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Abstract
Rotary wing drones stand out among Unmanned Aerial Vehicles with their vertical landing and take-off feature and are used
in many industrial applications and different sectors. Ensuring the stability of motion in these vehicles is crucial. Errors in the
motor assembly can disrupt the stability of the motion in rotary wing drones. Therefore, it is essential to detect these errors
during the assembly phase. In this study, we propose a cost-effective method based on deep learning to detect assembly failure
of brushless direct current motors, which are widely used in rotary wing drones. A test setup representing the motor assembly
defects is created and vibration data for three different speeds of the motor are obtained through a low-cost vibration sensor.
The combined one- and two-dimensional deep convolutional neural network (WDD-CNN), used to classify these data was
trained with the Case Western Reserve University (CWRU) dataset and the data collected in this study. The hyper-parameter
settings of the network were determined using the CWRU data set and the data obtained from the experimental setup described
in the paper. The network parameters of the WDD-CNN network were transferred to the Raspberry Pi micro-controller with
specialized software, and the classification process was performed there. The fact that the proposed method runs on a micro-
controller reduces its cost. Because there is already a micro-controller card in drones. In addition, the selected sensor is
cost-effective. Thanks to these features, the proposed method is cost effective. In this classification process performed on
Raspberry Pi 5, assembly errors were detected with 97–100% accuracy.

Keywords Rotary wing drone · BLDC Motor · CNN · MEMS sensor · Deep learning

1 Introduction

The use of unmanned aerial vehicles (UAVs) has become
increasingly prevalent in recent years [1]. It significantly
reduces the time required for business processes in numerous
sectors, resulting in notable benefits [2]. UAVs are cate-
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gorised according to their wing structure: fixed wing and
rotary wing. Rotary-wing UAVs eliminate the need for long
runways with their vertical landing-take-off feature. In this
way, they can be used more easily in residential areas with
long runway restrictions, such as city centers. Brushless DC
motors are preferred in these drones due to their advantages,
including quiet operation, longevity, and ease ofmaintenance
[3, 4]. These motors are mounted on the wings of drones, and
themovement of thesemotors enables flight [5]. The accurate
mounting of the motors is the primary factor influencing the
stability of the drone’s motion [6]. An incorrectly mounted
motor will result in unusual vibrations, which can cause bear-
ing failures, shaft fractures, rotor failures, and broken motor
mounting feet. Most UAV malfunctions and accidents are
caused by motor failures [7]. Such failures have the poten-
tial to disrupt the stability of the drone’s motion, leading to
accidents and resulting in significant losses of both work and
equipment. To avoid this situation, it is of great importance
to apply effective methods for detecting uneven mounting
faults.
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1.1 Related works and research gap

There are many deep learning and machine learning-based
methods for fault detection in the literature. Kilic and Unal
[8, 9] detected malfunctions in the angle of attack sensor
and pitot probes and static ports, which are components
of commercial aircraft, using machine learning methods. In
addition, Kaya et al. [10], Akcan et al. [11] proposedmachine
learning and deep learning methods for fault detection in
bearings.

Glowacs [12] has performed fault detection using audio
signals in an induction motor. Three different faults and nor-
mal condition of an induction motor are classified. Data was
preprocessed with two different feature extraction methods
and classified with three different Machine Learning (ML)
methods. Glowacz et al. in this work, [13] detected fault
in single-phase induction motors using sound signals. Nor-
mal condition and three different faults are classified with
three ML based classifiers. Ameid et al. [14] have detected
different faults of induction motors by analyzing FFT tech-
nique. Different mechanical and electrical quantities (rotor
speed, quadratic current components, and stator phase cur-
rent) were used in the analysis. Hosseini et al. [15] have
detected, stator inter-turn fault in brushless direct current
(BLDC) motors. For this purpose, stator current data was
obtained simulatively. These datawere analyzedwith the dis-
crete wavelet transform method and the fault was detected.
Tian et al. [16] evaluated fault detection studies with artificial
intelligence and signal processing methods in asynchronous
motors. They stated that acoustic, vibration, current and
voltage data are generally used in these studies. Hernan-
dez et al. [17] proposed a method based on quaternion signal
analysis for asynchronous motor fault detection. They used
accelerometer data in their study. They used tree classifi-
cation method as the classification method. Ali et al. [18]
detected different mechanical and electrical faults of asyn-
chronousmotors usingmachine learningmethods. They used
stator currents and vibration data as data. Signal process-
ing methods were used for feature extraction and machine
learning methods were used for classification. The study
of Al Shorman et al. [19] provides a review of studies to
detect andmonitor bearing, rotor and stator failures (and their
combinations) in asynchronous motors based on sound and
acoustic emission data. Lee et al. [20] conducted an experi-
mental study on the detection of asynchronous motor errors.
They classified the vibration data they collected using CNN.
Chang et al. [21] detected asynchronous motor malfunctions
by examining the vibration and electrical data they collected
with data analysis methods. Abed et al. [22], classified four
bearing states in a BLDC motor after feature extraction by
various methods using a recurrent neural network (RNN).
Shifat et al. [23], extracted various features in time and fre-
quency domains from sensor signals. And used an artificial

neural network (ANN) to classify three health states of the
motor.

In addition to these studies, some deep learning and
machine learning-based methods have been proposed in the
literature to detect BLDCmotor faults directly used inUAVs.
Lee et al. [24], proposed a mathematical model to detect
BLDC motor faults used in UAVs. They used electrical data
to detect faults. Bondyra et al. [25], presented a method for
detecting physical defects ofUAV rotor blades. The data used
is based on acceleration measurements from the IMU (Iner-
tial Measurement Unit) sensor. SVMwas used as a classifier.
Pourpanah et al. [26], developed amonitoring system that can
detect possible malfunctions in UAV engines and propellers
early. Faults were classified using machine learning meth-
ods using vibration and current data. V. Medeiros et al. [27],
described a chaos-based signal processing method to ana-
lyze BLDC motor behavior used in drones. Current was
used as data. Iannace et al. [28], used NN to detect stability
faults in BLDCmotors used in UAVswith 97–98% accuracy.
Magdaleno et al. [29], analyzed audio signals with DWT
and Fourier Transform methods. Thus, propeller failures
in BLDC motors were detected. Veras et al. [30], detected
eccentricity fault in BLDC motors by decomposing the
obtained sounds signals with wavelet multiresolution analy-
sis and a chaos-basedmethod. Liu et al. [31], converted sound
signals into images with time–frequency analysis methods
to detect propeller faults in BLDC motors and classified
these spectrogram images with CNN. Altinors et al. [32]
extracted statistical features of the signals obtained from
propeller, eccentric and bearing faulty motors and classified
themusingDT, SVMandKNNmachine learning algorithms.
Yaman et al. [33], classified different faults of BLDCmotors
(balance fault, magnet fault, bearing fault and propeller fault)
with SVM using audio signals.

The aim of this study is to develop a deep learning-based
cost-effective method that can work in real-time to detect
uneven mounting defects in BLDCmotors, which are widely
used in rotary wingUAVs. According to the literature review,
no study is found for the detection of uneven mounting
defects in BLDC motors used in drones. This represents a
significant research gap, as the reliable and efficient detec-
tion of such defects is crucial for the performance and safety
of UAVs.

In the literature, there aremachine learning anddeep learn-
ing based methods for fault detection in BLDC motors used
in drones [28, 31]. However, many of these machine learn-
ing methods require specialized feature extraction processes,
which can be complex and time-consuming. The proposed
WDD-CNN network performs high accuracy fault detection
by processing raw data, eliminating the need for complex
feature extraction [34]. In addition, both the low cost of the
sensor used and the use of micro-controllers for classifica-
tion processes significantly reduce the cost of fault detection.
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Micro-controllers, being compact and efficient, offer a prac-
tical solution for real-time classification, making the system
both cost-effective and suitable for real-world applications.
The performance of the proposed system ismeasured in a test
setup where an uneven mounting defect is modeled. Accord-
ingly, the proposed system detects uneven mounting defects
with accuracies ranging from 97–100%.

2 Methods andmaterials

2.1 Methods

In this study, a test setup has been created to detect uneven
mounting defects of BLDC motors used in drones. In this
test setup, the vibrations generated by the motor are picked
up by a vibration sensor and transferred to the Raspberry
Pi 5 microcontroller. A deep learning network, which was
previously created on the Raspberry to detect motor faults,
determines whether the mounting of the motor is faulty from
this data. These process steps are shown in Fig. 1.

As a first step, 2000, 4000 and 6000 rpm vibration sig-
nals were collected from the relevant test setup, respectively,
using theMicro ElectroMechanical System (MEMS), a cost-
effective vibration sensor. A new data set was created by
combining the collected signals separately and respectively
with the 1 hp, 2 hp and 3 hp vibration signals of the 0.007 inch
CWRU data set. In the next step, the first group of vibration
data is reserved for training, and the second and third group
of vibration data are reserved for testing. The raw vibration
data allocated for training was reproduced by applying the
sliding window method. The test data is left in its original
form. In the next stage, both training and test data were sub-
jected to normalization. After the normalization process, the
sensor data allocated for training and testing were converted
into one-dimensional and two-dimensional training and test
samples, each consisting of 3600 dijital signals. Model train-
ingwas carried out using theWDD-CNNmodelwith training
samples andmodelweightswere obtained.The trainedmodel
was transferred to the embedded system, themodelwas tested
with test samples, and the results were taken as a confusion
matrix.

2.1.1 Convolutional neural networks-CNNs

Convolutional neural networks (CNN) are simple neural net-
works that use convolution in at least one of their layers [35].
Convolution is a kind of linear operation and is definedmath-
ematically in Eqs. (1) and (2). A CNN network structure
basically consists of convolution layer, pooling layer and
fully connected layer components. The general layer struc-
ture of CNN networks is shown in Fig. 2. It shows the typical
structure of a CNN with several basic layers. The input layer

is the first layer where data is fed into the network. Then
comes the convolution layer. In this layer, a special mathe-
matical operation called convolution is performed by shifting
a filter matrix over the input data in certain steps. The result
is a smaller output matrix called a feature map. This output
matrix is fed into a ReLu activation function and transferred
to the accumulation layer. Here again, a selected smaller ker-
nel is shifted over the output matrix of the convolution layer
and the operations required by the selected pooling function
(max. pooling, average pooling, etc.) are performed. The fig-
ure shows the max pooling operation of a 2x2 kernel. The
output of the pooling layer is then usually fully connected
layers. These layers are usually followed by a softmax acti-
vation function. This function returns the probability values
for the classes in a classification problem. All these processes
are shown schematically in Fig. 2.

The fully connected layer is structured in the same way as
the FCL in a standard feedforward neural network and has
a similar function. The advantages of CNN stem from the
structural and functional distinctions between Convolutional
Layers (CLs) andPoolingLayers (PLs) [36]. Themain differ-
ence of CLs from connected layers is that densely connected
layers learn general properties, whereas convolutional layers
learn local properties [35].

ACLconsists of a number of structures defined as learning
cores. Each core has a trainable weight and a bias. The input
data is convolutionalized in the CL layer and the result of
the convolutional operation is fed to an activation function.
The output of this activation function is the final output of
CL [37]. Equation (1) mathematically describes the function
of the convolution layer (1-D). Equation (2) describes the
function of the convolution layer (2-D).

Xn
l =

C∑

c=1

(
Xc
l−1 ∗ W (c,n)

l

)
+ Bn

l (1)

Xn
l (i, j) =

C∑

c=1

(
M−1∑

m=0

N−1∑

n=0

Xc
l−1(i + m, j + n)

·W (c,n)
l (m, n)

)
+ Bn

l (2)

In Eq. (1), * denotes the convolution process. Xn
l repre-

sents the nth feature map at the l-th layer. Xc
l−1 corresponds

to the c-th channel in the input filter dimensions in the (l-1)-
th layer. Wc,n

l is the nth weight matrix of channel c in layer
l. Bn

l is the nth bias matrix at layer l. The most frequently
used activation function in CNNs is ReLU (Rectified Lin-
ear Unit). Returns the same value when the function is given
a positive input value, and zero when given a negative input
value. Compared with ReLU, sigmoid or similar functions, it
speeds up the CNN training process and eliminates the van-
ishing gradient problem [38]. Equations (3) and (4) define
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Fig. 1 Process steps of WDD-CNN network

the 1-D and 2-D ReLU function.

Xn
l (i) = max

(
0, Xn

l−1(i)
)

(3)

Xn
l (i, j) = max

(
0, Xn

l−1(i, j)
)

(4)

CNNs usually have a PL after theCL. The purpose of PL is
to reduce the size of the feature maps created by the previous
layer. Following the convolutional layer, the pooling layers
perform a down sampling procedure to remove redundant
information. It also reduces computational cost as the input
size is reduced. Equations (5) and (6) are the mathematical
functions of 1-D and 2-D pooling layer.

Xn
l (i) = i + R − 1

r=i

(
Xn
l−1(r)

)
(5)

Xn
l (i, j) = i+R

max
r=i

(
s+J
max
s= j

(
Xn
l−1(r , s)

))
(6)

The mentioned layers are combined in various ways to
create many different deep learning methods.

2.1.2 Transfer learning andWDD-CNN network used

Transfer learning is the approach of using pre-trained deep
learning networkswith large datasets to solve a new problem.
Using a pre-trained network is a commonmethod when there
is not enough data to train the network. This eliminates the
need for a large data set to train the network and reduces
processing costs. The size and variety of the data set used
to train these networks allows them to adapt easily to new
problems.

Deep learning and transfer learning methods remain pop-
ular for fault detection of electric motors. These methods
can work with different types of data such as vibration, cur-
rent, voltage and sound data. In this study, vibration signals
collected from BLDC motor and CWRU dataset are used
together for fault detection. Vibration signals are commonly
used time series data for intelligent fault detection. These
data provide valuable information about the operating state
of motors, enabling the detection of various types of faults
[39, 40].

Methods based on deep learning are generally categorized
into two aspects: methods that work on one-dimensional
signals such as time series data and those that reshape
one-dimensional input signals into two dimensions [41].
The 2D-CNN architecture, which works on two-dimensional
data, is capable of capturing both spatial and temporal rela-
tionships in the data, while the 1D-CNN architecture, which
works on one-dimensional data, has advantages such as over-
fitting and scaling invariance. In this study, we integrate the
advantages of 1D-CNN and 2D-CNN methods for BLDC
motor fault detection. A WDD-CNN model is used in [34]
for real-time condition monitoring and early fault detection
of electric motors under noisy and changing operating con-
ditions. The hyper-parameter settings of this network are
reconfigured to categorize a 2-class data set. Thus, the data
obtained from the BLDC motor in the experimental set were
categorized as faulty and normal. Figure3 represents the
architecture of this network.

2.2 Materials

The test setup used in this study (see Fig. 4) consists of a sam-
ple drone motor (A2212/10T 1400 KV)( Image 1 in Fig. 4b),
ADXL-345 Micro Electromechanical System (MEMS) sen-
sor (accelerometer)(Image 3 in Fig. 4b), motor driver (Image
2 in Fig. 4b), Raspberry Pi 5 micro-controller (Image 4 in
Fig. 4b)and 0–30 V DC power supply (Image 6 in Fig. 4b).
In addition, the hyper-parameter settings of the deep learn-
ing network used in classication are made on MSI Bravo
15C7V PCwith AMDRyzen 5 7535HSwith Radeon Graph-
ics 3.30 GHz processor (Image 7 in Fig. 4b). Image 5 in
Fig. 4b represents the tachometer used to measure BLDC
motor speed.

2.2.1 BLDCmotor and driver

Brushless Direct Current (BLDC) motors have become
rapidly popular in recent years. BLDC motors are used
in sectors such as aerospace, medical, industrial automa-
tion equipment, especially in white goods and automotive
[42]. And it is thought to replace brushed DC motors in the
near future. Especially the widespread use of electric cars
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Fig. 2 CNNs layer structure

Fig. 3 The architecture of WDD-CNN network

is expected to significantly increase the demand for BLDC
motors. In 2025, the economy generated by BLDCmotors is
estimated to be 15.2 billion dollars [43].

BLDC motors are electronically commutated instead of
brushes. BLDC motors have many advantages over brushed
DC motors and induction motors. A few of these are:
High efficiency, better torque characteristics, more dynamic
response, longer operating life, quiet operation, wider speed
ranges. In addition, thesemotors provide higher torques com-
pared to the size of the motor. This makes them useful in
applications where space and weight are critical factors [42].
The A2212/10T 1400KV BLDC motor shown in Fig. 4a is
used in this study. Figure4b shows a schematic represen-
tation of this motor and the experimental set. This motor

weighs approximately 50g and measures 27.5 × 30 mm. It
rotates its shaft 1400 revolutions per minute per volt without
propeller. Its maximum efficiency is 80% and the current it
draws at maximum efficiency is 4–10 A. The operating volt-
age is 11.1V. “Cyclic Collective PitchMixing (CCPM) servo
consistency master” driver is used to run this motor at vary-
ing speeds. The CCPM servo system is developed to enable
three servo motors to react simultaneously and at the same
speed. However, in the experimental set, only one of these
three outputs is used to drive the BLDC motor in the set.
Figure4a shows the CCPM servo consistency master drive
and Fig. 4b shows a schematic representation of the driver.
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Fig. 4 The test setup and schematic representation of the test setup

2.2.2 ADXL345 accelerometer

Adafruit’s ADXL-345 Micro Electro Mechanical System
(MEMS) accelerometerwas used in this study. The sensor is a
triaxial accelerometermeasuring 3×5×1mmand is shown in
Fig. 4a shows the accelerometer and Fig. 4b number 3 shows
a schematic representation of the ADXL345 accelerometer.
In the ADXL-345, acceleration data can be accessed via I2C
and SPI protocols. This data passes through a 13-bit Analog
Digital Converter (ADC) before being transmitted. Further-
more, the measurement range ranges from ±2, ±4, ±8 and
±16g and is user selectable. The sampling frequency of the
sensor ranges from 0.1 Hz to 3.2 kHz [44].

The frequency response (inHz) of theADXL345accelerom-
eter is defined by the bandwidth of the accelerometer, which
in turn is determined by the output data rate (ODR). The
maximum available bandwidth of ADXL345 is 1600 Hz [45,
46]. This means that the accelerometer can accurately mea-
sure vibrations and movements up to this frequency. When
the technical specifications of the ADXL345 accelerometer
are examined, it is seen that it has an A/D digital converter
and digital filter. Therefore the ADXL345 accelerometer is
ready to be used to detect vibration in electric motors [47].
The A2212/10T 1400 KV motor, which is widely used in
drones and other RC applications, has 14 poles. Thesemotors
reach frequencies of approximately 235, 465 and 600 Hz at
2000, 4000 and 6000 rpm, respectively. Soft foot (Looseness-
Uneven mounting) errors typically occur at speeds of 1×
the motor’s operating speed (base frequency) [48]. However,
higher harmonics may also occur due to the nature of the
fault. Therefore, the ADXL345 vibration sensor is capable
of capturing the harmonics of the relevant BLDC motor.

2.2.3 Raspberry Pi 5

Raspberry Pi is a low-cost, compact and portable microcon-
troller. It can be connected to devices such as a computer
screen, television, keyboard, mouse and external memory
units. The Raspberry Pi can be programmed in Scratch or
Python. It comes with a Linux-based operating system called
Raspberry OS installed [49].

A powerful feature of the Raspberry Pi is a 40-pin GPIO
(general purpose input/output) pinout that runs along the
top edge of the board. The Raspberry Pi 5 is up to three
times faster than its predecessor, making it useful for power-
ful applications. Raspberry Pi 5 was used for the developed
system. This model comes with 8 GB of RAM, 2.4 GHz
quad-core 64-bitArmCortex-A76CPU,VideoCoreVIIGPU
supporting OpenGL ES 3.1, Vulkan 1.2 and other functions.
It has built-inWi-Fi and Bluetooth capabilities. It also allows
SPI and I2C serial communication. The Raspberry Pi 5 and
connections used in the test setup are given in Fig. 4a. Fig-
ure4b number 4 shows a schematic representation of the
micro-controller.

3 Experimental results

3.1 Data set

The data set used in training the WDD-CNN network used
in this study was obtained by combining the Case West-
ern Reserve University (CWRU) data set with the data set
obtained from the test setup shown in Fig. 4. CWRU data set
is a reference data set in motor fault detection studies and
bearing fault detection studies [50].
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Data was collected from two different ends of the test
motor (fan-end, drive-end), at 12 kHz and 48 kHz frequen-
cies, by first installing normal bearings and then by installing
bearings with defects of different sizes (0.007, 0.014, 0.021,
and0.028 inches). In addition, these datawere collected again
for different load cases (1hp, 2hp and 3hp). In this study, data
collected from normal bearings under 1hp, 2hp, 3hp loads at
48 kHz frequency were used.

The data shown in Fig. 4 was collected with the ADXL-
345 MEMS accelerometer mounted right next to an uneven
mounted BLDCmotor and transferred to Raspberry Pi 5. The
datawas recorded for 500s. There are approximately 250,000
numerical values in each recorded piece of data. Data were
collected under motor speeds of 2000 rpm, 4000 rpm and
6000 rpm.

MEMS sensors are cost-effective vibration sensors that
can collect digital data from three axes, X, Y and Z axes.
However, removing axis data that do not contribute to model
trainingpositively affectsmodel performance.Data that carry
less information and therefore do not contribute to model
training can be identified by analyzing the mean, standard
deviation and amplitude values [51–53]. In our study, the
mean, standard deviation and amplitude values of the col-
lected three-axis digital vibration data were analyzed. As a
result of the analysis, it was observed that the Z-axis data had
less variance. For this reason, X and Y axis data were used
for model training in our study.

Figure 5a shows the normal data (fromCWRU), (b) shows
X-axis signals of the accelerometer data recorded while the
motor was rotating at 6000 rpm.

3.1.1 Training data set

The content of the data used in training the WDD-CNN net-
work is given in Table 1. Accordingly, normal data were
taken from the data of the CWRU data set collected under
1 hp load at 48 kHz sampling frequency. Uneven mounting
data was obtained from the no propeller rotation of the motor
at 2000 rpm in the BLDC test set created within the scope of
this study.

These data are increased by data augmentation. Data
augmentation is the process of artificially increasing the
amount of data using different methods. Deep learning mod-
els require large amounts of data during the training process.
However, this is often costly and difficult. Therefore, increas-
ing training data, data augmentation is often done in deep
learning studies. In this study, the sliding window method,
which is an effective and easymethod for time series, is used.

The sliding window technique enables data augmentation
by moving a fixed-size window across the data, creating
multiple overlapping samples. Given a 1D input sequence
and a window size, the sliding window operation gener-

ates multiple segments of the sequence. 1D Sliding Window
Mathematical Representation is explained below:

1D input sequence:

x = [x1, x2, x3, . . . , xn] (7)

The augmentation process:

yi = [x(i−1)s+1, x(i−1)s+2, . . . , x(i−1)s+w] (8)

where

• yi is the i-th augmented segment.
• w is the window size.
• s is the step size.
• The index i ranges from 1 to

⌊ N−w
s

⌋ + 1, ensuring each
window fits within the bounds of the input sequence x .

According to this method, the window lengthwas selected
as 3600 and this window is shifted in steps of 128, creating
a total of 3900 data of 3600*1 size, 1950 of which were
faulty and 1950 are normal. In this way, the training data is
increased approximately 30 times (see Table 2).

3.1.2 Test data set

The main purpose of this study is to detect the uneven
mounting fault of an uneven mounted BLDC motor. For this
purpose, a test setup representing an uneven mounting fault
is created and data is collected for different speeds of the
motor. The network proposed in [34] has been proven to be
successful in detecting faults from raw data. For this reason,
the test data created in this study is created by recording the
data collected while the BLDC motor was rotating at dif-
ferent speeds without processing it. Accordingly, raw data
with dimensions of 250,000*1 are recorded for 500s while
the engine is rotating at 4000 rpm and 6000 rpm. These data
are divided into 3600 equal parts and 69 4000 rpm and 69
6000 rpm data are created. The normal data of the test data
set is taken from CWRU’s data under 48 kHz sampling fre-
quency, 2 hp and 3 hp load. Faulty data collected at 4000 rpm
and normal data collected under 2 hp load were classified in
the experiment 1. The test data set is stated in Table 3. The
faulty data are collected at 6000 rpm and the normal data are
collected under 3 hp load are classified in the experiment 2.
The test data set used in the experiment 1 is named Dataset
A, and the test data set used in the experiment 2 is named
Data Set B.

3.2 Experiments

In Experiment 1, Dataset A is classified. Accordingly, the
normal data of the CWRU data set (48 kHz, 2 hp) and the
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Fig. 5 The test setup and schematic representation of the test setup

Table 1 Content of training
data

Normal Uneven mounting

Data parts CWRU data set The BLDC test set

Features Sampling frequency, 48 kHz BLDC motor speed, 2000 rpm

Load 1 hp No propeller

Table 2 Training data set

Normal data (from CWRU) Uneven mounting data (from setup) Training data set

Number 1950 1950 3900

Dimensions 3600*1 3600*1 3600*1

vibration data obtained from the incorrectly mounted BLDC
motor in the setup created within the scope of the study while
rotating at 4000 rpm are classified. Accuracy, recall, preci-
sion and F score metrics are chosen to measure classification
performance. The equations for these metrics are given in
Eqs. 9, 10, 11, 12.

Accuracy = TP + TN

TP + FN + FP + TN
(9)

Precision = TP

TP + FP
(10)

Recall = TP

TP + FN
(11)

F1 − score = 2 × Precision × Recall

Precision + Recall
(12)

Here TP: True Positive, TN: True Negative, FP: False pos-
itive and FN: False Negative. Accuracy: It refers to the ratio

Table 3 Test data set

Features Number Dimensions Total

Dataset A Normal data 1 (from CWRU) 48 kHz, 2 hp 69 3600*1 138 Test data samples

Uneven mounting data 1 (from setup) 4000 rpm 69 3600*1

Dataset B Normal data 2 (from CWRU) 48 kHz, 3 hp 69 3600*1 138 Test data samples

Uneven mounting data 2 (from setup) 6000 rpm 69 3600*1
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Table 4 Experiments’s results

Experiments Accuracy (%) Recall Precision F1 Score

Experiment 1 100 1 1 1

Experiment 2 100 1 1 1

of correct predictions to all predictions. Precision is the ratio
of correctly predicted positive cases to all positive predic-
tions. Recall shows the ratio of correctly predicted positive
cases to all predictions belonging to a class. F1 score is the
weighted average of precision and recall. The results of these
metrics are shown in Table 4. The results of these metrics are
shown in Table 4.

In Experiment 2, Dataset B was classified. Accordingly,
the normal data of the CWRU data set (48 kHz, 3 hp) and
the vibration data obtained from the uneven mounted BLDC
motor in the setup created within the scope of the study while
rotating at 6000 rpm are classified. Figure 6 shows the con-
fusion matrices of Experiment 1 and Experiment 2.

The confusion matrices of Experiment 1 and Experiment
2 have to be explained in detail. Response: According to the
confusion matrix given in Fig. 6, 138 samples were tested.
Of these, 69 samples represent the positive class and 69 the
negative class. In both experiment 1 and experiment 2, all
samples were correctly predicted. In this case, the number
of correctly predicted positive examples will be 69 and the
number of correctly predicted negative examples will be 69
(TP=69, TN=69). Therefore, the accuracy metric will be
100% and the other metrics will be 1 (Table 4).

4 Discussions

According to our research, there has been no previous study
trying to detect uneven mounting defects in drone motors

with a deep learning-based method. Yaman et al. at their
work [33], a machine learning-based method proposed for
bearing fault, propeller fault, unbalance situation and mag-
net failure. The method proposed here differs from this study
both in terms of the faults examined and the method used.
However, it can be compared to this study under the common
title of detecting BLDC motor faults used in drones with an
artificial intelligence based method. They used computers to
train machine learning methods and detect the faults. In the
method proposed within the scope of this study, the com-
puter was used only in training the network proposed with
new data, and the classification was performed on the micro-
controller. In this way, the proposed method can be easily
adapted to faulty situations that may arise during the flight
of UAVs. The method proposed in this study can be used
both in flight and in ground tests. Computer-controlled meth-
ods are more suitable for ground tests. Additionally, using
a micro-controller for classification is less costly. Because
UAVs already have amicro-controller used to control all elec-
tronic systems of the vehicle. This micro-controller can also
be used for fault detection, so it does not require an additional
micro-controller cost. It is a fact that the proposed method
has aspects that are better than other studies, but also aspects
that need improvement. The proposed model addresses the
unevenmounting fault by completely separating it fromother
faults that may have vibration defects. For example, some
vibrations may occur during flight due to weather condi-
tions. Motor defects such as bearing defects and unbalance
situations that may accompany mounting faults also create
vibrations, and these vibrations are alsoworth examining. It is
thought that the proposedmethodwill also detect these vibra-
tion defects as faults. In future studies, these different fault
sources will be combined and examined. In the literature,
since bearing defect and unbalance fault in BLDC motors
can be detected with effective methods, [5, 22], have primar-

Fig. 6 Confusion matrixes of
dataset A and dataset B
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ily focused on uneven mounting fault. Another area open
to development is the use of data augmentation method in
training data. Although data augmentation is widely used in
deep learning studies, these synthetic signals created through
data augmentation may cause some limitations in reflecting
real conditions. No processing is applied to the data in the
test data set. However, data augmentation is performed in the
training data set.

5 Conclusions

In this study, a deep learning-based model is proposed to
detect uneven mounting defects of BLDC motors used in
UAVs. It is known that the proposed network detects faults
in electric motors with high accuracy. This network was also
used in the test setup created within the scope of this study,
where the uneven mounting fault of BLDC motors is tested,
and the results are examined.Accordingly, in the experiments
performed at different speeds of the uneven mounted BLDC
drone motor, the proposed network detected the fault with
100% accuracy. As a result, it has been proven that the pro-
posed method detects the uneven mounting fault of the UAV
BLDC motor cost-effectively with high accuracy.

5.1 Future scope of current work

It is planned to carry out the training and testing process
entirely with raw data, with new data to be provided in future
studies. This is going to increase the classification accuracy,
reliability and generalizability of the proposed method. In
subsequent studies, the development of the model will be
continued by supporting the missing aspects.
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