
Chaotic marine predator optimization algorithm for feature selection
in schizophrenia classification using EEG signals

Zeynep Garip1 • Ekin Ekinci1 • Kasım Serbest2 • Süleyman Eken3
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Abstract
Schizophrenia is a chronic mental illness that can negatively affect emotions, thoughts, social interaction, motor behavior,

attention, and perception. Early diagnosis is still challenging and is based on the disease’s symptoms. However, elec-

troencephalography (EEG) signals yield incredibly detailed information about the activities and functions of the brain. In

this study, a hybrid algorithm approach is proposed to improve the search performance of the marine predator algorithm

(MPA) based on chaotic maps. For evaluating the performance of the proposed chaotic-based marine predator algorithm

(CMPA), benchmark datasets are used. The results of the suggested variation method on the benchmarks show that the Sine

Chaotic-based MPA (SCMPA) significantly outperforms the other MPA variants. The algorithm was verified using a public

dataset consisting of 14 subjects. Moreover, the proposed SCMPA is essential for EEG electrode selection because it

minimizes model complexity and selects the best representative features for providing optimal solutions. The extracted

features for each subject were used in the decision tree (DT), random forest (RF), and extra tree (ET) methods. Perfor-

mance measures showed that the proposed model was successful at differentiating schizophrenia patients (SZ) from healthy

controls (HC). In the end, it was demonstrated that the feature selection technique SCMPA, which is the subject of this

research, performs significantly better in regard to classification using EEG signals.

Keywords Feature selection � Metaheuristic algorithms � Chaotic maps � EEG signals � Classification

1 Introduction

Electroencephalography (EEG) is a method used to mea-

sure brain electrical activity [1]. A series of electrodes are

usually placed on the scalp to measure electrical activity in

different areas of the brain. EEG data represent brain

waves. These waves have different frequencies and are

associated with different brain activities. For example, beta

waves are usually associated with alertness and attention,

while alpha waves usually occur at rest and with eyes

closed. Delta and theta waves have slower frequencies and

are associated with states such as deeper sleep or medita-

tion [2, 3].

EEG is a technique used in many fields, such as neu-

rology, neurophysiology, psychiatry, and sleep medicine.

Some common clinical applications of EEG include diag-

nosing epilepsy [4], detecting sleep disorders [5], evaluat-

ing brain function [6], evaluating developmental

disabilities in children [7], and identifying psychiatric

disorders [8]. One of these psychiatric disorders is

schizophrenia. Schizophrenia is associated with abnor-

malities in brain function, and EEG is used to detect these

abnormalities. When EEG recordings of schizophrenia

patients are analyzed, it has been observed that beta

activity decreases, gamma activity changes, and P300

responses change [9–11].

Recently, artificial intelligence techniques have been

used in analyzing EEG data in most fields, as shown in

Table 1. Especially by analyzing EEG data using machine

learning (ML) algorithms, schizophrenia can be detected in
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the early stages of the disease. In one of the previous

studies, Oh et al. (2019) detected schizophrenia from EEG

signals using an eleven-layered convolutional neural net-

work (CNN), a deep learning method. The classification

accuracy of the model they developed ranges between 81

and 98% [12]. In another study, Shalbaf et al. (2020) per-

formed schizophrenia detection by converting EEG data

into images. Here, they applied images of EEG signals to

pretrained AlexNet, ResNet-18, VGG-19, and Inception-v3

algorithms. They evaluated the schizophrenia status of 28

participants using a support vector machine (SVM) clas-

sifier. As a result, they achieved 98% classification success

with the ResNet-18-SVM algorithm [13]. Supakar et al.

(2022) proposed a deep learning-based recurrent neural

network (RNN)-long short-term memory (LSTM) model

for schizophrenia detection. They classified EEG data

obtained from 84 people, including schizophrenia patients

and healthy people, with 93–98% accuracy [14]. Sun et al.

(2021) developed a hybrid deep learning model by con-

verting time-series EEG data into red–green–blue (RGB)

images. As a result, fuzzy entropy features were found to

be more successful than fast Fourier transform features in

schizophrenia classification [15].

One of the challenges in analyzing EEG data is working

with high-dimensional datasets. Processing data recorded

from a large number of electrodes at high sampling fre-

quencies requires high computational power. In this con-

text, it is necessary to extract important features from EEG

signals and reduce the sample size [16].

Feature selection is a preprocessing phase that reduces

the amount of data and computational complexity by

removing unnecessary and redundant features, thereby

improving the performance of ML algorithms. Nonethe-

less, identifying the ideal subset of features in high-di-

mensional datasets is considered an NP-hard problem. The

search space will grow exponentially with an increase in

features because a dataset with N features comprises 2N-1

feature subsets. Because the exact methods cannot yield the

necessary result in a fair amount of time, metaheuristic

algorithms are employed to select the subset of features.

Different metaheuristic algorithms are used for feature

extraction in ML algorithms [17, 18]. Thus, the data size

Table 1 Summary of related work on EEG signals

Ref Algorithms Description Features Performance

criteria (Acc)

[24] CNN ? logistic regression (LR) They used a fusion of CNN and different ML classifiers 3 Nonsubject

based:

98.05%

Subject

based:90%

[25] SLBP ? HLV ? AdaBoostM1

(RF) ? CBFS 13

They proposed a local descriptors approach for automated SZ detection

using multichannel EEG signals

30 fet

13 fet

99.15%

99.36%

[26] Decision Trees

Random Forest

Logistic Regression

They studied the three different types of time frequency feature extraction

methods, and ML models for classifying SZ from HC

19 97.98%

[27] Vision Transformer (LeViT) They proposed a novel EEG data mapping method with Vision

Transformer as feature extractor and classifier for early identification of

SZ

19 98.99%

[28] Boosted trees classifier They proposed an accurate and easy-to-implement system to detect SZ

using EEG signals

19 98.62%

[29] VGG16 They used a CAD method to automatically distinguish between SZ and HC 19 99.5%

[13] ResNet-18-SVM They proposed a transfer learning with CNNs for the diagnosis of SZ from

HC

19 98.60%

[30] Collatz pattern They proposed a novel Collatz conjecture-based automated SZ detection

model using EEG signals

19 99.47%

[31] VM, K-NN, LDA, DT They proposed a method for the classification of SZ

and HC EEG signals

19 98.9%

[32] EfficientNetB0-LSTM They developed CNN-LSTM models were exploited for recognition of SZ

from normal subjects

19 99.90%

[33] kNN They developed an intelligent algorithm

for diagnosing schizophrenia based on brain signal dynamics

19 93.75%
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can be reduced, and a simple structure can be obtained. In

addition, owing to metaheuristic algorithms, overfitting can

be prevented, and models that generalize better can be

created. The most meaningful features in classifying

schizophrenia can be determined and useful in developing

practical clinical applications. For example, in a study on

classifying schizophrenia, Prabhakar et al. (2020) opti-

mized features in EEG data via the Flower Pollination and

Eagle strategies using different evolution algorithms, a

backtracking search optimization algorithm (BSA) and a

group search optimization algorithm (GSO) [19]. The

schizophrenia classification accuracy of the optimization

algorithms they proposed varied between 82 and 90%.

Khare and Bajaj (2022) used a whale optimization algo-

rithm (WOA) for feature extraction from EEG data. They

achieved 92% accuracy in classifying schizophrenia with

the six features they identified [20].

In a population-based metaheuristic, the search process

consists of two main phases: exploration and exploitation.

However, while some metaheuristic algorithms require

improvement during the exploitation stage, others must be

enhanced during the discovery stage. It is also necessary to

enhance both steps in a restricted set of algorithms. During

the exploration phase, it is beneficial to behave randomly to

cover as much ground as possible in the search space. In

contrast, the primary goal of the latter phase is to quickly

utilize the locations that show promise. Finding the right

balance between these two phases is extremely difficult

since population-based metaheuristic algorithms are

stochastic. Discrete-time dynamical systems are also

referred to as chaotic maps. To effectively find an optimal

solution, chaos is incorporated into metaheuristic algo-

rithms to create a balance between exploration and

exploitation [21]. Consequently, optimization approaches

obtain ergodic and nonrepeating properties of chaos. As a

result, it can search more quickly than random search and

avoid entering local optima. The performance of opti-

mization algorithms can be greatly improved by all of these

advantages [22].

In this study, a new hybrid approach is developed by

updating the parameters of the MPA to increase the per-

formance of the algorithm in finding the optimum global

solution with a random number sequence obtained from

five chaotic maps. Chaotic maps are logistic, tent, henon,

sine, and tinkerbell maps. These approaches are known as

Chaotic-based Marine Predators Algorithms (Henon

Chaotic-based MPA [HCMPA], Tinkerbell Chaotic-based

MPA [TICMPA], Logistic Chaotic-based MPA [LCMPA],

Tent Chaotic-based MPA [TECMPA] and Sine Chaotic-

based MPA [SCMPA]).

The proposed hybrid approach tries to maximize the

accuracy rate while minimizing the number of selected

features. The MPA is used to determine significant features

by determining the best foraging strategy for predators and

prey in marine environments. The major goal of using a

chaotic method is to overcome the drawbacks of an MPA,

such as local optimal traps and premature convergence, and

ultimately increase the capacity of the search for explo-

ration and exploitation. To enhance the FS performance of

the MPA, the proposed technique employs one-dimen-

sional chaotic maps as random number generators. In

addition, the decision tree algorithm was chosen to deter-

mine the effect of the selected feature on classification.

Decision tree construction can handle high-dimensional

data and does not require subject expertise, making it ideal

for exploratory knowledge mining [23]. For this reason,

decision trees (DTs) and an ensemble of DTs are used in

the study.

The contributions of the proposed methods can be listed

as follows:

• We propose hybrid metaheuristic algorithms by com-

bining MPA and five chaotic maps for feature selection

in schizophrenia decision tree-based classification using

EEG signals.

• To demonstrate the effectiveness of the SCMPA, the

SCMPA is statistically compared with chaotic-based

MPA variants on the well-known UCI (Breast, Hepati-

tis, Liver, Raisin and Heart) (https://archive.ics.uci.edu/

ml) datasets.

• The ability of the SCMPA to perform feature selection

in SCZ classification was verified using EEG signals.

The paper is organized as follows. In Sect. 2, the basic

and proposed algorithms are defined and mathematicalized.

Section 3 presents the experimental setup, evaluation

metrics, details about the EEG signal data and prepro-

cessing and the experimental study. Finally, in Sect. 4, the

conclusions are given.

2 Methods

2.1 Marine predator algorithm (MPA)

The marine predator algorithm (MPA) was developed by

Faramarzi et al., inspired by the prey-predator social rela-

tionship between marine predators and their prey [34].

Based on the MPA, the transition between phases in the

structure of the algorithm is achieved according to the

speed ratio between the prey and the predator [35]. These

phases include (1) a high-velocity ratio or when prey is

moving faster than a predator, (2) a unit-velocity ratio or

when both predator and prey are moving at almost the same

pace, and (3) a low-velocity ratio when the predator is

moving faster than prey.
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In the MPA, the initial solution is determined by using a

randomly and uniformly distributed search space. The

number of predators is n, the number of iterations is m, the

size of the optimization parameter is d, and Prey represents

the initial position of the prey. Xmax and Xmin in Eq. 1 are

the maximum and minimum values, respectively, and rand

is a random vector in the range 0; 1½ �. In this section, the

Prey matrix, which holds the positions of the initial pop-

ulation, forms the Elit matrix with the best fitness function.

X0 ¼ Xmin þ rand Xmax � Xminð Þ ð1Þ

Phase 1: In this behavior optimization at the first stage,

during the first third of the iterations iter\ 1
3
maxiter

� �
at a

high speed rate v� 10ð Þ, the best strategy for the predators

is not to move at all. P ¼ 0:5 in Eq. 2 and 3, R is defined as

a vector containing uniformly distributed random numbers

between 0; 1½ �, and RB is defined as a vector containing

random numbers based on the normal distribution of

Brownian motion. With Eq. 3, the matrices used by Prey,

which move according to Brownian motion, are updated.

stepsizei
�����! ¼ RB

�!� Eliti
��!� RB

�!
Preyi
���!� �� �

i ¼ 1; 2; 3. . .; n

ð2Þ

Preyi
���! ¼ Preyi

���!þ P:R
!� stepsizei

�����!� �
ð3Þ

Phase 2: At this stage, the prey and the predators use

different movement methods and move at the same speed

during the second third of the iterations of the optimization
1
3
maxiter\iter\ 2

3
maxiter

� �
.

While a predator uses Brownian motion, Prey uses Lévy

motion. According to Eq. 4–5, the movements of the first

half of the population are updated. RL Levy’s motion is a

vector containing random numbers based on a normal

distribution.

stepsizei
�����! ¼ RL

�!� Eliti
��!� RL

�!
Preyi
���!� �� �

ð4Þ

Preyi
���! ¼ Preyi

���!þ P:R
!� stepsizei

�����!� �
ð5Þ

According to Eqs. 6–7, the other half of the population

is updated. Here, CF is an adaptive parameter for con-

trolling the step size for predator movement.

stepsizei
�����! ¼ RB

�!� RB
�!� Eliti

��!� Preyi
���!� �

ð6Þ

Preyi
���! ¼ Eliti

��!þ P:CF � stepsizei
�����!� �

ð7Þ

CF ¼ 1 � Iter:=Max:Iterð Þ½ � 2:Iter:=Max:Iter:ð Þ

Phase 3: The prey is assumed to move slower than the

hunter during the remaining part of the optimization iter-

ation number iter[ 2
3
maxiter

� �
. For a low velocity ratio

v ¼ 0:1ð Þ, the best strategy for predators is Lévy. The final

phase is modeled according to Eqs. 8–9.

stepsizei
�����! ¼ RL

�!� RL
�!� Eliti

��!� Preyi
���!� �

ð8Þ

Preyi
���! ¼ Elitei

���!þ P:CF � stepsizei
�����!� �

ð9Þ

Additionally, both eddy formation and fish aggregating

devices (FADs) have direct impacts on the algorithm.

According to the study of Houssein et al. (2021), sharks

spend more than 80% of their time near FADs, and for the

remaining 20%, they will make a larger jump in various

dimensions, likely in search of a setting with a different

distribution of prey [36]. The FADs are considered to be

local optima; therefore, being aware of the lengthy leaps

prevents them from becoming stranded in local optima. and

their influence is assumed to be trapped in particular

locations in the search space. It is modeled analytically

according to Eq. 10.

Prey
��!

i ¼
Prey
��!

i þ CF X
!

min þ R
!� X

!
max � X

!
min

� �h i
� U
!

if r�FADsð Þ

Prey
��!

i þ FADs 1 � rð Þ þ r½ � Prey
��!

r1 � Prey
��!

r2

� �
if r[FADsð Þ

8
<

:

ð10Þ

2.2 Proposed chaotic-based MPA

In this study, a hybrid approach was developed by com-

bining different chaos maps with the MPA algorithm. In

this proposed algorithm, random number sequences of

chaotic maps, which are the main parameters that affect the

performance of the MPA, are used. Periodicity, stochastic

natural features, remarkable execution, and sensitivity to

the initial conditions are what make chaotic maps unique

[37, 38].

The eddy or the effects of fish aggregating device (FAD)

behavior on marine predators are highly important in the

MPA. FADs and long skips, which are among the basic

components of the MPA, prevent the algorithm from

reaching a local optimum and increase its performance in

finding the optimum global solution.

For these reasons, to improve the performance of the

MPA, the value of the uniform random coefficient r given

in Eq. 11, which provides the selection of eddies or the

effects of FADs, is updated with random number sequences

obtained from one- or two-dimensional chaotic maps. The

updated mathematical model is given in Eq. 12.

r ¼ Chaotic indexð Þ ð11Þ

Prey
��!

i ¼
Prey
��!

i þ CF X
!

min þ R
!� X

!
max � X

!
min

� �h i
� U
!

if r�FADsð Þ

Prey
��!

i þ FADs 1 � rð Þ þ r½ � Prey
��!

r1 � Prey
��!

r2

� �
if r[FADsð Þ

8
<

:

ð12Þ
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Table 2 Behavior of chaotic maps

Name Mathematical Equations Map

Logistic +1 = (1 ― ) 

α=3.9

Tent +1 = ( )  

( ) =
( ) = , < 0.5

( ) = (1 ― ), ≥ 0.5

= 1.41

Henon
+1 = 1 ― 2 +   

+1 =

= = 0.3
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1.5 -1 -0.5 0 0.5 1 1.5
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0

0.1

0.2

0.3

0.4

Sine +1 =  ( )

= 0.867

Tinkerbell
+1 = 2 ― 2 + +

+1 = 2 + +

= = ―0.6013,

= = 0.50

0 5 10 15 20 25 30 35 40 45 50
0.3
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0.9
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Five chaotic maps are employed in our experiments:

logistic, tent, henon, sine, and tinkerbell maps. The math-

ematical equations and visualized maps are provided in

Table 2.

2.3 Machine learning

2.3.1 Decision tree (DT)

For problems involving classification and regression (also

known as supervised learning), DTs are a very helpful tool.

The tree is made up of a root node that branches out into

multiple decision nodes based on the characteristics of the

dataset, signifying the various ‘‘questions’’ that the tree will

try to answer and leaf nodes that signify the decision’s

result. Since they explicitly match parameters to guide

information flow, they train quickly, produce deterministic

output (as opposed to the probabilistic output of a neural

network), and perform well even with small datasets [39].

To improve performance as a group, they might be coupled

in parallel (bagging) or in sequence (boosting). The inner

trees of a random forest are fitted to randomly selected

subsets of the data using bagging, and the majority decision

is used as the output.

2.3.2 Random forest (RF)

RF is a well-liked and adaptable ensemble technique that

involves a wide range of ML tasks and data types, and it is

known for its effectiveness in many real-world applications

[40]. Building an ensemble, or forest, of decision trees

derived from a randomized version of the tree induction

procedure is the basis of the RF family of techniques.

Given that decision trees typically have high variation and

low bias, which increases their likelihood of benefiting

from the averaging process, they are excellent candidates

for ensemble approaches. A bootstrapped sample of the

training data was used to train each tree. Therefore, this

approach creates diversity among the trees [41].

2.3.3 Extremely randomized trees (extra trees-ET)

ET is an ensemble ML technique that shares many simi-

larities with random forests. Its main applications include

classification and regression in data mining, image and text

analysis, and various ML tasks, and it has become popular

because it is highly effective and efficient for a variety of

data types [42]. ET creates a collection of decision trees,

similar to random forests. They do, however, go beyond the

idea of randomness. In ET, a random subset of features is

chosen for each node, and the best split is selected from

those random features, as opposed to choosing the best split

for each node individually. This additional unpredictability

can result in more robust models by preventing overfitting.

Bootstrapping, which creates several subsamples of the

training data with replacement, is a technique commonly

used by ETs [43]. One of these bootstrapped datasets

serves as the training set for each decision tree in the

ensemble. Because the feature selection and bootstrapping

steps are randomized, ETs are capable of handling noisy

data with great effectiveness [44].

3 Experimental study

In this study, we conducted two different experiments. In

the first experiment, we evaluate which of five different

chaotic map-based MPA algorithms performs well in fea-

ture selection on benchmark datasets. We then choose sine,

the chaotic map that performs rather well. In the second

experiment, classifications are made with DT-based algo-

rithms on EEG signal datasets comprising 14 subjects and

datasets obtained as a result of the features selected with

the SCMPA. The aim is to determine whether the proposed

SCMPA can extract the features that best represent the

Fig. 1 The proposed system

architecture
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dataset. The experimental setup, evaluation criteria,

benchmark datasets, feature selection and classification

experiments are described below. The proposed system

architecture is shown in Fig. 1.

The proposed system architecture is shown in Fig. 1.

3.1 Experimental setup

To verify the feasibility and effectiveness of the proposed

SCMPA, experiments employing a dataset of 14 subjects

and four different classification algorithms, namely, DT,

RF, and ET, are carried out. The classification perfor-

mances obtained without using any feature selection

method (only the original feature set) and obtained through

the features selected with SCMPA are also compared.

MATLAB 2023b was used to conduct all the numerical

experimental studies. SCMPA is run 20 times with a

population of 30 and 60 iterations.

To realize ML algorithms, the needed parameters are

determined. The main parameters of the algorithms are as

follows: the Gini index is utilized as a splitting criterion for

DTs to determine which splitting characteristic is optimal

for each node. Since the maximum depth of the tree for DT

is set to ‘‘none’’, nodes extend until every leaf is cut. At

least two samples are needed for the internal node algo-

rithm to be split. In addition to the parameter settings in the

Fig. 2 The standard 10–20 system of EEG electrode maps

Fig. 3 EEG signal samples of (left column) HCs and (right column) patients with SZ
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DT, the number of estimators in the ET and RF are set to

100.

3.2 Evaluation criteria

The F score with tenfold cross-validation (CV) was used to

evaluate the performance of the proposed framework for

each subject. The F score is the harmonic mean of the

precision and recall. where true positive (TP) is the number

of correctly classified healthy signals and false positive

(FP) is the number of schizophrenia signals classified as

healthy. The number of false negatives (FNs) represents the

number of healthy signals classified as schizophrenia, and

the number of true negatives (TNs) represents the number

of correctly classified schizophrenia signals. In terms of

TP, FP, FN, and TN, the formulas for the performance

metrics are given below.

Precision ¼ TP

TPþ FP
ð13Þ

Recall ¼ TP

TPþ FN
ð14Þ

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð15Þ

F � score ¼ 2 � Precision� Recall

Precisionþ Recall
ð16Þ

In addition to the F score, the performance of each

model was assessed using the area under the receiver

operating characteristic (ROC) curve (AUC). The overall

AUC was used to evaluate the performance of the models

across all possible categorization criteria. The range of the

AUC value is 0 to 1. The model has a good ability to

classify data if the value is near 1. The true positive rate

(TPR) was plotted against the false positive rate (FPR) with

the TPR on the y-axis and the FPR on the x-axis repre-

senting the ROC curve.

Table 3 List of datasets employed in the experiments

Datasets Number of features Number of instances Number of classes Data category Missing values Attribute characteristics

Breast 9 699 2 Biology Yes Integer

Hepatitis 19 154 2 Biology Yes Categorical, Real, Integer

Liver 5 345 2 Biology N/A Categorical, Integer, Real

Raisin 7 900 2 Agriculture N/A Real, Integer

Heart 13 270 2 Biology N/A Categorical, Real

Table 4 Statistical results of

fitness values evaluated by

SCMPA and MPA variants on

benchmark datasets

Dataset Performance Criteria Algorithms

MPA HCMPA TICMPA LCMPA TECMPA SCMPA

Breast Min 0.0056 0.0093 0.0089 0.0033 0.0105 0.0176

Avg 0.0197 0.0218 0.0173 0.0267 0.0236 0.0245

Std 0.0101 0.0088 0.0071 0.0129 0.0086 0.0059

Hepatitis Min 0.1032 0.1341 0.1032 0.1016 0.1011 0.1037

Avg 1.6758 1.8088 1.7104 1.8759 1.8424 1.7423

Std 0.0535 0.0321 0.0449 0.0519 0.0450 0.0549

Liver Min 0.2236 0.2236 0.1915 0.2539 0.2109 0.1949

Avg 2.8849 2.8975 2.7811 3.0046 2.7133 2.7878

Std 0.0365 0.0281 0.0390 0.0308 0.0274 0.0406

Raisin Min 0.0999 0.0964 0.0978 0.1074 0.1169 0.1239

Avg 1.3086 1.3622 1.3459 1.2936 1.4461 1.4378

Std 0.0217 0.0176 0.0161 0.0195 0.0182 0.0141

Heart Min 0.0756 0.0772 0.0588 0.0779 0.0222 0.0282

Avg 0.1073 0.1189 0.1209 0.1313 0.1063 0.1023

Std 0.0245 0.0282 0.0373 0.0285 0.0345 0.0520

The best average fitness values are represented as bold
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Table 5 Statistical results of

fitness values evaluated by

SCMPA and MPA variants in

the EEG dataset

Subjects Performance Criteria MPA HCMPA TICMPA LCMPA TECMPA SCMPA

S1 Min 4,81E-02 4,79E-02 4,60E-02 4,73E-02 4,84E-02 4,65E-02

Avg 5,04E-02 5,05E-02 4,91E-02 5,03E-02 5,09E-02 4,94E-02

Std 1,86E-03 1,30E-03 2,11E-03 1,43E-03 1,62E-03 1,95E-03

S2 Min 9,39E-02 9,46E-02 9,28E-02 9,38E-02 2,64E-03 2,06E-03

Avg 9,78E-02 9,74E-02 9,60E-02 9,80E-02 6,92E-02 8,86E-02

Std 2,39E-03 1,26E-03 2,20E-03 2,07E-03 4,56E-02 3,04E-02

S3 Min 5,30E-02 5,18E-02 5,21E-02 5,11E-02 5,09E-02 5,28E-02

Avg 5,46E-02 5,43E-02 5,48E-02 5,49E-02 5,51E-02 5,55E-02

Std 1,10E-03 2,00E-03 1,73E-03 2,41E-03 2,43E-03 1,94E-03

S4 Min 1,56E-03 1,75E-03 8,71E-02 1,09E-03 8,47E-02 1,47E-03

Avg 7,16E-02 7,33E-02 9,07E-02 6,42E-02 9,06E-02 5,36E-02

Std 3,67E-02 3,69E-02 1,88E-03 4,32E-02 2,90E-03 4,48E-02

S5 Min 3,54E-03 1,06E-02 2,03E-03 5,30E-02 1,28E-03 1,09E-03

Avg 4,94E-02 5,01E-02 4,88E-02 5,59E-02 4,41E-02 4,43E-02

Std 1,62E-02 1,40E-02 1,65E-02 2,10E-03 2,21E-02 2,26E-02

S6 Min 8,49E-02 8,39E-02 8,59E-02 8,44E-02 8,61E-02 8,45E-02

Avg 9,04E-02 8,92E-02 8,95E-02 9,04E-02 9,07E-02 8,98E-02

Std 2,23E-03 2,43E-03 1,60E-03 3,46E-03 2,52E-03 2,51E-03

S7 Min 4,37E-03 5,29E-02 8,50E-03 5,41E-02 5,01E-02 3,51E-03

Avg 5,09E-02 5,53E-02 5,01E-02 5,63E-02 5,60E-02 5,05E-02

Std 1,65E-02 1,58E-03 1,46E-02 1,73E-03 2,77E-03 1,67E-02

S8 Min 7,94E-02 8,37E-02 7,99E-02 8,27E-02 7,93E-02 7,97E-02

Avg 8,31E-02 8,52E-02 8,43E-02 8,47E-02 8,42E-02 8,39E-02

Std 2,35E-03 1,48E-03 2,22E-03 2,05E-03 3,05E-03 2,94E-03

S9 Min 7,98E-02 8,05E-02 9,01E-03 2,98E-03 1,75E-03 3,07E-03

Avg 8,37E-02 8,50E-02 7,57E-02 7,53E-02 7,54E-02 7,61E-02

Std 2,34E-03 2,43E-03 2,36E-02 2,55E-02 2,59E-02 2,57E-02

S10 Min 1,66E-03 7,11E-02 6,98E-02 2,13E-03 7,14E-02 1,56E-03

Avg 5,84E-02 7,34E-02 7,41E-02 6,67E-02 7,44E-02 6,72E-02

Std 2,98E-02 1,60E-03 2,91E-03 2,27E-02 2,12E-03 2,32E-02

S11 Min 2,60E-03 5,13E-02 3,17E-03 2,69E-03 4,39E-03 4,01E-03

Avg 3,77E-02 5,32E-02 4,65E-02 4,32E-02 4,74E-02 4,85E-02

Std 2,34E-02 1,23E-03 1,53E-02 2,12E-02 1,52E-02 1,58E-02

S12 Min 8,11E-04 1,09E-03 9,05E-04 6,21E-04 9,05E-04 9,05E-04

Avg 1,30E-03 1,40E-03 4,01E-03 1,24E-03 1,30E-03 1,27E-03

Std 2,75E-04 2,75E-04 8,25E-03 2,94E-04 2,31E-04 3,89E-04

S13 Min 7,88E-02 7,96E-02 8,12E-02 7,91E-02 2,13E-03 2,32E-03

Avg 8,16E-02 8,29E-02 8,34E-02 8,30E-02 6,69E-02 7,50E-02

Std 2,08E-03 2,31E-03 1,74E-03 1,96E-03 3,34E-02 2,57E-02

S14 Min 3,35E-03 4,20E-03 5,52E-03 4,01E-03 3,73E-03 4,01E-03

Avg 2,81E-02 7,52E-02 7,56E-02 2,05E-02 2,02E-02 2,81E-02

Std 3,80E-02 2,50E-02 2,47E-02 3,31E-02 3,23E-02 3,81E-02

For each subject, those with the best fitness values compared to MPA are in bold
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When evaluating the performance of a model using data

that are not utilized during training, the CV is employed.

The fundamental idea of CV is to eliminate some data, use

the remaining data to create a model, and then estimate the

samples that are omitted. For a total of k iterations, the data

are divided into k folds, with the excluded samples serving

as the test sample in each fold. The ultimate success of the

k-fold CV is determined by averaging the k performances

that are acquired. In this investigation, a 10 9 CV was

used.

3.3 Dataset

The publicly available EEG signal dataset from the Insti-

tute of Psychiatry and Neurology in Warsaw, Poland, was

used for the experimental study [45]. The dataset included

14 patients (7 males: 27.9 ± 3.3 years, 7 females:

28.3 ± 4.1 years) with paranoid schizophrenia (SZ) and 14

healthy controls (HCs) (7 males: 26.8 ± 2.9 years, 7

females: 28.7 ± 3.4 years). The EEG signals were recor-

ded for fifteen minutes while the patients were in an eyes-

closed resting state. Using the conventional 10–20 EEG

montage (shown in Fig. 2, where A1 and A2 are reference

electrodes) with 19 EEG channels, Fp1, Fp2, F7, F3, Fz,

F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2,

data are collected at a sampling frequency of 250 Hz.

However, every channel’s EEG data contain 225,000

samples; the first 100 s of the signals are taken into

account. This dataset is available at http://dx.doi.org/

https://doi.org/10.18150/repod.0107441. The EEG record-

ings from HCs and SZ patients are shown in Fig. 3.

We must address significant differences in the raw EEG

data since this frequently results in the ML algorithm

underperforming when there is a significant difference in

the numerical attributes of the dataset. In this study, we

normalize the raw EEG data and transform the data into the

[0, 1] range by using min–max normalization.

xiscaled ¼
xi � xmin
xmax � xmin

ð17Þ

where xi represents the ith data point, xmin represents the

minimum-valued data point, xmax represents the maximum-

valued data point, and xiscaled is the normalized form of xi.

3.4 The performance of the feature selection
algorithms

3.4.1 Case study-I: Comparison of the performance
of the original MPA and chaotic map-based MPA
algorithms on benchmark datasets

In this study, five datasets (https://archive.ics.uci.edu/ml)

are selected to verify the effectiveness and efficiency of the

algorithm developed for feature selection. The number of

features, number of instances, number of classes, and cat-

egory of data definitions for the selected datasets are given

in Table 3. The main objective of these experiments is to

evaluate the performance of the MPA on different chaotic

maps and determine the optimal chaotic map. The number

of populations and the maximum number of generations for

each method are 30 and 60, respectively. The mean (mean),

standard deviation (std), and minimum (best) values of the

different evaluation indices after 20 runs for each dataset

are shown in Table 4. Additionally, Table 4 compares

chaotic-based MPAs with different chaotic maps with the

original MPA in terms of feature selection.

Table 4 shows that the chaotic MPA outperforms the

original MPA when various chaotic maps are used. Addi-

tionally, it should be noted that across all the datasets, the

SCMPA and tent map achieved the best fitness values with

Table 6 Selected features with

SCMPA
Subjects Fitness Values Selected Features

S1 4,65E-02 Fp1, Fp2, F7, F4, F8, T3, C3, Cz, T4, T5, P3, Pz, P4, T6, O1

S2 2,06E-03 C3

S3 5,28E-02 Fp1, Fp2, F7, F3, F4, T3, C4, T4, T5, P3, Pz, P4, T6, O1, O2

S4 1,47E-03 T3

S5 1,09E-03 T5

S6 8,45E-02 Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, O1, O2

S7 3,51E-03 O1

S8 7,97E-02 Fp1, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2

S9 3,07E-03 T5

S10 1,56E-03 P4

S11 4,01E-03 T5

S12 9,05E-04 T5

S13 2,32E-03 T5

S14 4,01E-03 C3
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the fewest selected feature results when compared to the

others. Compared with the other maps, the breast has the

best performance at 0.0033 using LCMPA. Hepatitis

showed its best performance at 0.1011 with TECMPA.

While Liver demonstrated superior performance at 0.1915

using the TICMPA when compared to other map options,

Raisin revealed a top performance value of 0.0964 through

the HCMPA. The heart exhibited the highest performance

value at 0.0222 according to the TECMPA compared to the

other maps. All these results prove that chaotic-based MPA

algorithms reduce the number of selected features while

increasing the quality compared to the MPA.

3.4.2 Case study II: Comparison of the performance
of the original MPA algorithm and the chaotic map-
based MPA algorithm on the EEG dataset

Metaheuristic algorithms were run on the EEG dataset, and

the results obtained are given in Table 5. According to

Table 5, the most successful algorithm is the SCMPA, and

feature selection is performed with the SCMPA.

The features selected for each subject with SCMPA are

given in Table 6. According to Table 6, approximately

21% of the features for subjects 1 and 3 were eliminated.

Approximately 95% of the features are eliminated for

Subjects S2, S4, S5, S7, S9, S10, S11, S12, S13 and S14.

For Subjects S6 and S8, approximately 5% of the features

Fig. 4 Convergence of each algorithm for each subject
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are eliminated. The convergence graph obtained from each

subject of the SCMPA algorithm is also given in Fig. 4.

Additionally, the total rank of MPA and its variants was

calculated using Friedman’s mean rank test for the EEG

dataset as shown in Table 7. Results show that most of the

subjects SCMPA ranked first compared to other

algorithms.

3.5 Classification experiments

In this section, to verify the effectiveness of the SCMPA in

SZ recognition, we conduct two types of classification

experiments: original feature set-based and selected feature

set-based.

3.5.1 Experiment-I: Original feature set-based EEG
classification

Classification was performed with tenfold cross-validation

via the DT, RF and ET algorithms on the original dataset

for each subject, and the obtained performance values are

given in Table 8.

An examination of the results reveals that the DT

algorithm achieved relatively less successful classification

than did the other two algorithms. However, when evalu-

ated in general, it cannot be ignored that all the classifi-

cation models applied were successful. This study aimed to

determine whether the same or higher success rate can be

achieved with a smaller feature set. Thus, instead of

Fig. 4 continued
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working with the entire feature set, one can focus on

important features and work with a smaller feature set.

3.5.2 Experiment II: Selected feature set-based EEG
classification

Determining which subset of features performs best in

classification is crucial since reducing the number of

dimensions in the data can result in reduced calculation

time and information processing costs. In this section,

classification is performed for each subject based on the

features selected with the SCMPA, and the performance

values are given in Table 9.

Based on Table 9 above, the results show that selected

feature set-based EEG classification with a tenfold CV

gives more accurate results than does the original feature

set-based EEG classification.

SZs and HCs were accurately classified according to the

results displayed above. The confusion matrix and ROC

curves, shown in Fig. 5, suggest that nearly 100% accuracy

can be attained in the robust discrimination of HCs and SZ

patients by using only one electrode.

The comparison between classification with original

features and SCMPA selected features are given in

Table 10. Based on the results, it can be clearly seen that

the same or even better results can be achieved with fewer

features.

Fig. 4 continued
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Table 7 Friedman’s mean rank

statistics
Subjects Algorithm MPA HCMPA TICMPA LCMPA TECMPA SCMPA

S1 Friedman Mean Rank 3.3000 3.9000 2.7000 3.7000 4.2000 3.2000

Rank 3 5 1 4 6 2

S2 Friedman Mean Rank 4.2000 3.6000 2.5000 4.2000 2.8000 3.7000

Rank 5 3 1 6 2 4

S3 Friedman Mean Rank 3 2.9000 4 3.1000 3.8000 4.2000

Rank 2 1 5 3 4 6

S4 Friedman Mean Rank 3.1000 3.9000 4.2500 3.2000 4.2500 2.3000

Rank 2 4 5 3 6 1

S5 Friedman Mean Rank 3.4000 3.7000 3.2000 4.3000 3.2000 3.2000

Rank 4 5 3 6 2 1

S6 Friedman Mean Rank 4.2000 3.0500 3.0500 3.8000 3.9000 3

Rank 6 2 3 4 5 2

S7 Friedman Mean Rank 3.6000 3.4500 2.1000 4.3000 4.2500 3.3000

Rank 4 3 1 6 5 2

S8 Friedman Mean Rank 2.5000 4.6500 3.3000 3.7500 3.6000 3.2000

Rank 1 6 3 5 4 2

S9 Friedman Mean Rank 3.5000 4.2000 2.8000 4.2000 3.1500 3.1500

Rank 4 5 1 6 3 2

S10 Friedman Mean Rank 2.1000 3.3500 4.0500 3.9000 3.9000 3.7000

Rank 1 2 6 4 5 3

S11 Friedman Mean Rank 2.9000 4.5000 2.4000 3.8000 3.5000 3.9000

Rank 2 6 1 4 3 5

S12 Friedman Mean Rank 3.4000 4.2500 4.1000 3.1500 3.5500 2.5500

Rank 3 6 5 2 4 1

S13 Friedman Mean Rank 2.7000 3.3000 4.4000 4.1000 3.1000 3.4000

Rank 1 3 6 5 2 4

S14 Friedman Mean Rank 2.9500 4.8000 4.9000 2.9000 2.6000 2.8500

Rank 4 5 6 3 1 2

Fig. 4 continued
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Table 8 Performance of each classification algorithm for each subject

(original features)

Subjects Model Accuracy AUC Recall Precision F1-Score

S1 DT 0.89 0.89 0.89 0.89 0.89

RF 0.95 0.99 0.93 0.97 0.95

ET 0.96 0.99 0.93 0.98 0.95

S2 DT 0.83 0.83 0.83 0.83 0.83

RF 0.91 0.97 0.87 0.94 0.9

ET 0.9 0.97 0.83 0.96 0.89

S3 DT 0.88 0.88 0.89 0.88 0.88

RF 0.94 0.98 0.97 0.92 0.94

ET 0.95 0.99 0.98 0.92 0.95

S4 DT 0.86 0.86 0.86 0.86 0.86

RF 0.92 0.98 0.95 0.89 0.92

ET 0.91 0.98 0.96 0.87 0.91

S5 DT 0.91 0.91 0.91 0.91 0.91

RF 0.96 0.99 0.97 0.94 0.96

ET 0.96 0.99 0.98 0.94 0.96

S6 DT 0.78 0.78 0.79 0.78 0.78

RF 0.89 0.96 0.88 0.89 0.89

ET 0.9 0.97 0.9 0.91 0.9

S7 DT 0.89 0.89 0.9 0.89 0.89

RF 0.95 0.99 0.97 0.93 0.95

ET 0.95 0.99 0.98 0.92 0.95

S8 DT 0.86 0.86 0.86 0.86 0.86

RF 0.92 0.97 0.94 0.9 0.92

ET 0.93 0.98 0.97 0.9 0.93

S9 DT 0.82 0.82 0.82 0.83 0.82

RF 0.93 0.98 0.93 0.91 0.93

ET 0.92 0.98 0.94 0.91 0.93

S10 DT 0.85 0.85 0.85 0.85 0.85

RF 0.93 0.98 0.93 0.93 0.93

ET 0.93 0.98 0.93 0.93 0.93

S11 DT 0.92 0.92 0.92 0.92 0.92

RF 0.96 0.99 0.97 0.96 0.96

ET 0.96 0.99 0.98 0.95 0.97

S12 DT 0.97 0.97 0.97 0.97 0.97

RF 0.98 1 0.99 0.97 0.98

ET 0.98 1 1 0.97 0.98

S13 DT 0.87 0.87 0.88 0.87 0.87

RF 0.94 0.98 0.95 0.92 0.94

ET 0.94 0.99 0.97 0.91 0.94

S14 DT 0.92 0.92 0.92 0.93 0.92

RF 0.93 0.98 0.97 0.90 0.93

ET 0.93 0.98 0.98 0.89 0.93

Table 9 Performance of each classification algorithm for each subject

(selected features)

Subjects Model Accuracy AUC Recall Precision F1-Score

S1 DT 0.89 0.89 0.89 0.89 0.89

RF 0.95 0.99 0.93 0.97 0.95

ET 0.95 0.99 0.92 0.98 0.95

S2 DT 0.99 0.99 0.99 0.99 0.99

RF 0.99 0.99 0.99 0.99 0.99

ET 0.99 0.99 0.99 0.99 0.99

S3 DT 0.87 0.87 0.87 0.88 0.88

RF 0.93 0.98 0.97 0.91 0.94

ET 0.94 0.99 0.98 0.92 0.95

S4 DT 0.99 0.99 0.99 1 0.99

RF 0.99 0.99 0.99 1 0.99

ET 0.99 0.99 0.99 1 0.99

S5 DT 0.99 0.99 0.99 1 0.99

RF 0.99 0.99 0.99 1 0.99

ET 0.99 0.99 0.99 1 0.99

S6 DT 0.78 0.78 0.78 0.78 0.78

RF 0.89 0.96 0.88 0.89 0.89

ET 0.9 0.97 0.89 0.91 0.9

S7 DT 0.99 0.99 0.99 0.99 0.99

RF 0.99 0.99 0.99 0.99 0.99

ET 0.99 0.99 0.99 0.99 0.99

S8 DT 0.85 0.85 0.85 0.86 0.85

RF 0.92 0.97 0.94 0.9 0.92

ET 0.93 0.97 0.96 0.9 0.93

S9 DT 0.99 0.99 0.99 0.99 0.99

RF 0.99 0.99 0.99 0.99 0.99

ET 0.99 0.99 0.99 0.99 0.99

S10 DT 0.99 0.99 0.99 0.99 0.99

RF 0.99 0.99 0.99 0.99 0.99

ET 0.99 0.99 0.99 0.99 0.99

S11 DT 0.99 0.99 0.99 1 0.99

RF 0.99 0.99 0.99 1 0.99

ET 0.99 0.99 0.99 1 0.99

S12 DT 0.99 0.99 0.99 1 0.99

RF 0.99 0.99 0.99 1 0.99

ET 0.99 0.99 0.99 1 0.99

S13 DT 0.99 0.99 0.99 1 0.99

RF 0.99 0.99 0.99 1 0.99

ET 0.99 0.99 0.99 1 0.99

S14 DT 0.99 0.99 0.99 0.99 0.99

RF 0.99 0.99 0.99 0.99 0.99

ET 0.99 0.99 0.99 0.99 0.99
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Fig. 5 Confusion matrices and ROC curves for each subject
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4 Conclusions

In this study, a new hybrid algorithm is proposed that

involves modifying the parameters of the MPA algorithm

to improve the algorithm’s performance by using a random

number sequence derived from five chaotic maps. The goal

of the proposed algorithms is to minimize the number of

features chosen during feature selection while maximizing

the accuracy rate for the EEG signal classification task.

Compared with other chaotic-based MPAs, the HCMPA,

TICMPA, LCMPA, and SCMPA can be used to select

more representative features from the experimental dataset.

The SCMPA selects a different number of features for each

subject. These features are fed into a DT based on three

different classifiers. The experimental results show that

more stable and accurate results are achieved via classifi-

cation via SCMPA-selected features. The only shortcoming

with SCMPA is that SCMPA handles only single-objective

continuous optimization problems. Consequently, the fol-

lowing can be regarded as the main topics of future

research: devising SCMPA to address binary, multi-ob-

jective, and discrete space optimization problems.

Table 10 Comparison of the F1-score of DT, RF and ET with original features and SCMPA selected features for EGG dataset

Features Models Subjects

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Original DT 0.89 0.83 0.88 0.86 0.91 0.78 0.89 0.86 0.82 0.85 0.92 0.97 0.87 0.92

RF 0.95 0.9 0.94 0.92 0.96 0.89 0.95 0.92 0.93 0.93 0.96 0.98 0.94 0.93

ET 0.95 0.89 0.95 0.91 0.96 0.9 0.95 0.93 0.93 0.93 0.97 0.98 0.94 0.93

SCMPA DT 0.89 0.99 0.88 0.99 0.99 0.78 0.99 0.85 0.99 0.99 0.99 0.99 0.99 0.99

RF 0.95 0.99 0.94 0.99 0.99 0.89 0.99 0.92 0.99 0.99 0.99 0.99 0.99 0.99

ET 0.95 0.99 0.95 0.99 0.99 0.9 0.99 0.93 0.99 0.99 0.99 0.99 0.99 0.99

The best classification results are given as bold

Fig. 5 continued
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