelled using Heun algorithm in 
VHDL as a Hardware Description Language (HDL) with 
32-bit IEEE 754-1985 floating point number format on  
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FPGA. The units such as multiplier, adder and subtractor, 
which have been utilised in the construction of the designs 
of units and have been compatible with fixed point  
number standard, have been created using IP-Core 
Generator that produced by Xilinx ISE Design Tools. The 
mathematical expression related to Heun algorithm is given 
in equation (7). 

 
 
 

0 0

0
1

0
1 1

=

2

iy x y y

y y f y h

y y f y y h

  

   



 




  
     

 (7) 

In equation (7), 0y  and h  represent the initial conditions 

of the 5-D hyperchaotic Lorenz system (3) and the step-size 
of the numerical method, respectively. 

The Heun algorithm has two stages, which are described 

as follows. In the first stage, the value of  0
1f y  has been 

calculated. In the second stage, the next iterate of the system 

 1f y  has been calculated using the values of  0
1f y  

and y . 

          
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1
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


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
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 (8) 
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 (12) 

 

 

Heun-based discretised mathematical model of the 5-D 
hyperchaotic Lorenz system is given in equations (8)–(12). In 
this set of equations,        0 0 0 01 , 1 , 1 , 1x k y k z k w k     

and  0 1v k   have been calculated using the values of 

( ), ( ), ( ), ( )x k y k z k w k  and ( )v k . 
Then ( 1), ( 1), ( 1), ( 1)x k y k z k w k     and ( 1)v k   

values of the difference equation have been found for the 
first values when the step-size is incremented with the value 
of h . For the modelling of the 5-D hyperchaotic Lorenz 
system, we have chosen the step-size of the numerical Heun 
algorithm as = 0.005h . 

For the FPGA-based modelling of the 5-D hyperchaotic 
Lorenz system using Heun algorithm, VHDL has been 
employed as a HDL. The top level block diagram of the 
designed FPGA-based oscillator has been illustrated in 
Figure 6. Start and Clk are one bit signals and located at the 
inputs of the unit. These signals are responsible for timing 
of all units and synchronising between units and their 
related system. To provide more flexible design, the step 
size h  of the 5-D hyperchaotic Lorenz system has been 
applied from outside. The initial values that are necessary 
for the system startup have been embedded into the design 
using four different signals each have 32 bit for reducing the 
resource utilisation of FPGA chip employed in the design. 
However, as it is required, there is possibility to design the 
system to set the initial values by making slight changes in the 
system. In the designed Heun-based hyperchaotic oscillator 
unit, there are five 32-bit output signals (X_out, Y_out, Z_out, 
W_out and V_out) each have compatibility with floating point 
number standard and one bit XYZWV_Ready signal to 
demonstrate whether the output signals are ready. 

Figure 6 The top-level block diagram of the designed FPGA-
based hyperchaotic oscillator 

 

The level 2 block diagram of the 5-D hyperchaotic Lorenz 
system is demonstrated in Figure 7. Chaotic signal generator 
includes three blocks. These blocks can be listed as (1) 
MUX, (2) 5D_Chaotic_Oscillator and (3) Filter. 
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Figure 7 The level 2 block diagram of FPGA-based 5-D hyperchaotic Lorenz system 

 

Figure 8 The level 3 block diagram of Heun-based 5-D hyperchaotic Lorenz System 
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Block 1 is the MUX unit that gives the initial state of the 
system. Block 2 is the 5D_Chaotic_Oscillator unit that yields 
chaotic signals. Block 3 is the Filter unit used for preventing 
5D_Chaotic_Oscillator from producing unwanted signals. 
When the Run signal is active in the system, the values of 
initial state will be assigned from the values that have been 
defined in the chaotic signal generator. 

When the chaotic oscillator yields the first values, 
XYZWV_Ready will take the value 1. Afterwards, the chaotic 
signal generator takes the values of the initial state from the 
chaotic signals that are produced at its output. 

There are five signals each having 32-bit floating point 
standard namely, X_output, Y_output, Z_output, W_output, 
V_output and a control signal namely XYZWV_Ready, that 
shows these five signals being transferred to the output of 
the designed system. The signals originated from the filter 
unit form not only the outputs of the system but also the 
iterative values ( 1), ( 1), ( 1), ( 1)x k y k z k w k     and 

( 1)v k   that are used as the values of initial state by 

transferring to MUX unit. 
The level 3 block diagram of Heun-based 5-D hyperchaotic 

Lorenz oscillator unit has been illustrated in Figure 8.  
The oscillator unit includes eight units namely,  
MUX, 0f , Multiplier, Divider, Adder and f  units. 0f  unit is 

responsible for determining the signals emerging from MUX 
unit and the state values ( 1), ( 1), ( 1), ( 1)x k y k z k w k     

and ( 1)v k   in the equations of the 5-D hyperchaotic Lorenz 

system. 
The signals derived from f0 unit have been multiplied with 

h  using Multiplier unit and then the results have been 
summed with the initial state values of the hyperchaotic 
oscillator ( ), ( ), ( ), ( )x k y k z k w k , and ( )v k . In this manner, 

the first stage of the algorithm has been completed. 
In Stage 2 of the algorithm, the signals obtained from 

Adder unit have been added with the signals emerging from f0 
unit and then the results have been divided by 2.0  value which 
is the floating point number format (FP-2) using divider  
unit. The output signals of the divider unit have been added  

with the previously produced signals ( ( ), ( ), ( ), ( )x k y k z k w k , 

and ( ))v k  of the chaotic oscillator unit using Adder unit and 

then the obtained results have been sent to  Filter unit. 
Multiplier, Adder, Subtractor and other units having  

32 bit floating point number format in the Heun-based 
systems, have been generated with the IP Core Generator 
which is made by Xilinx. The system runs in pipelined 
manner and yields the first outputs after 132 clock cycles. 
The implemented chaotic signal generator has been 
simulated and synthesised for the Xilinx Virtex6 (xc6vlx75t-
3ff784) FPGA chip. Xilinx ISE numerical simulation results 
derived from the execution of the Heun-algorithm for the 5-
D hyperchaotic Lorenz chaotic generator have been given in 
Figure 9. 

The implementation of the 5-D hyperchaotic Lorenz 
system on FPGA using Heun numerical algorithm has been 
carried out and chip statistics have been obtained. The 5-D 
hyperchaotic Lorenz system has been designed compatible 
with VHDL IEEE 754-1985 floating point number standard 
on FPGA and as a result the maximum operating frequency 
of FPGA-based 5-D hyperchaotic Lorenz system reaches 
430.146 MHz. After the Place and Route process, the chip 
statistics have been obtained and summarised in Table 2. 
Measured minimum time period of the designed unit is 
2.325 ns. 

Table 2 Hardware utilisation statistics (Xilinx Virtex-6 
xc6vlx75t-3ff784 chip) of the 5-D hyperchaotic 
Lorenz system modelled by Heun-based algorithm 

Logic utilisation Used Available Utilisation (%)

No. of slice registers 28,669  93,120  30  

No. of occupied slices 8,373  11,640  71  

No. of bonded IOBs 195  360  54  

No. of slice LUTs 28,6723  46,560  61  

No. of BUFG/ 
BUFGCTRLs 1  32  3  

Figure 9 Xilinx ISE simulation results obtained by the Heun-based 5-D hyperchaotic Lorenz chaotic oscillator unit 
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Lastly, the signals, namely X_output, Y_output, Z_output, 
W_output and V_output derived from the FPGA execution 
of Heun-based 5-D hyperchaotic Lorenz system have been 
saved in a file in 32-bit IEEE 754-1985 floating point 
number format during the test phase. After the conversion of 
saved values to real-number system, time series and phase 
portraits of the output signals have been obtained using the 

produced 5  3500 data set by the chaotic oscillator. The 
time series of x, y, z, w and v  related to Heun-based 5-D 
hyperchaotic Lorenz system have been given in Figure 10. 

The 2-D phase plots ( , , , ,x y x z y z x w y v      and 

w–y) of the 5-D hyperchaotic Lorenz system modelled by 
discrete-time using Heun algorithm on FPGA have been 
illustrated in Figure 11. 

Figure 10 The time series of ( ), ( ), ( ), ( )x t y t z t w t  and ( )v t  related to Heun-based 5-D hyperchaotic Lorenz system implemented (a) in 

Matlab and (b) on FPGA  

 

Figure 11 The 2-D phase portraits ( , , , ,x y x z y z x w y v      and w v ) of the discrete-time 5-D hyperchaotic Lorenz system 

modelled using Heun algorithm on FPGA 
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Figure 12 The 2-D phase portraits ( , , , ,x y x z y z x w y v      and w v ) of the numerical-based 5-D hyperchaotic Lorenz system 

modelled using Heun algorithm in MATLAB 

 
 

Also, the two-dimensional phase plots ( , , ,x y x z y z    

,x w y v   and w v ) of the 5-D hyperchaotic Lorenz 

system modelled by the numerical-based Heun algorithm in 
MATLAB are shown in Figure 12. 

Furthermore, the results of FPGA-based model have 
been compared with the results of Heun-based model. 
Hence, the error analyses of these methods namely, their 
MSE and RMSE values have been utilised for validation 
using equations (13) and (14). Table 3 presents the MSE 
and RMSE values of , , ,x y z w  and v . 

Table 3 The MSE and RMSE results of 5  1000 values 
produced using MATLAB-based and FPGA-based 
Hyperchaotic Lorenz oscillator 

State MSE RMSE 

x 0.548694301 0.740739023  

y 0.740812347  0.860704564  

z 0.940663384  0.969878026  

w 1.03700163  1.075372380  

v 0.617673926  0.785922341 

 2

=1

ˆ= 1
n

i i
i

MSE n x x  (13) 

 2

=1

ˆ= 1
n

i i
i

RMSE n x x  (14) 

Parameters ix , ˆix  and n  denote the calculated value of 

Heun numerical algorithm-based computer model, the 
produced value of FPGA-based hardware model and the 
sample number used for evaluation, respectively. As a 
result, it has been observed that the MSE and RMSE values 
were quite low with respect to the produced results of the 
FPGA-based 5-D hyperchaotic Lorenz oscillator model 
designed in VHDL 32-bit IQ-Math fixed-point format using 
Heun-algorithm. 

5 Conclusion 

In this study, FPGA-based discrete-time implementation of 
the 5-D hyperchaotic Lorenz system (Hu, 2009) has been 
performed. In the design, the Heun numerical algorithm  
has been used. The design has been coded in VHDL language 
using 32 -bit IEEE 754 1985  floating point number 
standart. The maximum operating frequency of the designed 
unit reaches 430.146  MHz. It is observed that there has been 
strong convergence between the phase portraits obtained from 
computer-based numerical analysis, analogue circuit design 
and FPGA-based design with respect to the results of the 
study. As a result, the results produced by the chaotic 
oscillator designed on Matlab and FPGA have been analysed 
and therefore MSE and RMSE have been evaluated for 1000  
data sets. The results of the proposed FPGA-based unit 
converge successfully to the results of the Matlab-based 
numeric model. The successful results obtained from the 
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design of 5-D hyperchaotic Lorenz system on FPGA have 
shown that this hyperchaotic system can be utilised in 
embedded hyperchaos-based engineering applications such as 
cryptosystems, random number generators, image processing 
and secure communication. In future, various applications 
including data masking, synchronisation and steganography 
can be carried out with the discrete-time implemented 5-D 
hyperchaotic Lorenz system on FPGA. 
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