
International Journal on Interactive Design and Manufacturing (IJIDeM)
https://doi.org/10.1007/s12008-024-01805-2

ORIG INAL ART ICLE

Welding strength prediction in nuts to sheets joints: machine learning
and ANFIS comparative analysis

Bircan Albak1 · Caner Erden2,3 ·Osman Ünal4 · Nuri Akkaş5 · Sinan Serdar Özkan6
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Abstract
This study uses machine learning algorithms and the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict welding
strength inDD13 sheetmetal joints withAISI 1010 nuts. The objective is to optimize industrial welding processes and improve
quality control. The study investigates weld current, time, and hold time as critical input variables for joint integrity. The
performance of different ML algorithms, including linear regression, random forest regression, ridge regression, Bayesian
regression, K-Nearest Neighbors regression, decision tree regression, and ANFIS, are evaluated. Training and testing data
consist of welding parameters and corresponding strength measurements. Performance metrics such as R2 score, mean
absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE) are used to assess the predictive
capabilities. Random forest regression is the most efficient algorithm, with a high R2 score of 0.992 and minimal errors.
ANFIS also exhibits comparable performance, highlighting its efficacy in this context. These findings can be useful for
optimizing welding parameters in industrial settings, potentially leading to improved quality control and weld strength,
particularly in automotive applications. Using ML and ANFIS, industries can make informed decisions to optimize welding
processes and ensure joint integrity, ultimately meeting the rigorous demands of demanding applications.

Keywords Welding strength prediction · Nut sheet welding · Machine learning · Regression algorithms · Industrial
applications · ANFIS

1 Introduction

The importance of achieving optimal welding strength and
toughness in projection welding of nuts to sheets is further
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underscored by the production process involved in creating
nut-welded sheet metal parts through sheet forming in molds
(C.V. [1–3], Chris [4]).Minimizing heat inputwhile selecting
the appropriate welding parameters is important to prevent
negative impacts such as distortion and microstructure trans-
formation in the welded parts [5]. Moreover, if bolts or nuts
are expelled duringwelding or ifmoltenmetal splashes cause
burrs to form, the threads of the bolts or nuts won’t effec-
tively fasten sheets together. This highlights the importance
of selecting the right welding parameters carefully [6]. In
the context of projection welding, the quality of the weld
is highly dependent on several welding variables, includ-
ing electrode force, current, and welding time [7]. Kataria
et al. [8] examines the existing literature in a review study
on superalloy welding, noting that weld speed, heat input,
and filler material have been identified as factors influencing
weld properties.

Consequently, insufficient heating and nugget size can
arise from low current, whereas high current can lead to
welding defects such as surface flash and expulsion. Sim-
ilarly, low electrode force can result in expulsion as a result
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of the collapse of small projections, leading to concentrated
heat generation. In contrast, a high electrode force may not
generate sufficient heat for effective welding. Due to the dif-
ficulty of finding the best welding parameters through trial
and error, alternative methods using soft computing algo-
rithms have becomepopular. Thesemethods provide efficient
means to predict the ideal welding parameters without the
need for extensive material consumption or time-consuming
experimentation [9–12]. For instance, Jayaraman et al. [13]
conducted experiments on A356 alloy welding using fric-
tion stir welding(FSW). They investigated the impact of
process parameters such as tool rotational speed, welding
speed, and axial force on weld quality. Additionally, they
developed models using response surface methodology and
artificial neural network (ANN) to predict the tensile strength
of the welded joints. Okuyucu, Kurt and Arcaklioglu also
developed an ANN model to analyze and simulate the cor-
relation between FSW parameters of aluminum (Al) plates
and their mechanical properties. Similarly, Tansel et al.
[14] utilized genetically optimized ANN system to estimate
the optimal operating conditions for the FSW process. In
an another study, Elangovan, Balasubramanian, and Babu
[15] used analysis of variance (ANOVA), Student’s t-test,
and coefficient of determination, to develop mathematical
models and empirical relationships between FSW variables
and tensile strength of the welded joints. Bozkurt [16]
investigated the influence of FSW parameters on the weld
strength of thermoplastics, such as high density polyethy-
lene and polypropylene sheets. The Taguchi approach of
parameter design was utilized as a statistical design of exper-
iment technique to set the optimal welding parameters, with
experiments arranged using Taguchi’s L9 orthogonal array.
Similarly, Bilici [17] also employed the Taguchi approach to
set optimal welding parameters.

Furthermore, Satpathy et al. [18] studied aluminum and
copper welds, while Dewan et al. [19] focused on friction
stirwelding.Both studies highlighted the effectiveness of soft
computing algorithms, especially the Adaptive Neuro-Fuzzy
Inference System (ANFIS), for modeling physical systems
and accurately predicting joint strength. These findings rein-
force the superiority of ANFIS over other algorithms, such as
ANN, in estimatingwelding outcomes based on input param-
eters.

Buildingupon these studies, the current study explores dif-
ferent machine learning (ML) algorithms to predict welding
strength, specifically to weld nuts to sheets. In this weld-
ing process, crucial parameters such as weld current, weld
time, and hold time play an important role. Using ML, it
becomes feasible to create a model that considers the intri-
cate relationships between these parameters and the quality
of the weld. This could optimize the welding process and
result in stronger weld joints. Integrating machine learn-
ing algorithms into welding could revolutionize the industry

by automating and optimizing welding processes [20–23].
ML algorithms are often used to predict welding strength
accurately. This significantly impacts quality control, mate-
rial waste reduction, and improved productivity. Several
studies presented in the literature demonstrate the preva-
lence of ML algorithms. Verma et al. [24] investigated the
potential of advanced ML algorithms, such as Gaussian pro-
cess regression (GPR), support vector machines (SVM), and
multilinear regression (MLR), for predicting the ultimate
tensile strength of friction stir-welded joints. The study con-
cluded that the GPR approach outperformed the SVM and
MLR algorithms, demonstrating its effectiveness in predict-
ing UTS for such joints. Based on this, Thapliyal andMishra
[25] used an ML classification model to assess the mechan-
ical properties of friction stir-welded copper. Their findings
highlighted the significant influence of tool features and
design on mechanical properties, with a deep learning-based
neural networkmodel achieving the highest accuracy. Sudha-
gar et al. [26] focused on detecting and classifying defective
welds in friction stir welding using surface images. The study
demonstrated the feasibility of usingML algorithms for weld
joint classification by extracting features from these images.
Sethuramalingam et al. [27] focus on using ML algorithms
such as neural networks, linear regression, and support vector
regression to predict cutting forces and surface finish during
the milling of the titanium alloy Ti-6Al-4V. Research opti-
mizes cutting parameters using Taguchi analysis. It identifies
cutting speed as the most significant factor. Also, it applies a
polynomial regressionmodel to predict cutting forces, result-
ing in improved accuracy, particularly at a depth of cut of 0.5
mm. Complementing these studies, Kumar et al. [28] applied
three ML classification algorithms to analyze the perfor-
mance of friction stir-welded aluminum alloy AA 6061-T6.
Among these algorithms, the XGBoost classifier achieved
the highest accuracy to predict the alloy’s yield strength.
Furthermore, Shubham et al. [29] utilized machine learning
models to predict the strength of parts using the selective laser
melting 3D printing technique for an alloy material. Finally,
Elsheikh (2023) comprehensively reviewedML applications
in friction stir welding. This review encompassed various
ML algorithms, statistical evaluation measures, and specific
applications in predicting joint properties, integrating ML
with finite element methods, real-time process control, tool
failure diagnosis, and optimization algorithms.

Amidst the growing interest in ML algorithms for weld-
ing engineering, the studies mentioned above highlight the
potential of ML in predicting welding strength and assess-
ing the mechanical properties of friction stir-welded joints
and copper welds. Expanding on this study, our comparative
study aims to evaluate the performance of different ML algo-
rithms and compare them with the ANFIS specifically for
predicting welding strength in nuts-to-sheet welding. Build-
ing on these advances, we contribute to welding engineering

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

and predictive modeling, paving the way for optimized
welding processes and improved weld joint strength. The
following significant contributions to the field can be given
as:

• This study aims to determine the optimal values of weld-
ing parameters for the projectionwelding process of DD13
sheet metal parts and AISI 1010 nuts. The study systemat-
ically analyzes the effects of weld current, weld time, and
hold time to identify the combinations that yield the high-
est welding strength. The optimization process improves
understanding of the welding process and provides valu-
able insights into achieving maximum weld strength.

• This study investigates the performance of various ML
algorithms in predicting welding strength: linear regres-
sion, random forest regression, ridge regression, Bayesian
regression, K-NN regression, and decision tree regres-
sion. Furthermore, the study employs the ANFIS as a
fuzzy logic-based modeling approach. By comparing the
results obtained from these algorithms, the research com-
prehensively evaluates their predictive capabilities for the
welding process.

• Through data analysis techniques, this study explores the
relationships between the input parameters (weld current,
weld time, and hold time) and the output parameter (weld-
ing strength).

This study represents a significant contribution to weld-
ing strength prediction, taking a unique approach to the
subject by conducting a comparative analysis of six differ-
ent machine learning algorithms and ANFIS for nut-sheet
welding. Unlike previous studies, which mainly concen-
trated on single algorithms or ANFIS, this research offers
a thorough assessment of different methods. It empowers
researchers and engineers to make informed decisions when
choosing the most suitable predictive tool for their specific
welding applications. The study emphasizes practical rele-
vance, underscored by its focus on projection welding of
nuts to sheets. This ubiquitous welding process is critical
for various industries, from automotive to construction. This
research provides actionable insights that can help maximize
joint strength and quality control in real-world scenarios by
optimizing key parameters such as weld current, time, and
hold time. Beyond simple parameter optimization, the study

employs sophisticated data analysis techniques to reveal the
complex interaction between input variables and welding
strength. This deeper understanding of the welding process
paves the way for advanced optimization efforts and the
development of more robust predictive models for various
welding contexts.

The remainder of this paper is structured as follows: Sect. 2
details the experimental procedures used to collect data,
including welding parameter selection, strength determina-
tion, and data acquisition. Section 3 focuses on the machine
learning algorithms employed for prediction, with a partic-
ular emphasis on the development and optimization of the
ANFIS model in Sect. 3.2. Section 4 presents the findings
of your research in an objective and factual manner. Finally,
Sect. 5 presents the conclusions and potential future research
directions.

2 Materials andmethods

2.1 Experimental procedure

This study focuses on improving the strength of the glove box
traverse bracket by optimizing weld current, weld time, and
hold time in projection welding. The experiment uses DD13
material sheets and SAE1010material nuts, characterized by
their unique chemical and mechanical properties, as detailed
in Table 1. Furthermore, Fig. 1 provides detailed technical
drawings of the sheet metal and nut components.

The experimental setup involved the use of various
mechanical equipment and software tools. The primaryweld-
ing machine used for the welding process was the SPR74
model medium frequency spot projection welding machine.
The ZwickRoell weld break tester with document number
1 and the force measurement probe with plate number 1
were used to assess the weld strength. Mechanical compo-
nents of interest included the Zwick-Roell test machine and
a representative weld break test sample. Software tools such
as CATIA® V5, Solidworks®, and MATLAB® were used
to design, model, and optimize the physical system. These
software packages facilitated the creation of accurate and
detailed component models and helped optimize the param-
eters for the desired welding results.

Table 1 Chemical composition values and mechanical properties of workpieces

C Si Mn P S Al Yield Strength (N/mm2)
(min)

Shear Stress (N/mm2) Elongation (% min)

DD13 0.07 0.50 0.35 0.03 0.03 0.02 355 400–550 19

SAE1010 0.13 0.48 0.60 0.05 0.05 – 400 500–550 16
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Fig. 1 Technical drawing images of sheet metal and nut

2.1.1 Determination of welding input parameters
and welding process

The electrode force was maintained at a constant value to
assess the influence of welding parameters on weld strength.
In contrast, the variations in weld current, weld time, and
hold time were examined. For this investigation, an electrode
force of 3800Nwas chosen, considering the properties of the
materials involved and the thickness of the sheet. It should
be noted that the recommended range for the electrode force
for low alloy steels is typically 2.3–2.5 times the thickness
of the sheet [30, 31]).

Based on a thorough reviewof relevant literature and exist-
ing research on similar products, the optimal weld time for
low alloy steels has been determined to bewithin the range of
8.5–9 times the thickness of the sheet, with an average of 15
C. In particular, in a previous study, the hardness measure-
ment of the SAE1010 nut yielded a value of 170 ± 5 HV. In
contrast, the DD13 sheet material showed a hardness value
of 93± 2 HV. These findings indicate that in processes with
samples having higher hardness levels, extending welding
time may offer potential benefits, suggesting the advantages
of prolonged welding duration [3].

Five temperature levels were selected to expand the exper-
imental range and thoroughly investigate the effects of weld
time and hold time: 5, 10, 15, 20, and 25 °C. Similarly, a

range of welding current values was chosen to comprehen-
sively explore the impact of welding current, including 12
kA, 14 kA, 16 kA, 18 kA, 20 kA, and 22 kA. As part of the
study protocol, the welding parameters were initially estab-
lished, and subsequently, the corresponding samples were
appropriately labeled for further analysis and characteriza-
tion (Fig. 2a). Second, welding operations were carried out
(Fig. 2b-c). Third, a photograph of the samples whose weld-
ing processes were completed is shown in Fig. 2d.

After the welding operations were completed, the joints
were subjected to a thorough inspection, revealing the pres-
ence of five distinct welding qualities. These categories
include lost welding, stick welding, welding with a small
nugget diameter, good welding, and burnt welding.

2.1.2 Determination of welding strength by break tests

Upon installation of the prototype electrodes on the projec-
tion welding machine, a weld break test was performed to
evaluate their performance. The ZwickRoell Z050 machine
was used to apply a force speed of 2 mm/min.

During the break test conducted on projection-welded
joints, three distinct types of failure were observed: inter-
facial failure, tear failure, and knotting failure. Knotting
failure is typically encountered in samples obtained from
the projection welding process, irrespective of internal or
external factors. On the other hand, interfacial failure is pre-
dominantly attributed to insufficient fusion within the weld,
whereas samples exhibiting tearing failure exhibit a limited
melt zone within the weld area. On examination of the weld
points after the break test, it is noted that two of the welding
points exhibit interfacial failure, while the remaining point
shows tearing failure.

Insufficient penetration between the parts, lost welding
and interfacial failure are expected. If there is very little
molten zone between the parts, stick welding and interfa-
cial or tearing failure are expected. If the melt zone formed
between the parts is insufficient, welds with a small nugget
diameter and tearing failure are expected. If the nugget size
is sufficient, it is expected that no failure occurs and good
welds are achieved. In nugget formation, if the molten area
extends to the surface of the other workpiece, then a burnt
weld occurs.

2.2 Data acquisition and pre-processing

This study encompassed the execution of 140 experiments
involving three input variables and one output, presented in
Table 2. Provides descriptive statistical information such as
the count of each variable, mean, standard deviation(std),
minimum(min), 25th percentile(25%), median(50%), 75th
percentile (75%) and maximum(max). A total of 100 exper-
imental data points were used for training purposes. At the
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Fig. 2 a Photo of samples for welding process, b-c Projection welding machine/process, d Photo of welded samples

Table 2 Descriptive statistics of the data set

Mean Std Min 25% 50% 75% Max

Current (kA) 16.64 3.27 12 14 16 20 22

Welding time (1 C = 0.02 s) 14.46 7 5 10 15 20 25

Holding time (1 C = 0.02 s) 15.00 7 5 10 15 20 25

Strength (N) 12,614.10 7335.68 3070 5025 11,360 20,275 23,800

same time, a subset of forty randomly selected experimental
data points from the complete set of 140 were reserved for
model validation.

Boxplots were generated to understand the dataset bet-
ter and visualize the distributions between the input and
output parameters (Fig. 3). The box plots provide valu-
able information on each variable’s central tendency, spread,
and potential outliers. Additionally, regression graphs were
created to examine the relationships among the input param-
eters. The analysis revealed a positive relationship between
the current parameter and the weld strength. As the current
increases, the welding strength tends to increase initially.
However, it is worth noting that this positive effect starts to
diminish beyond a threshold of 20 current. In other words,
further increases in current beyond this point do not lead to
significant improvements inweld strength.On the other hand,
thewelding time parameter showed limited influence onweld
strength. Changes in welding time did not exhibit a clear pat-
tern or substantial impact on the strength of the weld joints.
Similarly, the holding time parameter demonstrated a min-
imal effect on the weld strength, suggesting that variations
in holding time did not significantly contribute to changes in
the overall strength of the weld joints. These findings suggest

optimizing the current parameter within an appropriate range
is crucial to achieving higher weld strength. However, the
impact of welding time and holding time onwelding strength
is relatively insignificant. Therefore, it is recommended to
focus primarily on optimizing the current parameter while
considering the diminishing returns observed beyond a cer-
tain threshold in improving weld strength.

The correlation analysis was performed to further inves-
tigate the relationships between the parameters by incorpo-
rating a correlation plot, as shown in Fig. 4. Specifically,
pairwise Pearson correlation coefficients were calculated to
assess linear associations between the input parameters [32].
The graphics indicated that the correlations were generally
low, suggesting weak linear dependencies among the vari-
ables. However, it was observed that the current parameter
exhibited a noticeable positive correlation with the out-
put parameter, indicating a tendency for increased welding
strength as the current value increased. On the other hand,
the welding time parameter did not show a significant cor-
relation with the weld strength. Similarly, the holding time
parameter showed a limited influence on weld strength.

Figure 5 provides insight into the distribution and char-
acteristics of the strength values obtained from the welding
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Fig. 3 Effects of a,d Current, b,e Welding, and c-d Holding on Welding Strength

process. The y-axis represents the density of the strength val-
ues, while the x-axis represents the range of strength values.

Figures 6 and 7 comprehensively visualize the distribution
and variation of the strength values corresponding to differ-
ent current levels. Using violin plots, these plots explore the
impact of welding process parameters on joint strength vari-
ability. The violin plots exhibit the probability density of the
strength values, allowing us to observe the shape and spread
of the distribution for each welding and holding time setting.
The violin’s width indicates the density at different current

levels, with wider areas indicating higher density. Addition-
ally, the white dot within each violin represents the median
strength value, providing an estimate of the central tendency.
When the violin plots, it can be observed that there is a signif-
icant relationship between current and strength. Specifically,
an increase in current generally corresponds to an increase
in strength, indicating a positive correlation. However, it is
interesting that the strength gains diminish beyond a certain
current value, typically around 20 units, suggesting a dimin-
ishing returns effect. Furthermore, by comparing the violin
plots across different welding and holding times, we can gain
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Fig. 4 Correlation analysis of welding parameters

insights into the influence of these parameters on the current-
strength relationship. The effect of welding and holding time
on this relationship is limited, as the general patterns of the
violin plots remain consistent across different time settings.
This implies that the primary driver of the current-strength
relationship lies in the welding current itself while welding
and holding times have a relatively smaller impact.

2.2.1 Splitting data and cross-validation

Before applying the ML algorithm, it’s important to divide
the dataset into separate training and test sets. Afterward, the
algorithm’s performance is evaluated using accuracymetrics.
The cross-validation technique is used for data partitioning.
This technique entails dividing the data set into k subsets,
whereby the model is trained and tested iteratively on differ-
ent subsets. During each iteration, one subset is designated as
the test dataset, while the remaining subsets k-1 are employed
for model training. This approach effectively partitions the
data, ensuring that relevant and accurate data are utilized for
training and testing purposes. Although cross-validation can
be computationally demanding due to repeated iterations,
its applicability is enhanced when dealing with relatively
small datasets, a characteristic commonly observed in sim-
ilar research domains. The data set was divided into k = 5
subsets for this study, and the cross-validation technique was
used to assess the model’s performance.

2.2.2 Cross-validation

Cross-validation is a widely used ML technique for eval-
uating predictive models’ performance and generalization
ability. It is a robust method for estimating how well a
model will perform on unseen data by effectively partition-
ing the available data set into training and validation subsets.
Cross-validation aims to assess the model’s performance on

Fig. 5 Welding strength
distribution analysis

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

Fig. 6 Effect of welding time and current on joint strength distribution (Violin Plots with Labels a-f for Currents)

Fig. 7 Effect of holding time and current on joint strength distribution (Violin plots with Labels a-f for Currents)

multiple subsets of the data and obtain reliable measures of
its predictive accuracy [33].

Cross-validation involves dividing the data set into k
mutually exclusive subsets or folds of approximately equal
size. Each fold is subsequently treated as a validation set,
while the remaining k-1 folds are combined to form the train-
ing set. The model is then trained on the training set and
evaluated on the validation set. This procedure is repeated
k times, each fold utilized as the validation set exactly

once. The advantage of cross-validation lies in its ability
to provide a more comprehensive evaluation of the model’s
performance by considering various combinations of train-
ing and validation data. It mitigates the risk of overfitting
or underfitting the model to a particular subset of the data,
offering a more reliable assessment of its generalization
capabilities. Moreover, cross-validation aids in the identi-
fication of potential issues, such as high variance or bias, and
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assists in tuning hyperparameters to enhance model perfor-
mance. Commonly used cross-validation strategies include
k-fold cross-validation, stratified k-fold cross-validation,
leave-one-out cross-validation, and hold-out validation. The
choice of a specific cross-validation technique depends on
factors such as the size of the dataset, available computa-
tional resources, and the desired level of model evaluation
accuracy.

2.3 Machine learning algorithms

In this study, several ML algorithms were developed and
evaluated to predict welding strength and optimize weld-
ing parameters. When the performance of these algorithms
was compared usingmetrics, their effectiveness in predicting
welding strength was assessed and compared. The perfor-
mance of the ML algorithm was compared using the Python
programming language within the Jupyter code development
environment. The experiments were performed on a com-
puter with an Intel(R) Core(TM) i7-5600UCPU@2.60GHz
processor. Various libraries such as NumPy, Pandas, Mat-
plotlib, Scikit-learn, and Seaborn were utilized to support
the implementation and analysis of the experiments.

Linear regression is mainly used to understand and model
complex relationships in which one dependent variable (tar-
get variable) depends on one or more independent variables
(properties). Linear regression makes predictions on the data
by expressing these relationships through a linear equation.
The linear regressionmodel captures amathematical connec-
tion between interrelated variables. The equation assumes
that a linear combination of the independent variables can
explain the dependent variable. This combination is multi-
plied by the coefficients of each independent variable, and
the sum of the result estimates the dependent variable [34].

Random forest regression is an ensemble learning algo-
rithmwhere a series of decision trees come together. Random
Forest Regression algorithms are a relationship in which a
target variable (dependent variable) depends on one or more
independent variables (properties). A prediction is made
by combining multiple decision trees. Each decision tree
is trained independently of each other using its sampling
method (such as random sampling and random feature selec-
tion). RandomForest Regression provides the ability tomake
flexible predictions by addressing the variability and com-
plexities in the data set. Each tree makes its prediction, and
the results are combined to form the final prediction. This
algorithm reduces the tendency to overfit and helps to obtain
more reliable estimates [35].

Ridge regression, also known as Tikhonov regression, is
a derivative of linear regression. However, Ridge Regres-
sion uses the regularization technique to reduce overfitting.
This algorithm reduces the variance of algorithms that tend

to overfit training data and aims to obtain more generaliz-
able estimates. Ridge regression adds a regularity term while
minimizing the total squared error. This regularity term func-
tions as a penalty function that limits the complexity of the
model. The main idea of ridge regression is to control the
magnitudes of the model coefficients and bring them closer
to zero when necessary. This way, the model is less likely to
be affected by noisy or multi-correlated features [36].

Bayesian regression adopts a statistical approach tomodel
and estimate uncertainties using Bayes’ theorem. Bayesian
regression is a generalization of linear regression. However,
unlike it, it contains distribution information on the model’s
parameters. Bayesian regression uses an a priori distribution
to determine the possible values of the parameters, updates
this distribution based on the data, and obtains an a posteri-
ori distribution. The main idea of Bayesian regression is to
obtain probability distributions of parameters based on data.
This provides the ability to handle uncertainties better. Also,
as you add new data to or update the model, the posterior dis-
tribution can be updated, and estimates can be recalculated
based on current information [37].

K-Nearest Neighbors (K-NN) makes predictions using a
neighbor-based learning approach. K-NN regression makes
predictions based on the positions of data points in space.
When estimating a sample, the method finds the nearest
neighbor points with the sample. After K neighbor points are
selected, an estimate is made using the target variable values
of these points. Based on this proximity, K-NN regression
weights and calculates the estimate.

Theworking principle ofK-NN regression is quite simple.
The steps are as follows:

1. First, a K-value is determined. This K-value determines
the number of neighboring points.

2. We determine The closest K neighboring points to the
sample we want to predict. Proximity is usually calcu-
latedwith the Euclidean distance or some other similarity
metric.

3. An estimate is made using the target variable values of
K neighboring points. This estimate is usually calculated
as the average value of neighbors.

An important parameter of the K-NN regression is the K
value. The K-value affects the model’s complexity and the
predictions’ smoothness. Small K values make the model fit
the datamore precisely butmay be prone to overfitting. Large
K values allow the model to make smoother predictions but
may reduce flexibility and lead to oversimplification [38].

Decision tree regression creates decision trees and makes
predictions based on the characteristics of the dataset. Deci-
sion trees make predictions by dividing over a degree of
freedom and determining variables (features). The decision
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tree starts from a root node and splits the data through suc-
cessive nodes and branches. Each split divides the data set
into more homogeneous subgroups.

Decision tree regression splits data using each node’s deci-
sion rule or threshold value. The tree divides the data into
parts by making these divisions and predicting each. For
example, if the decision rule on a node is "X < 5", instances
in the data set with a value of X less than five are merged into
a branch, and a prediction is made. The decision tree allows
the data set to be structurally divided into smaller parts. In
this way, more homogeneous data samples are found in each
part, and therefore, more precise estimates can be obtained
[39].

2.4 ANFIS

An adaptive neuro-fuzzy inference system is a hybrid pre-
dictive model that uses neural networks and fuzzy logic to
generate a mapping relationship between inputs and outputs
(J.-S. [40, 41]). The fuzzy logic system can learn; conversely,
the neural network is a large translucent. ANFIS may build
a good using these two features. While preliminary infor-
mation is provided to a set of constraints to decrease the
optimization search space using the fuzzy system, the adap-
tation of previous propagations to the designed network is
provided by neural networks to control the fuzzy parametric
values.

The purpose of a fuzzy interference system is to design a
proper relationship between the input and output parameters
using fuzzy logic. The ANFIS is a subbranch of adaptive net-
works and is functionally related to fuzzy inference systems
(J.-S. [40, 41]). Therefore, the ANFIS is a good technique
for mapping the strong non-linear relationship between mul-
tiple inputs and output parameters. This study has three input
variables (current, weld time, and hold time) and one output
(weld strength). Since each input parameter has two mem-
bership functions, there are eight rules (23 = 8).

The ANFIS structure contains five layers: fuzzification,
product, normalization, defuzzification, and output.

Layer 1: Fuzzification of input variables using member-
ship functions: In the ANFIS structure of projection welding
model, a, b, and c are input parameters that refer to current,
welding time, and holding time, respectively. A1, A2, B1, B2,
C1 and C2 are fuzzy variables which can be calculated as the
following equations:

Ai = μAi (a), i = 1, 2 (1)

Bi = μBi (b), i = 1, 2 (2)

Ci = μCi (c), i = 1, 2 (3)

In Eqs. 1, 2, and 3, μ values are membership functions of
each fuzzy variable. Equation 4 shows a calculation example
of the membership functions of fuzzy variables as bell-
shaped functions.

μAi (a) = 1

1+
[(

a−mi
ki

)]li i = 1, 2 (4)

In Eq. 4, ki, li, mi} are antecedent or premise parameters
of each membership function.

Layer 2: Firing or incentive strength of each rule: The
incentive strength of the rules can be indicated by the fol-
lowing equation:

Wi = μAi (a) × μBi (b) × μCi (c), i = 1, 2 (5)

Layer 3: Normalizing the firing or incentive strengths:
This layer can be described as the ratio of the incentive
strength of each rule to the sum of all the incentive strengths.
Equation 6 shows the calculation of normalization processes.

Wi = Wi∑
iWi

, i = 1, 2 (6)

Layer 4: Defuzzification: This layer represents the output
of each rule that can be expressed in the following equation.

Wi . fi = Wi .(αi .a + β.b + γi .c + θi ) (7)

In Eq. 7, {α, β, γ, θ}may be calculated by the least squares
method.

Layer 5: Final Output: The total output of all incoming
signals is calculated by Eq. 8.

∑
i
Wi . fi =

∑
iWi . fi∑
iWi

, i = 1, 2 (8)

Equation 8 represents thewelding strength as the output of
all processes. Figure 8 shows the general structure of ANFIS
(J.-S. R. [40, 41]).

This study conducted 140 experiments with three input
variables and one output. One hundred of these experimen-
tal data were used for training. The randomly selected forty
experimental data over one hundred and forty experimen-
tal data sets were used to check the developed model. All
experimental data are added to Online Appendix B.
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Fig. 8 ANFIS architecture

3 Results and discussions

3.1 Performance evaluation of machine learning
algorithms

The performance of each ML algorithm was evaluated using
the R2 regression metric, which measures the goodness of
fit between the predicted and actual values. The R2 regres-
sion plots visually represent each ML algorithm’s accuracy
and predictive capability. When comparing the trend of the
predicted values with the actual values, it becomes possi-
ble to assess the effectiveness of the models in capturing
the underlying patterns and relationships within the data.
Higher R2 values indicate a better fit between predicted and
actual values, signifying stronger predictive performance.
The results of the R2 regression plots indicate that certain
ML algorithms performed better than others in capturing the
variations in the test data set. The algorithms exhibited vary-
ing degrees of accuracy and precision in predicting the target
variable, demonstrating algorithm selection’s importance in
achieving reliable predictions. According to Fig. 9, the deci-
sion tree and random forest algorithms exhibited the best fit
among theML algorithms. These tree-based regression algo-
rithms showed strong performance in accurately predicting
the target variable. Decision tree algorithms, in particu-
lar, showed promising results in capturing the underlying
patterns and relationships in the dataset, making them well-
suited for this problem. While the decision tree and random
forest algorithms outperformed the others, it is worth noting
that other algorithms also showed reasonably good perfor-
mance. The K-NN algorithm, despite its relatively lower

performance compared to decision tree-based algorithms,
still yielded satisfactory results. However, it is important
to consider the trade-offs associated with each algorithm,
such as model interpretability, computational complexity,
and potential overfitting.

Table 3 presents the comprehensive evaluation results of
the ML algorithms used in this study—Cross-validation R2

scores for each model, which indicate the goodness of fit.
Additionally, the mean cross-validation score R2, which rep-
resents the overall performance of the models, is included.
Furthermore, various evaluationmetrics are presented for the
training and test datasets. Upon analysis, it is evident that the
random forest regression model achieved the highest perfor-
mance in cross-validation R2 scores and test R2 scores, with
values close to 1. This indicates a strong correlation between
the predicted and actual target values. On the other hand,
the linear regression, ridge regression, and Bayesian regres-
sion algorithms exhibited similar performancewith relatively
lower R2 scores compared to the random forest regres-
sion. Although their performance was slightly lower, these
algorithms still provided reasonable predictions and can be
considered viable options. The K-NN regression model per-
formed moderately, with a lower mean cross-validation R2

score than the previously mentioned algorithms. However,
it showed better performance in the test score, indicating
that it was more successful in generalizing to unseen data.
Lastly, the decision tree regression model exhibited high
cross-validation R2 scores, suggesting a good fit for the train-
ing data. However, it is important to note that the model may
have to overfit the training data, as evidenced by the perfect
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Fig. 9 Performance evaluation and predictive accuracy of ML models

R2 score on the training set and the relatively lower perfor-
mance on the test set.

Figure 10 visually compares the performance of various
machine learning algorithms employed in this study to pre-
dict welding strength. The figure shows a bar chart where
each bar represents the performance of a specific algorithm.
The height of each bar corresponds to the evaluation metric
used, such as the R2 score or MAE. The higher the bar, the
better the algorithm’s performance in accurately predicting
the welding strength.

3.2 Development and optimization of the ANFIS
model

This study identifies the optimal welding parameters that
yield the highest weld strength. The achievement of max-
imum welding strength often involves the consideration of
interval input values. However, the experimental data set
needs more information regarding these interval values.

ANFIS was employed to model the projection welding pro-
cess to address this limitation. Using the ANFIS model, it
becomes possible to determine how various input parame-
ters within specified upper and lower limits contribute to the
output variable of weld strength. Furthermore, the genetic
algorithm can be utilized to identify optimal input values as
interval values, which were not initially present in the exper-
imental dataset, through the established ANFIS model.

Genetic algorithms are highly effective optimization algo-
rithms applicable to linear, nonlinear, continuous, and dis-
continuous objective functions. These algorithms operate
through an iterative process utilizing a predetermined popu-
lation size. Each population consists of individuals, and the
individuals in the initial generation are determined randomly.
Evaluating the response to the objective function for each
individual assigns them a corresponding score. These scores
are crucial in determining the individuals selected for the sub-
sequent generation. Those with higher scores are more likely
to progress to the next generation. Generating new individ-
uals involves the implementation of three genetic operators:
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Fig. 10 Performance analysis of
ML algorithms

Table 3 Training and testing performance of machine learning models for weld strength prediction

Model Mean
Cross-Validation
R2

Train Test

R2 MAE MSE RMSE R2 MAE MSE RMSE

Linear
Regression

0.781 0.805 2563.100 3208.900 10,296,987.600 0.754 2747.900 13,598,911 3688

Random Forest
Regression

0.992 0.999 134.500 217.400 47,266.500 0.997 301.600 151,749 390

Ridge
Regression

0.781 0.805 2563.600 3208.900 10,297,021.500 0.754 2747.100 13,593,357 3687

Bayesian
Regression

0.781 0.805 2566.400 3209.200 10,298,927.300 0.755 2742 13,559,034 3682

K-NN
Regression

0.748 0.820 2537.000 3082.900 9,504,369.300 0.838 2600.700 8,977,082 2996

Decision Tree
Regression

0.988 1 0 0 0 0.996 326.790 239,768 490

elite, crossover, and mutation. Individuals with the highest
scores within the most current population are designated
elites directly incorporated into the subsequent population.
Crossover entails the creation of two offspring individuals by
combining specific portions of two-parent individuals from
the present population.On the contrary,mutation involves the
random alteration of segmentswithin a single-parent individ-
ual.

This study used the default mode of the genetic algorithm
in MATLAB® to optimize welding parameters. The specific
configuration employed consisted of a population size of 200

individuals, with 10 individuals designated as elites. Addi-
tionally, the algorithm incorporated 38 mutations and 152
crossover events during optimization. The optimal current
(first input), the optimal welding time (second input), the
optimal holding time (third input), and the maximum weld-
ing strength (output) were predicted by genetic algorithm
using the developed ANFIS model as 18.6643 kA, 18.5525
C, 14.2187C, and 25,830N, respectively. Approximately 5%
improvement was observed for maximum welding strength
compared to the actual experimental output (23,800 N) due
to interval input values determined by the genetic algorithm.
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Fig. 11 Experiments vs. ANFIS model responses

In this study, a total of 140 experiments were carried out,
in which 28 experiments were randomly chosen to form the
test data subset. These randomly selected experiments were
not used in developing the ANFIS model. The remaining
112 experiments constituted the training data subset uti-
lized to train the ANFIS model. Once the ANFIS model
was obtained, the preserved test data subset was used to val-
idate the performance of the developed model. Figure 11
presents the comparison between the actual experimental
results (depicted by the black line), the responses gener-
ated by the developed ANFIS model using the preserved
test data (represented by blue triangles) and the responses
of the ANFIS model using the training data (illustrated by
red circles).

Figure 11 shows a high level of agreement between the
responses generated by the developed ANFIS model using
test values and the actual experimental results. The validation
of the ANFIS model was further assessed by examining the
squared coefficient of correlation. The R2 value of 0.9953
indicates an excellent agreement between the experimental
and predicted results of the developed ANFIS model.

3.3 Discussions

The nuts and sheets using projectionwelding are widely used
in the automotive sector. Optimization of the welding param-
eters is crucial to ensure the quality and strength of these
weld joints. The welding current, welding time, and hold
time are key parameters significantly influencing welding
strength. Therefore, this study aims to analyze the effect of

these welding parameters on the welding strength and deter-
mine the optimal values to achieve the desired strength. ML
and ANFIS are utilized to identify the optimal values of the
welding parameters necessary to achieve the desired weld
strength.

Analyzing the influence of welding parameters on weld-
ing strength revealed valuable insights into the optimization
process. Using ML and ANFIS, the study successfully iden-
tified the optimal values of the welding parameters (welding
current, welding time, and hold time) required to achieve the
desired weld strength. The findings emphasize the impor-
tance of accurately determining the welding parameters to
achieve the desired welding strength in automotive appli-
cations. By utilizing ML and ANFIS methods, industries
can optimize the welding process and ensure the integrity
and reliability of the weld joints. This optimization process
leads to improved quality control, reduced material waste,
and increased productivity in the automotive sector.

Table 3 presents the results of various ML algorithms for
a regression task and the R2 values obtained from cross-
validation. The linear regression model achieved a mean
cross-validation R2 of 0.781, indicating moderate agree-
ment between the predicted and actual values. On the other
hand, the random forest regression model exhibited a signif-
icantly higher mean cross-validation R2 of 0.992, indicating
a strong agreement between the predicted and actual values.
Compared to these algorithms, the ANFIS model yielded an
R2 value of 0.9953, indicating a very high level of agree-
ment between the predicted and actual values. This suggests
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that the ANFIS model outperformed the linear and ran-
dom forest regression algorithms in accurately predicting
the target variable. It should be noted that the random for-
est regression model achieved the highest R2 value among
all algorithms, indicating its superior performance in cap-
turing the underlying patterns and relationships in the data.
However, the ANFIS model demonstrated exceptional pre-
dictive capability, nearing the performance of the random
forest and decision tree regression algorithms. This high-
lights the effectiveness of the ANFIS model in capturing
complex relationships within the dataset and generating
accurate predictions. The ANFIS model generally exhibits
strong predictive performance and outperforms several other
ML algorithms, including linear regression, ridge regres-
sion, Bayesian regression, K-NN regression, and decision
tree regression, as indicated by its high R2 performance.

Despite the promising results, this study has several lim-
itations that must be acknowledged. These include limited
data availability, specific welding materials and equipment,
welding process variations, and excluding other influential
welding parameters. Consequently, the generalizability of
the results may be limited to the specific welding setup
and conditions used. Computational limitations may affect
the accuracy and efficiency of the optimization process.
These limitations should be consideredwhen interpreting and
applying the findings of this study. Furthermore, it should be
noted that this study focused on plate-to-nut welding using
specific materials (DD13 sheet metal parts and AISI 1010
nuts). Further research can explore the applicability of ML
and ANFIS to different materials and welding processes.
Other relevant parameters and factors, such as surface prepa-
ration, collaborative design, and environmental conditions,
can provide a more comprehensive analysis of the prediction
of welding strength.

4 Conclusions

In conclusion, this study successfully optimized the welding
parameters for nut-sheet joining processes in the automotive
sector using machine learning and ANFIS techniques. The
study focused onDD13 sheetmetal parts andAISI 1010 nuts,
emphasizing the crucial variables of weld current, weld time,
andhold time.The study evaluatedmultiplemachine learning
algorithms, such as linear regression, random forest regres-
sion, ridge regression, Bayesian regression, K-NN regres-
sion, and decision tree regression. Based on the R2 score and
error metrics, random forest regression was identified as the
top-performing algorithm. In particular, the ANFIS model
also exhibited comparable performance, demonstrating its
effectiveness in predicting welding strength. The optimized
welding parameters obtained from this study enable indus-
tries to improve quality control and weld joints’ performance

in automotive applications. The findings highlight the impor-
tance of accurately determining optimal welding parameters
to ensure reliable and durable nut-sheet weld joints, ulti-
mately improving product quality and customer satisfaction.
Future research will focus on expanding the applicability
of these techniques to a wider range of welding processes
and materials, thus increasing their potential impact in the
automotive industry. Additionally, we will investigate the
influence of other factors, such aswelding sequence, welding
speed, and welding torch angle, on welding distortion. Fur-
thermore, we will explore using more sophisticated machine
learning models for welding distortion prediction and miti-
gation.
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30. Akkaş, N., İlhan, E., Aslanlar, S., Varol, F.: The effect of nugget
sizes onmechanical properties in resistance spot welding of SPA-C
atmospheric corrosion resistant steel sheets used in rail vehicles.
Mater. Test. 56(10), 879–883 (2014)
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