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,is paper presents the design, simulation, and experimental verification of the fractional-order multiscroll Lü chaotic system.We
base them on op-amp-based approximations of fractional-order integrators and saturated series of nonlinear functions. ,e
integrators are first-order active realizations tuned to reduce the inaccuracy of the frequency response. By an exponential curve
fitting, we got a convenient design equation for realizing fractional-order integrators of orders from 0.1 to 0.95.,e results include
simulations in SPICE of the mathematical description and the electronic implementation and experimental measurements that
confirm them. Monte Carlo and sensitivity tests revealed a robust realization. Contrary to its passive counterparts, the suggested
realizations significantly reduce design and implementation efforts by favoring resistors and capacitors with commercial values
and reducing hardware requirements.

1. Introduction

Fractional calculus has been known since 1695 when
L’Hôpital and Leibniz interchange letters about the non-
integer order of the derivative. ,e fractional calculus is
considered as a generalization of the integer-order version.
Fractional-order derivatives are characterized by their
memory properties providing an excellent approach for
describing the physical phenomena elegantly with improved
accuracy [1, 2]. As a result, the researchers have proposed
novel mathematical models with applications in various
fields, such as biology, economics, chaos theory, botany,

hidden dynamics, digital circuits, cryptography, control,
image processing, wind turbines, viscoelastic studies, and
ferroelectric materials [3–15].

Regarding chaos, there has been recently an increased
number of works reporting fractional-order chaotic systems
because fractional order provides an extra degree of free-
dom, which can be useful for generating diverse dynamics
such as self-excited attractors, hidden attractors, multi-
stability, and extreme stability [16–20]. In particular, the
multiscroll chaotic attractors present plenty of complex
topological structures contrary to single- or double-scroll
attractors. One of the most typical applications is secure
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communications, e.g., in random number generators,
cryptosystems in wireless networks, and image encryption
[21–23]. ,erefore, it is a subject of increasing interest
[24–30].

,e physical realization of chaotic systems is a well-
accepted technique to observe the chaotic behaviors and
therefore validates the theoretical findings. From an engi-
neering point of view, the challenge consists of imple-
menting the fractional-order multiscroll chaotic systems
physically since there is not a fabricated fractional-order
capacitor yet commercially available [31, 32]. Hence, in the
literature, we can find two approaches for implementing
fractional-order differential equations that describe the
chaotic systems. On the one side, the embedded method-
ology uses FPGAs or DSPs to describe the fractional-order
dynamical system by implementing a numerical method to
solve computationally the system rather than an electronic
circuit [33]. Nevertheless, this approach has been demon-
strated that induces degradation effects corrupting the chaos
generation. On the other side, the analog method employs
essential circuit elements for obtaining the fractional-order
integrators. ,e basic idea consists of representing the
fractional order with an integer-order transfer function of
high degree. As a result, the electronic realization of the
fractional integrator depends on a tree-like passive network
formed with resistors and capacitors. However, the resulting
passive emulator circuits nor contain commercial values
neither a suitable design equation between elements (ratio of
values), provoking a complexity for a proper tuning of the
fractional order for observing chaos behavior. ,erefore, the
works focused on the physical implementation of fractional-
order chaotic systems generatingmultiscrolls are limited and
only found with implementations using passive networks
[24–28].

,e question arising is how to obtain a straightforward
approach for implementing fractional-order multiscroll
chaotic systems with analog topologies? ,is paper will give
a positive answer to this question. A first response is to use
fractional-order integrators derived from an active circuit
topology, which can be designed with circuit elements of
commercial values or using an appropriate ratio of values. In
this regard, some first results were proposed in refs. [31, 32],
which reported active realization using integrated circuit
technology. However, that approach has not been proved in
either single-scroll or multiscroll chaotic systems. ,erefore,
the main contributions of this paper are as follows: (i) an
optimized design methodology is proposed based on con-
tinued fraction expansion to obtain an active fractional
integrator which can be related in a quick way to the
fractional order of the chaotic systems; (ii) to the best
knowledge of authors, the first experimental validation of a
fractional-order multiscroll chaotic system is proposed
based on active circuit topologies; and (iii) additionally, we
perform an exhaustive study to demonstrate that the pro-
posed design methodology is robust to statistical variations
of element values and insensible to changes in the circuit
elements.

,e electrical circuits to realize fractional-order inte-
grators are based on “fractances,” electrical elements with

fractional-order impedance. ,ese elements produce a
magnitude frequency response with roll-off ±20α dB/dec
and constant-phase response of ±90α degrees [34]. Unfor-
tunately, the nonexistence of circuit elements with fractional
response challenges carries out fractional-order transfer
functions. ,e alternative is the approaching of fractances in
a desired bandwidth with rational functions by means of
methods of approximation such as Muir, Matsuda, Newton,
Carlson, Oustaloup, power series (PSE), and continuous
fraction expansion (CFE) [34–36].,e larger the order of the
approximation, the larger the bandwidth where it is valid.
Once got the rational function, the synthesis is possible using
ladder networks of Cauer or Foster [36], tree structures, or
transmission lines [35, 36]. ,e disadvantage of these re-
alizations is the difficulty to approximate the required ele-
ments with commercially available resistances, capacitors,
inductors, and even negative impedance converters, which
results in bulky realizations [36–39]. For instance, Figure 1
shows a third-order realization using the Charef approach
for a fractional-order passive fractance with α � 0.95, an
error of 1 dB, and a bandwidth from 0.1 rad/s to 1000 rad/s
[40]. ,e circuit requires three resistors and three capacitors
of disperse and not available values. To avoid this drawback
in this paper, we present two proposals of implementation of
s− α with active elements based on algebraic manipulation of
a first-order CFE approximation. Despite its inaccuracy, in
this work, we explore the use of a compact first-order ap-
proximation with α ∈ (0, 1) obtained by the CFE approach,
but tuned to reduce error in the magnitude’s slope response.
It has the form [34]

1
s
α ≈

(1 − α)s +(1 + α)

(1 + α)s +(1 − α)
�

s + A

As + 1
,

A �
1 + α
1 − α

. (1)

,is article is organized as follows. Section 2 provides a
brief survey of fractional calculus, approximation of frac-
tances, and op-amp-based building blocks. Section 3 depicts
the circuit realization of the fractional-order integrator and
presents Monte Carlo and sensitivity tests. Section 4 offers
simulation and experimental results of the Lü chaotic os-
cillator and discusses the advantages of the proposed real-
ization. We draw the conclusion in Section 5.

2. Theoretical Background

,is section describes theoretical background such as
fractional-order calculus, the Laplace transform of a frac-
tional derivative, and op-amp-based building blocks for
implementing fractional-order integrators and chaotic
oscillators.

2.1. Fractional Derivative and Fractional Laplacian Operator.
,e Riemann–Liouville definition for calculation of frac-
tional derivatives and integrals of a function f(t) establishes
[41, 42]
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D
α
t f(t) �

1
Γ(m − α)

d
dt

􏼠 􏼡

m

􏽚
t

0

f(τ)dτ
(t − τ)

α−m+1, (2)

where α ∈ R is the fractional order, m − 1< α<m, m ∈ N,
and Γ(·) is the gamma function. For α> 0, α< 0, and α � 0,
one gets the fractional derivative, fractional integral, and
identity function. ,e Laplace transform of (2) with zero
initial conditions becomes [41]

L D
α
t f(t)􏼈 􏼉 � s

α
F(s), (3)

where F(s) stands for Laplace transform of f(t) and sα is the
fractional Laplacian operator given by

s
α

� (jω)
α

� ωα cos
απ
2

􏼒 􏼓 + j sin
απ
2

􏼒 􏼓􏼔 􏼕. (4)

2.2. Op-Amp-Based Building Blocks. ,e circuits of Figure 2
are the analog electronic blocks used in this paper to realize
fractional-order integrators and chaotic oscillators. ,e
selection of Rg, Rs, Ry, Cx, and Ω as degrees of freedom will
allow reducing the number of passive elements with disperse
or not commercially available values.

2.2.1. Weighted Differential Amplifier (WDA). ,e op-amp-
based amplifier of Figure 2(a) amplifies the weighted dif-
ference between two voltages V1A and V2A with pondering
factors depending on Rg1

and Rg2
. By nodal analysis, the

output voltage Vout,A can be calculated as

Vout,A �
Rg

Rg1

V1A −
Rg

Rg2

V2A. (5)

2.2.2. Weighted Adder Amplifier (WAA). ,e amplifier of
Figure 2(b) provides the weighted sum of two voltages V1B

and V2B given by

Vout,B �
Rg

Rh1

V1B +
Rg

Rh2

V2B, (6)

where Rh1
and Rh2

control the pondering factors. Note that
since this circuit is a noninverter adder based on a voltage
series feedback amplifier, it presents a negative feedback
loop which adds up stability to the weighted coefficients of
V1B and V2B, which in turn are the pondering factors
(Rg/Rh1

) and (Rg/Rh2
).

2.2.3. Inverting Integrator (IInv). ,e circuit of Figure 2(c)
uses capacitive feedback to integrate the voltage V1C through

Vout,C

V1C

� −
1

RxCxs
� −

1
s
,

Rx �
1

Cx

. (7)

A capacitor C can replace Cx to translate the frequency
response by a factor Ω, where

C �
Cx

Ω
. (8)

In the time domain, expression (7) is rearranged to be
written as

Vout,C � −
1

RxCx

􏽚
t

0
V1Cdt. (9)

2.2.4. Inverting Amplifier (Inv). ,e circuit of Figure 2(d)
provides a negative voltage gain given by

Vout,D

V1D

� −
Rb

Ra

. (10)

,is negative gain is indicative of an inverting amplifier
with a 180° phase shift between V1D and Vout,D. ,e gain can
be greater than, less than, or equal to 1 depending on the
values of Ra and Rb.

2.2.5. Inverting Weighted Adder Amplifier (IWAA). ,e
amplifier of Figure 2(e) provides a weighted negative sum of
four input voltages V1E, V2E, V3E, and V4E with pondering
factors a, b, c, and d. By nodal analysis, the output voltage
Vout,E can be calculated as

Vout,E � aV1E + bV2E + cV3E + dV4E. (11)

2.2.6. PWL Function Emulator (PWL). Multiscroll chaotic
oscillator circuits use saturated nonlinear functions (SNLFs)
approximated by piecewise linear (PWL) functions [43, 44].
Figure 2(f ) shows the SNLF for generating two and four
scrolls. ,e number of scrolls achieved is the number of
saturated levels, in this case with amplitudes E1, E2, E3, and
E4. ,e breakpoints of the SNLF are e1, e2, and e3.
Figure 2(g) represents the corresponding electronic reali-
zation. To generate two scrolls, the circuit requires two op-
amps with two saturated levels at E1 and E2 and a shifted
voltage (breakpoint) at e1. To make four scrolls, it requires

n2

n1

C1

C2

R1

R2

C3

R3

1/(sα)

1/s0:95 = (1.16s2 + 16.82s + 1.884)/(s3 + 18.4738s2 + 2.6574s + 0.002976)

C1 = 86.2μF, C2 = 29.85μF, C3 = 23.56μF,
R1 = 6.28MΩ, R2 = 0.296MΩ, R3 = 2.945kΩ

Figure 1: Approximation of a fractional-order passive fractance
with α � 0.95 and error of 1 dB.
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Figure 2: Continued.
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four op-amps with four saturated levels at E1, E2, E3, and E4
and three shifted voltages at e1, e2, and e3.

2.2.7. Lead/Lag Phase Network (LL). ,e circuit of
Figure 2(h) is a particular case of a lead/lag phase network
with transfer function

Vout,G

V1G

� G
s + A

As + 1
􏼒 􏼓,

A �
1 + α
1 − α

, (12)

where we can use (8) to translate the frequencies of the zero
ωz � A and the poleωp � (1/A) by a factorΩ. It is important
to remark that the circuit of Figure 2(h) is an op-amp-based
lead compensator, and for the element values as they are
labeled in the network, the transfer function becomes (12),
which is a scaled version of the approximation in (1).

3. Fractional-Order Integrators

,is section presents two realizations of fractional inte-
grators using the blocks of Figure 2. We will carry out Monte
Carlo and sensitivity analyses in them to study how the
uncertainty in the output voltage is allocated to the toler-
ances of the circuit elements. In addition, we will tune some
circuit elements to diminish the slope error in the magnitude
frequency response caused by the first-order CFE
approximation.

3.1. Circuit Implementation. In order to achieve a circuit
implementation of the first-order CFE approximation of the
fractional integrator given by (1), consider a transfer
function in frequency-domain, (V0(s)/Vi(s)), expressed in
the same form, i.e.,

F(s) �
Vo(s)

Vi(s)
�

s + A

As + 1
, (13)

where Vi(s) and Vo(s) are input and output voltages. An
algebraic manipulation on (13) leads to

Vo(s)(As + 1) � Vi(s)(s + A),

sAVo(s) � sVi(s) + AVi(s) − Vo(s),
(14)

and dividing both sides of (14) by As and collecting similar
terms, we get

Vo(s) �
Vi(s)

A
+ −

1
s

􏼒 􏼓
􏽼√√􏽻􏽺√√􏽽
IInv block

Vo(s)

A
− Vi(s)􏼢 􏼣

􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽
WDAblock􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽

WAAblock

.

(15)

Figures 3(a) and 3(b) illustrate the corresponding block
diagram and electronic realization using circuitsWDA, IInv,
and WAA. A comparison of (15) with (5) and (6) results in

Rg1
� Rh2

� ARg,

Rg2
� Rh1

� Rg.
(16)

To determine C and Rx, we apply (7) and (8) after
designating the degrees of freedom Cx and Ω. Later, once
chosen the degree of freedom Rg, for the order α required
and using (1), we calculate Rg1

� Rh2
� ARg (circuit elements

are denoted in blue in Figure 3(b)). ,e rest of resistances
have a value of Rg. As an example, after adopting the degrees
of freedom Rg � 100Ω, Cx � 0.1mF, and Ω � 1E5, the re-
sistances Rg1

� Rh2
shown in the table of Figure 3(b) result

for each order α � (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85,

0.9, 0.95).
Other alternative of implementation is with the circuit of

Figure 2(h) which corresponds to the transfer function (12).
To determine C, we apply (8) after designating the degrees of
freedom Cx and Ω. Later, once chosen the degrees of

−
+−+

−
+e1 = 0

−
+

R

−
+−+

To generate 2-scroll
chaotic attractor

�e complete circuit to
generate 4-scroll chaotic attractor

PWL

Rf

Rf

Rf

Ri

RiV1F
(x)

Ri

Rc

Rc

Rc

Vout,F

e3

e2

(f (x))

(g)

−

+
LL

−

+

V1G Vout,G

Cx Cx

Ry1/(ACx) A/Cx GRy/A

(h)

Figure 2: Basic building blocks. (a) Weighted differential amplifier (WDA). (b) Two-input weighted adder amplifier (WAA). (c) Inverting
integrator (IInv). (d) Inverting amplifier (Inv). (e) Four-input inverting weighted adder amplifier (IWAA). (f ) SNLF for generating two and
four scrolls. (g) Circuit realization of SNLF to generate two and four scrolls. (h) Lead/lag phase network.
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freedom Ry and G, for the order α required and under
A � ((1 + α)/(1 − α)), we calculate (1/(ACx)), (A/Cx), and
(GRy/A) (circuit elements are denoted in blue in
Figure 3(c)).

3.2. Experimental Validation and Slope Adjustment. We
simulated the fractional integrator of Figure 3(b) in
HSPICE and breadboarded it with op-amps TL081 (gain
bandwidth product � 100 kHz, dc gain � 200 V/V, and
supply voltage �±15 V). ,e input was a sinusoidal
voltage with 0.1 V in amplitude and frequency ranged
from 1 kHz to 100 kHz. An NI ELVIS II + laboratory
platform provided this signal and bias potentials of
±15 V for the op-amps. Figure 4(a) shows the measured
frequency responses for
α � (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95). ,ese
plots presented a satisfactory agreement with the results
in HSPICE and with numerical simulations of (1) in
Matlab. In consequence, the first-order CFE approxi-
mation of the fractional integrator causes the slope errors
of the frequency responses reported in Table 1, with
negligible influence of the circuit elements and no ide-
alities of the op-amps. In agreement with Table 1, these
errors are considerable (except for α � 0.1, α � 0.9, and

α � 0.95), extending from 0.09 dB to 4.73 dB. ,is per-
formance is prohibitive to carry out chaotic oscillators,
which are susceptible to their parameters and initial
conditions. To reduce these errors, for each value of α, we
did an experimental tuning of Rg1

� Rh2
� ARg (see the

table of Figure 3(b)). ,is is equivalent to adjusting α
through A, getting the frequency responses of
Figure 4(b). From this figure and according to Table 1,
the adjustment reduces the slope errors to values in the
range from −0.09 dB to 0.6 dB, which produces values of
α closer to the theoretical ones. ,e corresponding curve
fitting of Figure 5 brings us a design equation to calculate
A respect to α, resulting in

A(α) � 1.014e
1.241α

+ 0.002697e
7.48α

, (17)

1
s
α ≈

s + 1.014e
1.241α

+ 0.002697e
7.48α

1.014e
1.241α

+ 0.002697e
7.48α

􏼐 􏼑s + 1
. (18)

For the circuit of Figure 3(c) and using the adjusted
values of A of Table 1, for Ry � 1 kΩ, Cx � 0.1 μF, and
Ω � 1E5, the resistances of values (1/(ACx)), (A/Cx), and
(GRy/A) shown in the table of Figure 3(c) are obtained.
Here, α � (0.9, 0.95) and G � (3, 3.5). Although there are

WDA

Σ

+

−

1
A

Vo

Vo
Vi Vi

IInv

–1s

WAA

Σ

+

+1
A

(a)

−

+

−

+

−

+

WDA IInv
WAA

Degrees of freedom:

α

0.10 120 Ω 110 Ω
0.20 150 Ω 130 Ω
0.30 185 Ω 160 Ω
0.40 233 Ω 170 Ω
0.50 300 Ω 200 Ω
0.60 400 Ω 240 Ω
0.70 566 Ω 280 Ω
0.80 900 Ω 390 Ω
0.85 1.23 kΩ 450 Ω
0.90 1.90 kΩ 530 Ω
0.95 3.90 kΩ 660 Ω

Vout

VoutVin

Vin

Rg1
 = ARg

Rh2
 = ARg

Rh2
 = ARg

ARg
(calculated)

ARg
(adjusted)

Rg1
 = ARg

Rg2
 = Rg = 100 Ω

Rh1
 = Rg = 100 Ω

Rh1
 = Rg = 100 Ω

Rg = 100 Ω
Rg = 100 Ω

Rg = 100 Ω, Cx = 0.1 mF, Ω = 1E5

Rg = 100 Ω
Rg = 100 Ω Rx = 1/Cx = 10 kΩ C = Cx/Ω = 1nF

Rg2
 = Rg = 100 Ω

(b)

−

+

−

+

α G GRy/A

Adjusted 0.90 3.0 188 Ω 566 Ω
0.95 3.5 150 Ω 6.6 kΩ

5.3 kΩ
530 Ω

GRy/A

1/(ACx) A/Cx

VoutVin

1/(ACx) A/Cx

Cx = 0.1 μF Cx = 0.1 μF

Ry = 1 kΩ

Degrees of freedom:
Ry = 1kΩ, Cx = 0.1μF, Ω = 1E5

(c)

Figure 3: Fractional-order integrator. (a) Block diagram. (b) First implementation. (c) Second implementation.
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Figure 4: Experimental results of the fractional-order integrator: (a) without adjustment and (b) with adjustment.

Table 1: A adjustment for each order α � (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95).

,eoretical value Experimental data without
adjustment Experimental data with adjustment

α Slope
(dB/dec) A ARg (kΩ)

Slope
(dB/dec) Error (dB) A ARg (kΩ)

Slope
(dB/dec) Error (dB) Phase error (%) Equivalent α

0.10 2 1.20 0.120 2.960 0.96 1.1 0.11 2.140 0.14 −1.12 0.1070
0.20 4 1.50 0.150 6.300 2.30 1.3 0.13 4.170 0.17 −2.57 0.2085
0.30 6 1.85 0.185 8.900 2.90 1.6 0.16 6.600 0.60 −3.16 0.3300
0.40 8 2.33 0.233 11.84 3.84 1.7 0.17 7.910 −0.09 −2.79 0.3955
0.50 10 3.00 0.300 14.53 4.53 2.0 0.20 10.14 0.14 −2.48 0.5070
0.60 12 4.00 0.400 16.73 4.73 2.4 0.24 12.40 0.40 −2.95 0.6200
0.70 14 5.66 0.566 18.38 4.38 2.8 0.28 13.94 −0.06 −2.54 0.6970
0.80 16 9.00 0.900 20.00 4.00 3.9 0.39 16.46 0.46 −2.27 0.8230
0.85 17 12.3 1.230 20.24 3.24 4.5 0.45 17.01 0.01 −3.32 0.8505
0.90 18 19.0 1.900 19.15 1.15 5.3 0.53 18.10 0.10 −0.57 0.9050
0.95 19 39.0 3.900 19.09 0.09 6.6 0.66 19.02 0.02 −0.07 0.9510
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Figure 5: Approximation of A as an exponential function of α.
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other alternatives for implementing fractional-order inte-
grators, as discussed in Section 1, the first-order CFE
implementation used in this work is very compact and does
not require circuit elements with noncommercial values.
,erefore, to the best of the authors’ knowledge, this is the
first experimental validation of a multiscroll chaotic system
based on active fractional-order circuits, and thus, there are
not any other works where either simulated or experimental
results are reported, and consequently, those cannot be
compared with our proposal. In fact, other fractional-order
multiscroll chaotic systems based on passive ladder networks
as reported in [43, 44] require more hardware, including
resistors and capacitors with noncommercial values.

3.3. Monte Carlo Analysis. To verify that the circuit of
Figure 3(b) is robust to tolerances, we carried out a Monte
Carlo analysis in SPICE. We dealt with tolerances of ±5%
and ±20% in the resistors and capacitors using a normal
distribution with N� 100. ,e variable to examine is the
slope of the magnitude response for each value
α � (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95). To
simplify, Figure 6 depicts only the histograms corresponding
to the adjusted circuit with α � 0.9 and α � 0.95. We observe
distributions similar to a normal distribution. Table 2
outlines the obtained results for each value of α and for
both cases, with and without adjustment. ,e resulting
standard deviations are small, in the range from 0.027 dB/
dec to 0.23 dB/dec, and comparable in both cases. Figure 7(a)
illustrates the mean slope obtained for each order. Without
tuning, these values move away from the line that describes
the theoretical slopes. Figure 7(b) depicts the largest and
smallest values that the slope gets without tuning. ,e
maximum error is in the range from 0.5 dB to 4.5 dB. No one
order (except α � 0.1) encloses the curve of the ideal slope.
From Figure 7(c), we observe that the greatest and smallest
values of the slope with tuning are closer to the ideal line,
enclosing it. ,e maximum error is in the range of 0.6 dB.
,is way, the error in the first-order CFE approximation
without adjustment influences the slope more than the
tolerances.

3.4. Sensitivity Analysis. In assessing the sensitivity of the
output voltage of the fractional-order integrator of Figure 8
regarding its resistive elements, by performing a normalized
sensitivity simulation, the results reported in Table 3 are
achieved. Note that only four of the thirteen resistors of the
circuit are in Table 3 since these are those who exhibit a
“major” impact on the integrator’s sensitivity. As appreci-
ated, different scenarios may occur depending on the value
of α, but in general terms sensitivity is a little less when the
adjustment has been applied. Without loss of generality, we
can say that the larger the value of α is, the larger the
sensitivity becomes. Still, sensitivity is highly acceptable. Let
us take the worst case when α � 0.95 and a 1% variation of
the nominal value of RG02

produces a deviation of ≈2.3mV in
the output voltage of the circuit. Even though this value is
low, a lesser variation can be attained if a high-precision
resistor (with a tolerance <1%) is used for RG02

. We can apply

the same criteria for the rest of the resistors in terms of
tolerances; however, there is a trade-off between sensitivity
and realization cost, and high-precision resistors are also
more expensive. It is important to emphasize that the
sensitivity of the output voltage at a frequency of 0Hz
(ω � 0 rad/s), i.e., at DC regime, and Vin � 1V is equivalent
to determine the sensitivity of the transfer function, F(s),
when s � jω � 0, i.e., for F(0) � A. And thus, we are
evaluating A variation as a function of the resistive elements.

To evaluate the sensitivity of the fractional-order inte-
grator regarding capacitor Cx, Figure 9 depicts the behavior
of the normalized sensitivity of F(s) for both with and
without adjustment of parameter A. We define the nor-
malized sensitivity as

S
F(s)
Cx

�
Cx

F(s)

dF(s)

dCx

, (19)

with nominal values Cx � 1 nF and s � 2π(15.91 kHz)j, and
with F(s) given by (13). As illustrated, the tendency is rising
towards the 1% of F(s) variation as Cx changes 1% of its
nominal value along with the α increment.

According to the results reported above, we can conclude
that the proposed fractional-order integrator exhibits a low
sensitivity regarding variations of the values of its passive
elements.

4. Fractional-Order Multiscroll Lü
Chaotic System

In this section, we design electronic circuits based on the
building blocks of Figure 2 and the fractional integrators of
Figure 3 to realize commensurate fractional-order Lü cha-
otic system, i.e., system with equal fractional order for in-
tegrators. A commensurate realization is acceptable to test
the functionality and benefits of using the active fractional-
order integrators of Figure 3, but incommensurate frac-
tional-order oscillators, as those reported in [45–47] or [48]
can also be realized with the proposed approach without
increasing hardware requirements. In fact, the proposed
approach is an attractive alternative for the design of in-
commensurate fractional-order oscillators because it is
necessary to calculate the parameter A using (17) instead of
designing ladder networks.

,e fractional-order Lü chaotic system is a realization
that represents the transition from the Lorenz to the Chen
attractor [49, 50]. ,e Lü system displays the following
system of equations:

D
α
x � y,

D
α
y � z,

D
α
z � −ax − by − cz + d1 f(x)

􏽼√√􏽻􏽺√√􏽽
PWL

,

(20)

where x, y, and z are state variables, a, b, c, and d are positive
real constants, α ∈ (0, 1) is the fractional order, and f(x) is
a SNLF similar to that represented in Figure 2(f). In [43, 49],
the authors determine, for a Lü chaotic oscillator, the
suitable incommensurate fractional order to preserve the
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chaotic behavior with (a, b, c, d) � (2, 1, 0.6, 2), getting
α1 � 0.8, α2 � 0.9, and α3 � 0.95 and Lyapunov exponents
LE1 � 0.3226, LE2 � 0, and LE3 � −1.2203. Taking as ref-
erence that design, we will design our 2-scroll and 4-scroll
commensurate realizations with the same parameters a, b, c,
and d, and with α � 0.9 and α � 0.95. ,e stability can be
verified by using the method reported in [51].

Figure 10 depicts the block diagram and design details of
the commensurate fractional-order system in (20). Figure 11
shows the corresponding experimental setup with fractional
integrators as those depicted in Figure 3(b) and all the
circuits realized using TL081 op-amps. ,e setup comprises
a Keysight DSOX3054A oscilloscope, two DC power sup-
plies RIGOL DP832 and BK precision 1550, and the PCB
realized with the software Altium Designer 19. ,e design
details of the PWL block for a 4-scroll chaotic attractor are
presented in this figure for a saturation voltage Vsat � 13.5V.
VCC and VEE are the bias voltages of the op-amps TL081,
while V+ and V− are the voltages required by the block f(x).

,e 2-scroll chaotic attractor can be obtained with this
circuit, as is illustrated in Figure 2(g). ,e four-input IWAA
is designed with the degree of freedom Rg � 1 kΩ and the
desired values for a, b, c, and d. We incorporated a gain G to
the first and second approximations of the fractional inte-
grator to add tuning capacity. ,e parameter A was cal-
culated using (17) and the degrees of freedom for the first
approximation were Rg � 100Ω, Cx � 0.1mF, Ω � 1E5,
C � 1 nF, and Rx � 5 kΩ. For the second approximation, we
used Ry � 1 kΩ, Cx � 0.1 μF,Ω � 1E5, and C � 1 pF. Values
of G � 3 and G � 3.5 were used for α � 0.9 and α � 0.95 to
approximate the frequency response of the integrators to the
response of equivalent passive realizations. We can observe
that, with the first approximation, the chaotic oscillator
requires for implementation 54 resistors, 3 capacitors, and
14 op-amps. With the second approximation, the circuit
comprises 27 resistors, 6 capacitors, and 11 op-amps.
Figures 12(a) and 12(b) show the SPICE simulation and
experimental measurement of the 2-scroll chaotic attractor
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Figure 6: Histograms (Monte Carlo analysis): (a) α � 0.9 and (b) α � 0.95.

Table 2: Monte Carlo analysis.

Without adjustment With adjustment

α Mean slope
(dB/dec)

Std. dev.
(dB/dec)

Min.
(dB/dec)

Max.
(dB/dec)

Mean slope
(dB/dec)

Std. dev.
(dB/dec) (m)

Min.
(dB/dec)

Max.
(dB/dec)

0.10 −2.54 200.62 −3.04 −1.94 −1.90 189.72 −2.35 −1.41
0.20 −5.77 177.18 −6.12 −5.30 −3.77 197.33 −4.24 −3.33
0.30 −8.65 204.31 −9.18 −8.23 −6.73 177.47 −7.13 −6.24
0.40 −11.45 167.15 −11.92 −11.03 −7.57 175.89 −7.95 −7.09
0.50 −14.00 213.91 −14.55 −13.53 −9.65 187.33 −10.10 −9.11
0.60 −16.29 153.06 −16.56 −15.86 −11.8 159.39 −12.28 −11.43
0.70 −18.13 90.907 −18.28 −17.76 −13.39 151.61 −13.74 −13.00
0.80 −19.17 167.37 −19.54 −18.64 −15.91 238.89 −16.49 v15.30
0.85 −18.50 167.71 −18.92 −18.08 −16.89 180.43 −17.16 −16.44
0.90 −19.30 97.381 −19.50 −18.97 −17.75 153.82 −18.00 −17.26
0.95 −19.83 27.705 −19.89 −19.73 −18.60 129.53 −18.85 −18.17
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Figure 7: Monte Carlo analysis: (a) mean values of slope with and without adjustment. (b) Maximum andminimum values of slope without
adjustment. (c) Maximum and minimum values of slope with adjustment.
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Figure 8: Fractional-order integrator: notation for the sensitivity analysis.
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Table 3: Sensitivity analysis.

Order Sensitivity without adjustment Sensitivity with adjustment
α RG02

(mV/%) RG11
(mV/%) RG20

(mV/%) RH10
(mV/%) RG02

(mV/%) RG11
(mV/%) RG20

(mV/%) RH10
(mV/%)

0.10 — 8.47 −7.77 — — 7.56 −7.22 —
0.20 — 11.3 −9.38 — — 9.39 −8.31 —
0.30 — 14.6 −11.2 — — 12.2 −9.91 —
0.40 — 19.2 −13.7 — — 13.1 −10.4 —
0.50 11.4 8.56 2.6e−13 6.42 2.95e−4 16.0 −12.0 −1.96e−4
0.60 13.1 8.38 −7.75e−5 8.37 4.08e−4 19.9 −14.1 −2.88e−4
0.70 15.2 7.74 −1.28e−4 10.9 5.4e−4 23.8 −16.1 −3.98e−4
0.80 17.8 6.40 — 14.3 13.0 8.41 — 8.19
0.85 19.4 5.37 — 16.4 13.8 8.21 — 9.22
0.90 21.2 4.00 — 18.8 14.8 7.89 — 10.4
0.95 23.3 22.3 — 21.4 16.1 7.34 — 12.1
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Figure 10: Block diagram and circuit synthesis to realize the fractional-order multiscroll PWL Lü chaotic system in (20) with α � 0.9 and
α � 0.95.
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Figure 11: Experimental setup.
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Figure 12: Projection of the 2-scroll chaotic attractor onto xy-plane (phase space portrait): (a) simulation result with α � 0.9 (SPICE); (b)
experimental result with α � 0.9 (oscilloscope scale� 0.5V per division); (c) simulation result with α � 0.95 (SPICE); (d) experimental result
with α � 0.95 (oscilloscope scale� 0.3 V per division).
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projected onto xy-plane (phase space portrait) for α � 0.9.
Figures 12(c) and 12(d) show the SPICE simulation and
experimental measurement of the same projection for
α � 0.95. We can observe an agreement between simulation,

theoretical, and experimental results. Figures 13(a) and
13(b) show the SPICE simulation and experimental mea-
surement of the projection of the 4-scroll chaotic attractor
onto xy-plane for α � 0.9. Figures 13(c) and 13(d) show the

1.5

1.0

0.5

0

–0.5

y (
t) 

(v
ol

ts)

x (t) (volts)

–1.0

–1.5
–4 –2 0 2 4

(a)

y (
t) 

(v
ol

ts)

x (t) (volts)

(b)

2

1

0

y (
t) 

(v
ol

ts)

x (t) (volts)

–1

–2
–4 –2 0 2 4

(c)

y (
t) 

(v
ol

ts)

x (t) (volts)

(d)

Figure 13: Projection of the 4-scroll chaotic attractor onto xy-plane (phase space portrait): (a) simulation result with α � 0.9 (SPICE); (b)
experimental result with α � 0.9 (oscilloscope scale� 1V per division); (c) simulation result with α � 0.95 (SPICE); (d) experimental result
with α � 0.95 (oscilloscope scale� 1V per division).

Table 4: Comparison of hardware requirements of implemented Lü fractional-order chaotic oscillators.

Realization
Number of resistors Number of capacitors

Op-amps
Commercial Noncommercial Total Commercial Noncommercial Total

[43] 33 11 44 0 11 11 15
[44] 16 17 33 0 9 9 15
1st approximation 42 12 54 3 0 3 14
2nd approximation 18 9 27 6 0 6 11
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SPICE simulation and experimental measurement of the
same projection for α � 0.95. Again we observe agreement
between simulation and experimental results.

Table 4 shows a comparison of the hardware require-
ments of the two proposed realization and the fractional-
order oscillators reported in [43, 44]. Despite the active
realization of the fractional integrators, we observe that the
two proposed implementations reduce the number of re-
quired op-amps (reducing power consumption), do not
require noncommercial capacitors, and have a comparable
number of noncommercial resistors. Unlike the resistors
used in [43, 44], the values of the noncommercial resistors of
the proposed realizations are easy to approximate with
combinations of commercially available resistors, avoiding
bulky realizations difficult to redesign. Another advantage is
the easy design of the fractional-order integrators using (17)
instead of calculating the elements of ladder networks.

5. Conclusion

,is paper presented the design and electronic imple-
mentation of a commensurate fractional-order multiscroll
chaotic oscillator with orders α � 0.9 and α � 0.95. ,e
fractional-order integrators realized with tuned first-order
active realizations are robust to tolerances in the passive
elements and favor the use of resistors and capacitors with
commercial values, reducing hardware requirements and
design and implementation efforts. ,e easy design of the
fractional-order integrators with improved accuracy using
(17) instead of calculating ladder networks could favor the
practical realization of other types of systems, such as in-
commensurate chaotic oscillators, fractional-order filters,
fractional-order controllers, and fractional-order
memristors.

Finally, the physical realization of fractional-order
chaotic systems with hidden dynamics (attractors without
equilibrium points, multistability, extreme multistability,
etc.) along with their synchronization schemes using the
proposed approach will be conducted in future works to
explore secure communications based on fractional chaos.

Data Availability

,e necessary data are included within the article.

Conflicts of Interest

,e authors declare no conflicts of interest.

Acknowledgments

,is work was supported by projects CONACYT (258880),
Plan de Trabajo CA (BUAP-CA-276) by SEP-PRODEP, and
VIEP-BUAP.

References

[1] J. A. Tenreiro Machado and A. M. Lopes, “Complex and
fractional dynamics,” Entropy, vol. 19, p. 62, 2019.

[2] M. S. Tavazoei, “Fractional order chaotic systems: history,
achievements, applications, and future challenges,” He Eu-
ropean Physical Journal Special Topics, vol. 229, no. 6-7,
pp. 887–904, 2020.

[3] H. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Chen, “A new
collection of real world applications of fractional calculus in
science and engineering,” Communications in Nonlinear
Science and Numerical Simulation, vol. 64, pp. 213–231, 2018.

[4] W.-C. Chen, “Nonlinear dynamics and chaos in a fractional-
order financial system,” Chaos, Solitons & Fractals, vol. 36,
no. 5, pp. 1305–1314, 2008.

[5] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, and
J. H. T. Bates, “,e role of fractional calculus in modeling
biological phenomena: a review,” Communications in Non-
linear Science and Numerical Simulation, vol. 51, pp. 141–159,
2017.

[6] H. G. Sun, W. Chen, H. Wei, and Y. Q. Chen, “A comparative
study of constant-order and variable-order fractional models
in characterizing memory property of systems,”He European
Physical Journal Special Topics, vol. 193, no. 1, p. 185, 2011.

[7] E. Zambrano-Serrano, J. M. Muñoz-Pacheco, and E. Campos-
Cantón, “Chaos generation in fractional-order switched
systems and its digital implementation,” AEU-International
Journal of Electronics and Communications, vol. 79, pp. 43–52,
2017.

[8] H. S. Mohammadzadeh and M. Tabatabaei, “Design of non-
overshooting fractional-order PD and PID controllers for
special case of fractional-order plants,” Journal of Control,
Automation and Electrical Systems, vol. 30, no. 5, pp. 611–621,
2019.

[9] M. Zamani, M. Karimi-Ghartemani, N. Sadati, and
M. Parniani, “Design of a fractional order PID controller for
an AVR using particle swarm optimization,” Control Engi-
neering Practice, vol. 17, no. 2, pp. 1380–1387, 2009.

[10] C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Chen, “Tuning
and auto-tuning of fractional order controllers for industry
applications,” Control Engineering Practice, vol. 16, no. 7,
pp. 798–812, 2008.

[11] Y. Zhou, F. Miao, and Q. Luo, “Symbiotic organisms search
algorithm for optimal evolutionary controller tuning of
fractional fuzzy controllers,” Applied Soft Computing, vol. 77,
pp. 497–508, 2019.

[12] Z. Luo and A. Yazdizadeh, “Identification of wind turbine
using fractional order dynamic neural network and optimi-
zation algorithm,” International Journal of Engineering,
vol. 33, no. 2, pp. 277–284, 2020.

[13] G. Si, J. Zhu, L. Diao, and Z. Ding, “Modeling, nonlinear
dynamic analysis and control of fractional PMSG of wind
turbine,” Nonlinear Dynamics, vol. 88, no. 2, pp. 985–1000,
2017.

[14] Z. Peng, W. Yu, J. N. Wang et al., “Dynamic analysis of seven-
dimensional fractional-order chaotic system and its appli-
cation in encrypted communication,” Journal of Ambient
Intelligence and Humanized Computing, vol. 11, pp. 5399–
5417, 2020.

[15] A. Ortiz, J. Yang, M. Coccolo, J. M. Seoane, and
M. A. Sanjuán, “Fractional damping enhances chaos in the
nonlinear Helmholtz oscillator,” Nonlinear Dynamics,
vol. 102, pp. 2323–2337, 2020.

[16] M.-F. Danca, “Hidden chaotic attractors in fractional-order
systems,” Nonlinear Dynamics, vol. 89, no. 1, pp. 577–586,
2017.

[17] X. Wang, A. Ouannas, V. T. Pham, and
H. R. Abdolmohammadi, “A fractional-order form of a

14 Complexity



system with stable equilibria and its synchronization,” Ad-
vances in Difference Equations, vol. 20, pp. 1–13, 2018.

[18] S. T. Kingni, V.-T. Pham, S. Jafari, G. R. Kol, and P. Woafo,
“,ree-dimensional chaotic Autonomous system with a cir-
cular equilibrium: analysis, circuit implementation and its
fractional-order form,” Circuits, Systems, and Signal Pro-
cessing, vol. 35, no. 6, pp. 1933–1948, 2016.

[19] Z. Odibat, N. Corson, M. A. Aziz-Alaoui, and A. Alsaedi,
“Chaos in fractional order cubic chua system and synchro-
nization,” International Journal of Bifurcation and Chaos,
vol. 27, no. 10, Article ID 1750161, 2017.

[20] J. M. Munoz-Pacheco, E. Zambrano-Serrano, C. Volos,
O. I. Tacha, I. N. Stouboulos, and V.-T. Pham, “A fractional
order chaotic system with a 3D grid of variable attractors,”
Chaos, Solitons & Fractals, vol. 113, pp. 69–78, 2018.

[21] R. Montero-Canela, E. Zambrano-Serrano, E. I. Tamariz-
Flores, J. M. Muñoz-Pacheco, and R. Torrealba-Meléndez,
“Fractional chaos based-cryptosystem for generating en-
cryption keys in Ad Hoc networks,” Ad Hoc Networks, vol. 97,
Article ID 102005, 2020.

[22] H. Jahanshahi, A. Yousefpour, J. M. Munoz-Pacheco,
S. Kacar, V.-T. Pham, and F. E. Alsaadi, “A new fractional-
order hyperchaotic memristor oscillator: dynamic analysis,
robust adaptive synchronization, and its application to voice
encryption,” Applied Mathematics and Computation, vol. 383,
Article ID 125310, 2020.
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