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Abstract. In this paper, a new chaotic oscillator consists of a single op-
amp, two capacitors, one resistor, one inductor, and memristive diode
bridge cascaded with an inductor is proposed. The proposed chaotic
oscillator has a line of equilibria. In the new oscillator circuit, nega-
tive feedback, i.e. inverting terminal of the op-amp is used, and the
non-inverting terminal is grounded. The new oscillator has chaotic,
periodic, quasi-periodic behaviours, as seen from the Lyapunov spec-
trum plots. Some more theoretical and numerical tools are used to
present the dynamical behaviours of the new oscillator like bifurcation
diagram, phase plot. Further, a non-singular terminal sliding mode
control (N-TSMC) is designed for the suppression of the chaotic states
of the new oscillator. An application of the new oscillator is shown by
designing a chaos-based random number generator. Raspberry Pi 3 is
used for the realisation of the random number generator.

1 Introduction

In the present decade, analogue components with memory are more focused on the
research [1,2]. Initial works on memristor were reported in [3–5]. The circuit com-
ponents with memory are considered as memristor, meminductor and memcapacitor
[1]. The behaviour of these components is dependent on their history. The physical
realisation of a memristor was only done by HP laboratory [4], and not commercially
available now. Besides this challenge, the circuit elements with memory are more
interesting.

The nonlinear characteristics of a memristor make it more attractive to use in
chaotic circuits. Moreover, the analysis, design, development and application of a
memristor have become a recent trend in research. Sometimes, the number of the state
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Table 1. Categorisation of research on the single op-amp based chaotic oscillators.

Sl. No. Category/classification References
1. 1-opamp, 3-R, 1-C and voltage-controlled voltage source [29]
2. 1-opamp, 4-R, 2-C and parallel diode-inductor [16,17]
3. 1-opamp, 4-R, 2-C and parallel Diode- Antoniou General

Impedance Converter (GIC) arrangement
[19]

4. 1-opamp, 5-R, 3-C and 1-Chua’s diode [30]
5. 1-opamp, 1-R, 2-C, 1-L, 1-Diode [26]
6. Wein-bridge oscillators: 1-opamp, 5-R, 2-C, diodes/Chua’s

diode
[6,20]

7. Wien-bridge oscillator: non-autonomous [31]
8. 1-opamp, 1-R, 1-L, 2-C and pair of semiconductor diodes [27]

memristor-based
9. Wein-bridge oscillators: different types of memristor,

1-opamp and Rs, Cs
[18,21–25,28]

10. 1-opamp, 2-C, 1-R, 1-L, and memristive diode bridge
cascaded with an inductor

This work

equations increases significantly for a memory-based chaotic circuit that enhances the
difficulty level for its analysis and solution [6]. There are many research directions
available for the use of a memristor in a chaotic circuit [7–11]. Some of these circuits
are like non-smooth piecewise-linear [12], curve model [8,11], piecewise quadric non-
linearity [13], memristor-based neural network [14], etc. Despite these, the research
on the use of a memristor in a chaotic circuit has been comparatively less explored
as compared with the use of normal chaotic circuits.

It has always being focused to develop a simple chaotic oscillator compared with
the available one. A simple chaotic oscillator is required for reporting a new system
since a new chaotic system must satisfy at least one criterion in [15]. Therefore,
developing a chaotic system/oscillator with fewer components is more interesting.
Recently, chaotic oscillators using a single op-amp is more focused and considered
for study [6,16–25]. Chaotic oscillators using a single op-amp based on inductor (L),
capacitor (C), resistor (R) and semiconductor diode components are reported in the
literature [16,17,19,26,27].

Some memristor-based chaotic oscillators with L, C components are also reported
in the literature [18,21–25,28]. The available papers on the single op-amp based
chaotic oscillator are categorised in Table 1.

It is noted from Table 1 that few chaotic oscillators are made of a single-opamp
with resistances, capacitances and memristor. Motivated with the above-discussed lit-
erature, in this paper, a new chaotic oscillator using a single opamp, two capacitors,
one resistor, one inductor, and memristive diode bridge cascaded with an induc-
tor having a line of equilibria is proposed. In the new oscillator circuit, negative
feedback, i.e. inverting terminal of the opamp is being used and the non-inverting
terminal is grounded. It is to be noted that in the case of Sl. No. 9 of Table 1,
(Wein-bridge oscillators) positive feedbacks and inverting terminal are used in the
circuits.

Chaotic systems have been a subject of considerable interest in many areas in
recent years [32–34]. Especially in recent years, a large number of studies have been
conducted on random number generators (RNG). Angulo et al., performed a new
oscillator-based RNG [35], avaroglu performed hardware-based RNG [35], Li et al.,
and Ergun and Özoguz performed real RNG [36,37], Cicek et al. performed discrete
time chaos-based RNG and a new pair of entropy core RNG [38], Pareschi et al.
performed high-speed RMS testing and implementation [39].
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Wieczorek et al., have designed an RNG that its operating frequency is 50 MHz
and bit production speed is 5 Mbit/s by using an FPGA with a double stable flip-flop,
and the random numbers were subjected to statistical tests, they achieved success-
ful results [40]. Fischer et al. performed a PLL-based oscillator using FPGA at a
production rate of 1 Mbit/s and achieved successful results from NIST tests [41].
István et al. performed FPGA-based, random number generation with 50 MHz oper-
ating frequency classical jitter oscillator method and obtained successful results from
NIST-800-22 tests [42].

In recent decades, many control techniques are proposed for the chaos suppression
or control of the states of the chaotic system like adaptive control [43], sliding mode
control (SMC) [44], backstepping control [45], contraction theory based control [46],
etc. SMC is more focused among other control techniques.

In this paper, a new chaotic oscillator using a single opamp, two capacitors, one
resistor, one inductor, and memristive diode bridge cascaded with an inductor having
a line of equilibria is proposed. The new oscillator is analysed using the theoretical and
numerical methods like Lyapunov exponents, bifurcation diagram and phase plots.
Further, a non-singular terminal SMC technique is designed for the suppression of
the states of the new oscillator. Finally, an application of the new oscillator is shown
for the chaos based random number generation (RNG). Raspberry Pi 3 is used for
the realisation of the RNG.

The remaining paper goes like this. Section 2 discusses the design of the
memristor-based new chaotic oscillator containing a single op-amp L, C and R. The
dynamic behaviour analyses of the proposed oscillator are discussed in Section 3.
Section 4 discusses the design of a non-singular terminal SMC technique for the sup-
pression of chaos in the states of the new oscillator. In Section 5, a random number
generator is designed using the new oscillator and its randomness is tested. Finally,
the conclusions of the paper are presented in Section 6.

2 Memristor-based oscillator containing a single op-amp L, C
and R

In this section, the dynamics of the generalised memristor and the new system devel-
oped using the generalised memristor is discussed.

2.1 Dynamics and structure of a generalised memristor

The equivalent circuit of a generalised memristor [24,47,48] considered in this paper
is shown in Figure 1. The circuit contains a diode bridge cascaded with a parallel
RC filter. Voltage constraints across each pair of parallel diodes are the main cause
of memristive behaviour.

In Figure 1, vM is the voltage across the input terminal and iM is the current
flowing through the input terminal, vo is the voltage across the capacitor and GM
is the memristor conductance. The dynamics iM and vo is expressed as [24,47,48] in
(1).  iM = GM vM = 2Ise−αv0 sinh(αvM )

dv0
dt

=
2Ise−αv0 cosh(αvM )

C0
− v0
R0 C0

− 2Is
C0

(1)

where α = 1
2ωvt

is a constant. The variables Is, ω and vt are the reverse saturation
current, emission coefficient, and thermal voltage of diodes, respectively [24,47,48].
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Fig. 1. A generalised memristor using a diode bridge and a parallel LC circuit [24,47,48].

Fig. 2. The proposed oscillator containing a single op-amp, L, R, C and a generalised
memristor.

The value of these parameters is Is = 5.84nA, ω = 1.94, vt = 0.25 V. In Figure 1,
IN1418 type of diodes is used.

2.2 New chaotic oscillator containing a single op-amp, generalised memristor
L, C and R

The proposed chaotic circuit is presented in Figure 2. It is based on the generalised
memristor shown in Figure 1. The circuit has a single op-amp, two capacitors C1, C2,
an inductor L, a resistor R1 and a memristor having a conductance GM .

Let v1 and v2 be the voltage drop across capacitors C1 and C2, respectively,
and iL, iM be the current flowing through the inductor and memristor, respectively,
in Figure 2. Here, it is assumed that op-amp and capacitors work in their linear
working range. Applying Kirchhoff’s laws to the circuit in Figure 2 and using the
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voltage equation for memristor given in (1), a set of four differential equations are
obtained as: 

C1
dv1
dt

= − v2
R1

C2
dv2
dt

= − v2
R1

+ iL + iM

L
diL
dt

= v1 − v2
dv0
dt

=
2Ise−αv0 cosh(αvM )

C0
− v0
C0R0

− 2Is
C0

(2)

Now using the expression of iM from (1) and rearranging the terms in (2), we can
write as 

dv1
dt

=
(

1
C1

){
− v2
R1

}
dv2
dt

=
(

1
C2

){
− v2
R1

+ il + 2Ise−αv0 sinh(αvM )
}

diL
dt

=
(

1
L

)
{v1 − v2}

dv0
dt

=
(

1
C0

){
2Ise−αv0 cosh(αvM )− v0

R0
− 2Is

}
(3)

We consider the following new variables for a change of variables and parametersσ =
√

L
C2
, x1 = v1, x2 = v2, x3 = iLσ, a = σ

R , b = C2
C1
, t = τ

√
L (C2),

c =
√
L(C2)

C0
, vM = x1 − x2

(4)

The normalised dimensionless circuit equations are expressed in (5).
ẋ1 = −abx2

ẋ2 = −ax2 + x3 + 2Isσe−α(x4) sinh(α(x1 − x2))
ẋ3 = x1 − x2

ẋ4 = c{2Ise−α(x4) cosh(α(x1 − x2))− 1
R0

(x4)− 2Is}
(5)

The system in (5) has four nonlinear terms including two exponential terms, one
cosine hyperbolic and sine hyperbolic.

The system in (5) has an asymmetry to its axes, planes and spaces and is not
invariant under the coordinate transformations.

The equilibrium point of the system in (5) is obtained as E=
(

0, 0, 0,

e−α(x4) − 1
2IsR0

(x4) = 1
)

. The only value of (x4) which satisfies the condition of
E is zero. Hence, the equilibrium point of the system in (5) is the origin.

The system in (5) has chaotic behaviour for the set of parameters
a= 120, b= 2.52, c= 310.62, α= 10.309, σ= 316.62, R0 = 20, Is = 3.048× 10−9. The
Lyapunov exponents for the above set of parameters are calculated by using the
Wolf et al. algorithm [49] and found as Li = (0.9012, 0, −6.383, −13. 4639). The
presence of one positive Lyapunov exponents reflects that the system has chaotic
behaviour. Chaotic attractors of System (5) with the above set of parameters and
x(0) = (0.01, 0.014, 0.05, 0.01)T are shown in Figure 3.
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Fig. 3. Chaotic attractors of System (5).
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Fig. 4. Lyapunov spectrum with the variation of parameter a and b = 2.52, c = 310.62, α =
10.309, σ = 316.62, R0 = 20, Is = 3.048× 10−9.

3 Dynamic behaviours of the proposed system in (5)

Dynamic behaviours of System (5) are investigated using the bifurcation diagram
and Lyapunov spectrum plots. All these plots are obtained by varying one param-
eter at a time and keeping the other parameters fixed. Lyapunov spectrum is
obtained by finding the Lyapunov exponents with fixed initial conditions x(0) =
(0.01, 0.014, 0.05, 0.01)T . Lyapunov spectra with the variation of parameters a and
b are shown in Figures 4 and 6, respectively. Bifurcation diagram plots using the
continuation method, and with the variation of parameters a and b are shown in
Figures 5 and 7, respectively. Lyapunov spectrum plots and bifurcation diagrams
with the variation of parameter c are not shown here, because in this case, the
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Fig. 5. Bifurcation diagram using the continuation method, and by varying parameter a
with b = 2.52, c = 310.62, α = 10.309, σ = 316.62, R0 = 20, Is = 3.048× 10−9.
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Fig. 6. Lyapunov spectrum by varying parameter b with a = 120, c = 310.62, α =
10.309, σ = 316.62, R0 = 20, Is = 3.048× 10−9.

dynamical behaviours of the system are same. Thus, to avoid the repetition and to
restrict the length of the paper, the results with the variation of parameter c are not
shown here. It is apparent from the Figure 5 that in case of the bifurcation diagram
using continuation method there is a change in behaviour of the system for parameter
a in the ranges: 81.3 < a < 84.0, where the system has chaotic behaviour; for the
region 84.51 < a < 84.71 and 87.35 < a < 87.75, the system has periodic behaviour;
for the region 0.34 < b < 1, the system has chaotic behaviour.

Coexistence of chaotic attractors with a= 120, b= 2.52, c= 310.62, α= 10.309,
σ= 316.62, R0 = 20, Is = 3.048×10−9 and x(0) = (±1.001, 0.0014, 0.005,± 10.5101)T
are shown in Figure 8.

4 Design of non-singular terminal SMC technique for the
regulation of the states

In this section, a non-singular terminal SMC technique is designed for the suppression
of chaos in the states of the new oscillator. The system dynamics (5) is rewritten with
control input in (6).

ẋ1 = −abx2

ẋ2 = −ax2 + x3 + 2Isσe−α(x4) sinh(α(x1 − x2)) + u1

ẋ3 = x1 − x2 + u2

ẋ4 = c{2Ise−α(x4) cosh(α(x1 − x2))− 1
R0

(x4)− 2Is}+ u3

(6)
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Fig. 7. Bifurcation diagram using the continuation method, and by varying parameter b
with a = 120, c = 310.62, α = 10.309, σ = 316.62, R0 = 20, Is = 3.048× 10−9.

-1 0 1
-0.05

0

0.05

x
1
      (a)

x 2

-0.05 0 0.05

-0.2

-0.1

0

0.1

0.2

x
2
      (b)

x 3

-0.2 0 0.2

0.01

0.02

0.03

0.04

0.05

x
3
      (c)

x 4

0.01 0.02 0.03 0.04 0.05

-1

-0.5

0

0.5

1

x
4
      (d)

x 1

Fig. 8. Coexistence of chaotic attractors with a = 100, b = 2.52, c = 310.62, α =
10.309, σ = 316.62, R0 = 20, Is = 3.048× 10−9.

where u1, u2, u3 are the added control inputs. The expressions of these control inputs
are obtained by designing of a non-singular terminal SMC. For the above plant,
the control inputs u1 and u2 are so designed such that the above system can be
represented in a strict feedback form,

u1 = ax2 − x3 − 2Isσe−α(x4) sinh(α(x1 − x2))− x3

ab
u2 = x4 − x1 + x2 (7)
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Using u1 and u2, the above system in (6) is written as,

ẋ1 = −abx2

ẋ2 = −x3

ab
ẋ3 = x4

ẋ4 = c{2Ise−α(x4) cosh(α(x1 − x2))− 1
R0

(x4)− 2Is}+ u3

(8)

Now, u3 is designed using a non-singular terminal sliding mode such that the
above system in (8) gets stabilised. A transformation is used for representing (8) as
a chain of integrators.

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = f(z) + u3

(9)

where, z1 = x1, z2 = −abx2, z3 = x3, z4 = x4, and

f(z) = c

{
2Ise−α(z4) cosh

(
α
(
z1 +

z2
ab

))
− 1
R0

(z4)− 2Is

}
(10)

Now the sliding surface is chosen as

S = z4 + 6 |z3|α3 sign(z3) + 11 |z2|α2 sign (z2) + 6 |z1|α1 sign(z1) (11)

where the constant αi is chosen as

αi−1 =
αiαi+1

2αi+1 − αi
(12)

such that αn = 1, where n is the total number of states. For our case α1 = 2
5 , α2 =

1
2 , α3 = 2

3 . Now, a saturation function sat(uf , us) is chosen so that the singularities
in terminal sliding mode can be avoided as explained in [50] where,

uf = −6α3 |z3|α3−1 sign(z3)− 11α2 |z2|α2−1 sign(z2)− 6α1 |z1|α1−1 sign(z1) (13)

The control law u3 is given in (14).

u3 = −f(z) + sat(uf , us)− ksign(s) (14)

Using the control inputs u1, u2, u3 given in (7) and (14), the states x1, x2, x3

and x4 converges to zero as t→∞.
The simulation results for the suppression of chaos in the states are given

in Figure 9. Here, the initial conditions considered for the states are x(0) =
(0.01, 0.015, 0.05, 0.01)T . It is apparent from Figure 9 that all the states are reg-
ulated to their desired value, i.e. the zero.

5 Random number generator design and its randomness tests
using the system in (5)

In this section, chaos-based random number generator is designed. Random number
generators (RNGs) are used in all kinds of scientific and engineering areas where
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Table 2. RNG algorithm pseudo code.

Algorithm: Random Number Generation Algorithm Pseudo code
Input: Parameters and initial condition of chaotic systems
Output: Ready tested random numbers
1: START Entering system parameters and initial conditions of a
4D chaotic system
2: Determination of the value of ∆h (0.005)
3: Sampling with determination ∆h value for RK4
4: WHILE (minimum 1MBit data) DO
5: Solving the 4D chaotic system using RK4 algorithm
6: Obtaining time series as float numbers (x, y, z and w)
7: Convert float to 32-bit binary numbers
8: Select LSB-16 bits from RNG from x, y, z and w phases
9: END WHILE
10: Apply NIST-800-22 Tests for each minimum 1MBit data
11: IF (test results == pass) THEN
12: Ready tested random numbers for RNG applications
13: ELSE (test results == false)
14: Go to step 4
15: END IF
16: END
17: EXIT

random number sequences, especially cryptology, are required [51]. In this study, the
design of the RNG is made by using (5). For the design, the continuous-time chaotic
system is discretised by RK4 numerical solution method by entering certain step
intervals. Then the discretised chaotic system is converted to 32-bit binary number
format. Then, for all outputs (x, y, z, w), the 16 least significant bits (LSB) are taken
and a random number sequence is created. The pseudo code for the design of the
RNG is given as follows.

Internationally accepted NIST-800-22 tests are used for the success of random
numbers. The NIST-800-22 test consists of 16 different tests and requires at least
1 Mbit data set. The success of these 16 tests is required for randomness success.
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Table 3. NIST-800-22 test results of random numbers obtained from x, y, z and w.

Statistical tests P-value
(x 16bit)

P-value
(y 16bit)

P-value
(z 16bit)

P-value
(w 16bit)

Result

Frequency (Monobit) test 0.6686 0.3134 0.5605 0.1675 Successful

Block-frequency test 0.4794 0.8777 0.9178 0.4591 Successful

Cumulative-sums test 0.7233 0.5648 0.7111 0.3259 Successful
Runs test 0.7247 0.2289 0.4558 0.6773 Successful

Longest-run Test 0.1900 0.7454 0.5633 0.0763 Successful

Binary matrix rank test 0.2873 0.7305 0.2849 0.8612 Successful
Discrete fourier transform

test

0.5206 0.3216 0.1803 0.7550 Successful

Non-overlapping templates

test

0.2423 0.5079 0.1977 0.2803 Successful

Overlapping templates test 0.1550 0.4637 0.2338 0.6679 Successful
Maurer’s universal statistical

test

0.3404 0.6027 0.7499 0.8513 Successful

Approximate entropy test 0.6236 0.6895 0.5011 0.9533 Successful
Random-excursions test

(x = −4)

0.5583 0.3601 0.8436 0.6578 Successful

Random-excursions variant
test (x = −9)

0.6281 0.8062 0.5511 0.4513 Successful

Serial test-1 0.9903 0.9685 0.1950 0.1305 Successful

Serial test-2 0.9814 0.9953 0.4827 0.0550 Successful
Linear-complexity test 0.3454 0.1881 0.4426 0.8894 Successful

Fig. 10. Oscilloscope images of random numbers from x (a), y (b), z (c), w (d) outputs.

The results of the 16 different tests are evaluated by paying attention to the P
value. For the test to be successful, the P value should be greater than 0.001 [51]. If
the test results are not obtained successfully, the loop is continued by altering the
LSB bits and the pitch interval. Using the LSB 16 bits from each dimension of the
4-dimensional system used in this study, random number generation is performed,
and each passes the NIST-800-22 tests successfully. The results of the NIST-800-22
test P values of each dimension are shown in Table 3.
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Raspberry Pi 3 is used for the realisation of the RNG. The Raspberry Pi outputs
of the random numbers generated from the chaotic system, i.e. the oscilloscope screen
outputs shown in Figure 10.

6 Conclusions

This paper reports a new chaotic oscillator using a single op-amp, two capacitors, one
resistor, one inductor, and memristive diode bridge cascaded with an inductor. The
new oscillator has a line of equilibria. In the new oscillator circuit, negative feedback
is used. The new oscillator based on the memristive diode bridge is different from the
available similar systems. The new oscillator depicts chaotic, periodic, quasi-periodic
behaviour. Lyapunov spectrum plot, bifurcation diagram, phase plot, etc. are used
to analyse the new oscillator. Further, a non-singular terminal sliding mode control
(N-TSMC) is designed for the suppression of chaos in the states of the new oscillator.
Moreover, an application of the new oscillator is shown by designing a chaos-based
random number generator. Raspberry Pi 3 is used for the realisation of the random
number generator.
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