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Abstract In this paper, free vibration analysis and temperature-dependent buckling behavior of porous func-
tionally graded magneto-electro-thermo-elastic material consisting of cobalt ferrite and barium titanate were
modeled and analyzed. A high-order sinusoidal shear deformation theory was used to accurately model the
anisotropic material behavior. The study examined the porosity role variation across thickness in the buckling
and free vibration behavior of nanobeams, as well as the effects of magneto-electro-elastic coupling, thermal
stresses, nonlocal properties, externally applied electric and magnetic field potential, and porosity volume
fraction.

1 Introduction

Functionally graded composite materials have been a significant research topic in numerous engineering fields
over the last decade. The mechanical properties required in various research fields are difficult to combine.
Therefore, it is crucial to use intelligent materials, such as magneto-electro-thermo-elastic materials (METE).
Such materials can transform into more valuable materials by using magnetic, electrical, thermal, and mechan-
ical energies and are known as functionally graded materials (FGMs) to meet properties such as thermal
resistance and high strength in the industry. The mechanical characteristics of FGMs, which typically consist
of two distinct parts, change seamlessly between one another, leading to the creation of new structures that
can withstand a range of loads [1]. These two materials are mainly barium titanate (BaTiO3), which is a
ferroelectric ceramic material with piezoelectric and photorefractive properties, and cobalt ferrite (CoFe2O4),
which has magnetostrictive properties [2]. As a result, while the latter may be preferred for electromechanical
converters and capacitors, the former may be selected for actuators and sensors.

Because it is difficult to predict the small structures’s mechanical behavior using classical mechanics
theories, there are theories in the literature to analyzemicro- or nanosized structures. Some of these are theories
such as nonlocal elasticity [3], strain gradient [4–6], and nonlocal strain gradient elasticity [7–12]. Nonlocal
elasticity theory (NET), which is widely used today, was proposed by Eringen in 1983 [13]. According to this
theory, as the size of the material decreases, it expresses its softness according to a nonlocal parameter, and it is
a value ranging from 0 to 4 nm2. Using Eringen’s nonlocal elasticity theory, Ebrahimi and Barati investigated
the thermal buckling of nonlocal magneto-electro-thermo-elastic FG beams [14]. Magnetic-electric-thermo-
elastic functionally graded plates (METE-FGPPs) exposed to supersonic airflow were the subject of a study by
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Zhong et al. on flutter instability [15]. Based on the trigonometric shear strain beam and modified double stress
theories, Akgöz and Civalek et al. [16] realized a dimensional buckling analysis of embedded FG microbeams
in a thermal environment. In a different study, they conducted the thickmicrobeammodel usingmodified strain
gradient and hyperbolic shear deformation beam theories, as well as the buckling behavior of two-parameter
carbon nanotubes dependent on the microstructure [17, 18]. Eringen’s nonlocal elasticity theory is employed
to study the buckling, bending, and free vibration of Timoshenko nanobeams [19–21]. The same approach can
be used to perform free, static, and thermal vibration analyses of nanoplates [22–28]. Li et al. examined the
impact of scale on the free vibration analysis of FG nano-/microscale beams [29]. In a thermal environment,
Chen et al. looked into the vibrations of functional stepped (FG) rotary pre-twisted sandwich blades [30].
Some FGM beam and plate studies [31–41] applying the small-size, magnetic field, viscoelastic foundation
effects are interesting. Additionally, for large-sized beam and plate structures the following studies [42–54]
have investigated the effects of porosity, FGM, and sigmoid distributions using analytical and FEM methods.

Cheshmeh et al. investigated the vibration and buckling responses of rectangular FG-CNTRC plates when
subjected to thermomechanical load [55]. Esen andÖzmen developed amodel to simulate the thermal buckling
and vibration behavior of a porous nanoplate made of functional grades of CoFe2O4 and BaTiO3 [56]. Vaezi
et al. calculated the critical magnetic and electric potential values by examining the free vibrations of MEE
microbeams [57]. Toro et al. looked at coupledmagneto-electro-elastic waves propagating along a periodic lay-
ered waveguide [58]. The nonlinear magneto-electro-elastic vibration of the smart sandwich plate is addressed
analytically by Dat et al. [59]. Ke et al. [60] investigated how temperature changes affected microbeam free
vibration and buckling. In their study, Eltaher et al. employ the finite element method to conduct a comprehen-
sive analysis on the free vibration characteristics of functionally graded (FG) nanobeams with size-dependent
behavior [61]. In a hygrothermal environment, Monaco et al. investigated nanoplates’ buckling and linear
vibrations [62]. A double girder system supported on an elastic foundation is studied by Chen et al. in terms
of its buckling and post-buckling behavior [63]. Also, Daghigh et al. [64] analyzed the bending and buck-
ling of carbon nanotube. Boyina et al. [65] devised a nonlocal strain gradient model for functionally graded
Euler–Bernoulli beam buckling analysis under thermomechanical stresses. Quan et al. [66] provided analytical
solutions for the examination of static buckling and vibration in nanocomposite multilayer perovskite solar
cells.

It is a possible problem that porosity occurs due to the inevitable thermochemical reaction of materials
with the environment and other additives in production. As a result, the dynamic and static behavior of FG
composite should take distribution function and porosity within the structure into account. In this context,
Kiran and Kattimani preferred the finite element method to research the free vibration properties and static
behavior of a porous functional-grade magneto-electro-elastic plate [67]. Liu et al. solved the magneto-electro-
elastic plate deformations with nonuniform materials [68]. Ebrahimi et al. investigated the free vibration of
magneto-electroporous FG plates supported by elastic foundations with varying boundary conditions [69]. In
the framework of isogeometric analysis, Xue et al. looked into the free vibration of the porous square, circular,
and rectangular plates with a circular hole in the center [70].Wang and Zu [71] established their structure based
on the vibrations of rectangular plates of functionally graded material (FGM) acting in a porous and thermal
environment. Li et al. [72] presented a successful method for the vibration of FGBs resting on Pasternak elastic
foundations with continuously and arbitrarily varying cross sections. Kumar and Harsha used finite element
formulations to investigate the vibration response of electro-thermally charged porous functionally graded
piezoelectric plates [73]. Gholi et al. [74] studied the frequency response of a functionally graded (FG) porous
annular plate covered with two piezo-electromagnetic layers. Sui et al. investigated the frictional contact that
occurs in three dimensions (3D) when an electromagnetic field is applied to a magneto-electro-elastic (MEE)
material and a rigid spherical punch [75]. Esmaeilzadeh and Kadkhodayan investigated the nonlinear transient
response of a mobile porous microsized sandwich plate [76]. Based on first-order shear deformation theory,
Bui et al. performed stochastic vibration and buckling analysis on I-section, functionally graded sandwich
thin-walled beams [77]. Xu et al. [78] investigated the influence of the distribution of nanovoids related to
trigonometric functions on the forced mechanical characteristics of functionally graded curved nanobeams.
Ebrahimi and Hosseini [79] studied the performance of nano-electro-mechanical systems concerning primary
and secondary resonances. Li et al. [80] conducted the acoustic radiation and vibration behavior of functionally
graded magneto-electro-thermoelastic porous plates (METE-FGPPs). The thermal vibrational characteristics
of a functionally graded porous graded cylindrical shell (FGP-SCS) were presented by Li et al. [81]. Using
functionally graded (FG) porous beams with an uneven pore distribution, Chen et al. [82] investigated the
forced and free vibration properties. According to nonlocal strain gradient theory, Majdi et al. [83] examined
the forced and free vibrations of bidirectional functionally graded (BDFG) porous nanobeams under live loads
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Table 1 Temperature-dependent coefficients for the properties of CoFe2O4 and BaTiO3

Material Property P−1 P0 P1 P2 P3

CoFe2O4 C11(Pa) 0 298.87e9 −1.552e − 4 6.125e − 9 −9.0e − 11
C55(Pa) 0 47.33e9 −1.552e − 4 6.125e − 9 −9.0e − 11
υ 0 0.3 0 0 0
α
(
1K−1

)
0 7.5e − 6 −3.01e − 4 4.02e − 6 −1.01e − 09

κ(W/mK) 0 4.7030 −0.0011 1.6612e − 06 −9.9670e − 10
ρ (kg/m3) 0 5300 0 0 0

BaTiO3 C11(Pa) 0 174e9 −1.552e − 4 6.125e − 9 −9.0e − 11
C55(Pa) 0 44.93e9 −1.552e − 4 6.125e − 9 −9.0e − 11
υ 0 0.30 0 0 0
α
(
1K−1

)
0 10e − 6 −3.0e − 4 4.0e − 6 −1.0e − 09

κ(W/mK) 0 3.7624 −8.50521e − 4 1.32894e − 06 −7.97363e − 10
ρ (kg/m3) 0 5800 0 0 0

while taking the thickness effect into account. Karami et al. [84] studied the free vibration of nonuniform
nanosized beams in a thermal environment using nonlocal strain gradient theory. Lu et al. [85] investigated
a size-dependent sinusoidal shear strain beam model for free vibration of nanobeams. According to the two-
phase local/nonlocal strain and stress gradient theory, Yang et al. [86] developed a unified high-order nanobeam
model that takes into account a variety of high-order shear deformation beam theories in order to investigate
the vibration response of the nanobeam. Vinh and Tounsi [87] used nonlocal first-order shear deformation
theory to study functionally graded bi-curved nanoshells’ free vibration. Civalek et al. [88] examined how
deformable border and porosity affect the free vibration parameters ofmetal foam functionally graded restricted
Rayleigh microbeams. Khoa examined FG laminated composite panel free vibration and nonlinear dynamics
in hygrothermal conditions [89]. Mellal et al. [90] used high-order shear deformation theory (HSDT) to
analyze the free vibration and stability of perfect and imperfect functionally graded (FG) beams. Karami and
Janghorban presented the Timoshenko beam model with nonlocal strain gradient that accounts for axially
varying materials and thickness terms to analyze the free vibrations of such nanotubes [91].

The literature shows the free vibration behavior of beams composed of magneto-electro-elastic materials,
as seen above. However, most of the literature studies are given by taking into consideration simple conditions.
In experimental literature studies [56, 92], it has been reported that porosity can occur up to 40% in BaTiO3
and CoFe2O4 structures. For this reason, in this study, first, porosity and three different distribution forms
of porosity, which can be formed in the production of ceramic materials BaTiO3 and CoFe2O4, were taken
into account. Since the behavior of nanosensors changes depending on the temperature in high-temperature
applications, the nonlinear temperature distribution inside the nanosensor is taken into account in this study.
The temperature-dependent material properties of BaTiO3 and CoFe2O4 have been considered in nanosensor
dynamics. Temperature-dependent nonlinearmaterial properties were obtained using past experimental studies
and presented in Table 1. Using a higher-order shear deformation theory, the dynamic behavior of porous
nanobeam made of functional-grade BaTiO3 and CoFe2O4 components was modeled and investigated using
nonlocal strain gradient elasticity theory (NSGT). The free vibration behavior of the nanosensor beam, which
consists of functional grading of BaTiO3 and CoFe2O4, depending on temperature, material composition,
porosity amount and porosity distribution, applied voltage, and magnetic field potentials, has been investigated
with extensive analyzes, and the results are presented. The results of this study will be helpful in terms of
obtaining accurate results in the design and analysis of micro-electro-mechanical system (MEMS) and nano-
electro-mechanical system (NEMS) systems such as nano-/microsensors and nano-/microactuators. In addition,
the results of this study are at a level that can be used in other applications such aswearable technology, nanodrug
delivery, and high-performance aerospace applications under severe temperature conditions. Moreover, the
implementation of porous nanobeams holds significant potential in various crucial domains, including nano-
and microsurgery, surrounding fluid sampling and analysis, and precise delivery of essential fluids to specific
treatment regions. Furthermore, they can be utilized in cold and hot gas analysis sensors, as well as in the
measurement and regulation of ambient atmosphere within blast furnaces.
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Fig. 1 A FG porous magneto-electro-elastic (MEE) nanosensor beam under electro-magnetic field

2 Theoretical formulation

2.1 The material properties of magneto-electro-viscoelastic FG nanobeam

Think about a beam of a magneto-electro-elastic functionally graded nanosensor and a fixed substrate with
the specifications shown in Fig. 1. The BaTiO3 and CoFe2O4 materials in the nanobeam, which have the
temperature-dependent properties listed in Table 1, are exposed to a magnetic potential of γ (x, z, t) and an
electric potential of �(x, z, t). Another electric potential �a(x, z, t) between the beam and substrate is used to
activate the nanosensor beam. According to a power-law distribution, the thickness direction of the effective
material properties of nanobeams continuously changes as [93]

P(z) � [Pt − Pb]Vt + Pb

Vt �
(
z

h
+
1

2

)p

, Vt + Vb � 1 (1)

Here, the material grading index (p ≥0), which controls how much material is distributed throughout the
thickness, is present. The top and bottom sides’ respective material properties are Pt and Pb. Please be aware
that the bottom surface of the nanobeam (z � h/2) is fully BaTiO3, while the top surface at z � + h/2 is fully
CoFe2O4.

Because of the sintering process, the porosity of ceramic beams is sometimes unavoidable. As a result,
porosity is considered in this study, and the distribution of porosity along thickness is presumable to be one of
the types shown in Fig. 2. In particular, the relation shown below can be used to define the effective material
proportions when the uniform porosity in Fig. 2a is taken into account: [93]

P(z) � [Pt − Pb]Vt + Pb − α

2
[Pt + Pb], (2)

Here α is the material’s porosity volume fraction, and the porosity content in both the metal and ceramic
components is represented by the equation’s final term.

The porosity Model 2 presupposed that the porosity is symmetrically distributed around the mid-axis, that
its peak is located close to the mid-axis, and that it continuously decreases as it moves away to the top or
bottom surface. As shown in Fig. 2, the material distributions for a symmetric model can be implemented by:
[93]

P(z) � {[Pt − Pb]Vt + Pb}
{
1 − αcos

[
π
z

h

]}
(3)

As shown in Fig. 2, the third model assumed that porosity concentrates at the bottom surface and reduces
upward. As a result, the porous material’s thickness was graded as follows [93]:

P(z) � {[Pt − Pb]Vt + Pb}
{
1 − αcos

[
π

2

(
z

h
+
1

2

)]}
(4)
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Fig. 2 Models for the thickness-based distribution of porosity [94]

2.2 Temperature-dependent material properties

BaTiO3 and CoFe2O4 are the materials used to make the nanosensor beam, and the temperature-dependent
material properties for ceramic-based materials are defined as [93, 95, 96]:

P � P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3) (5)

P0, P-1, P1, P2, and P3 are specific coefficients that depend on temperature. The literature lacks research
on the temperature-dependent material characteristics of BaTiO3 and CoFe2O4. The expansion coefficients
of BaTiO3 and their effective thermal and thermal conductivity values were taken into consideration in this
study [97] and [98]. The experimental research derives CoFe2O4’s thermal expansion and thermal conductivity
coefficients [99]. For the first time in this study, experimental and numerical studies have been obtained for
mechanical properties like Young modulus and Poisson’s ratio [100]. These results are shown in Table 1.

The entire FGM beam’s temperature is increased to the final temperature T using: assuming the stress-free
state at T0 � 300 K for uniform temperature rise

	T � T − T0 (6)

The bottom surface temperature is Tb for the linear temperature increase, and it is presumed that the
temperature will change linearly along the thickness from Tb to Tt at the top surface. Accordingly, a plane’s
temperature at z in the thickness is as follows [101]:

T (z) � Tb + (Tt − Tb)

(
h + 2z

2h

)
(7a)

The steady-state one-dimensional heat transfer equation shown below can be solved when the temperature
boundary conditions at the bottom and top of the FGMbeam are known, and the temperature can be determined
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in the case of nonlinear temperature rise [102]. The temperature at z is as follows for the specified boundary
conditions and the variable thermal conductivity coefficient κ(z):

− d

dz

(
κ(z)

dT

dz

)
� 0, T

(
h

2

)
� Tt , T

(
−h

2

)
� Tb,

T (z) � Tb +
Tt − Tb

∫ h
2

− h
2

1
κ(z)dz

z∫

− h
2

1

κ(z)
dz

(7b)

2.3 Kinematic relations

It is possible to express the displacement field at any point of the nanobeam using advanced shear deformation
beam theory:

u1(x , z, t) � u(x , t) − z
∂wb

∂x
+ f (z)

∂ws

∂x
,

u2(x , z, t) � 0, u3(x , z, t) � wb(x , t) + ws(x , t).
(8)

Here ws , wb are the shear and bending components of the transverse displacement of a point on the mid-plane
of the beam, and u is the displacement of the mid-plane along the x-axis. The shape function f (z) estimates
how shear stress is distributed throughout the thickness of the plate [103]. Therefore, there is no requirement
to use any shear correction variables. The current theory serves the following purpose:

f (z) � z − sin(ξ z)/ξ. (9)

To approximate the quasi-static solution ofMaxwell’s equation, the electric potential andmagnetic potential
distributions across the thickness are roughly calculated as follows [103, 104]

�(x , z, t) � −cos(ξ(z))�(x , y, t) +
2(z)

h
V (10)

y(x, z, t) � −cos(ξ(z))�(x , y, t) +
2(z)

h
� (11)

in which ξ � π /h. Additionally, the nanobeam’s external magnetic potential and electric voltage are denoted
by V and �, respectively. The current beam model’s nonzero strains are expressed by

εxx � ∂u

∂x
− ∂2wb

∂x2
− f (z)

∂2ws

∂x2
. (12a)

γxz � ∂ws

∂x
(12b)

The relationship between electric field (Ex , Ez) and electric potential (�) can be calculated using Eq. (10).

Ex � −�x � −cosξ(z)
∂�

∂x
(13a)

Ez � −�z � −ξsinξ(z)
∂�

∂x
− 2V

h
(13b)

Additionally, Eq. (11) allows for the following expression of the relationship between magnetic field (Hx,
Hz) and magnetic potential (�):

Hx � −�x � cosξ(z)
∂�

∂x
(14a)

Hz � −�z � ξsinξ(z)� − 2�

h
(14b)

The force NT and moment MT are defined as follows in response to the rise in temperature:

NT � b
∫ h/2

−h/2
C(z, T )α(z, T )	Tdz (15a)
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MT � b
∫ h/2

−h/2
C(z, T )zα(z, T )	Tdz (15b)

The motion equation can be derived using an extension of Hamilton’s principle by:
∫ t

0
δ(�s − �k + �w)dt � 0 (16)

Here, �s stands for strain energy, �w is work produced by outside forces, and �k is kinetic energy. The
following is an example of the virtual variation of strain energy:

δ�s �
∫

V

σl jδl j dV �
∫

V

(σxδεx + σxzδyxz − DxδEx − DzδEz − Bxδhx − Bzδhz)dV (17)

Equation (17) with Eqs. (10) and (12) substituted produces

δ�s �
l∫

0

[
Nx

∂δu

∂x
− Mb

x
∂2δwb

∂x2
− Ms

x
∂2δws

∂x2
− Qxz

∂δws

∂x2

]
dx

+

l∫

0

−h/2∫

h/2

[
Dx cos(ξ z)δ

(
∂�

∂x

)
+ Dz sin ξ(ξ z)δ� − Bx cos(ξ z)δ

(
∂�

∂x

)
+ Bz sin ξ(ξ z)δ�

]
dzdx

(18)

which expresses the variables at the final expression as:
(
Ni ,M

b
i ,M

s
i

)
�

∫

A
(1, z, f )σi d A, i � (x , y, xy) (19)

Qi �
∫

A

gσi d A, i � (xz, yz) (20)

The first type of work brought about by applied forces can be summed up as follows:

δ�w �
∫ l

0

(
N 0
x
∂(wb + ws)

∂x

∂δ(wb + ws)

∂x
+ qδ(wb + ws)

)
dx (21)

Here q is the external transverse load and N 0
x are applied loads in plane.

The current plate model’s first variational of virtual kinetic energy has the following form:

δk �
l∫

0

[
l0

(
∂u

∂t

∂δu

∂t
+

∂(wb + ws)

∂t

∂δu(wb + ws)

∂t

)
− I1

(
∂u

∂t

∂δwb

∂x∂t
+

∂wb

∂x∂t

∂δu

∂t

)

−J1

(
∂u

∂t

∂δws

∂x∂t
+

∂ws

∂x∂t

∂δu

∂t

)
+ J2

(
∂wb

∂x∂t

∂δwb

∂x∂t

)

+K2

(
∂ws

∂x∂t

∂δws

∂x∂t

)
+ J2

(
∂wb

∂x∂t

∂δws

∂x∂t
+

∂ws

∂x∂t

∂δwb

∂x∂t

)]
d AdX

(22)

where mass inertia, defined as I0, I1, J1, I2, J2, and K2, is:

(I0, I1, J1, I2, J2, K2) �
−h/2∫

h/2

(
1, z, f , z2, z f , f 2

)
ρ(z)dz (23)

When the coefficients of δu, δwb, δws , δ�, and δ� are equal to zero, they are then inserted into Eq. (16),
which results in the following equations:

∂Nx

∂x
� I0

∂2u

∂t2
− I1

∂3wb

∂x∂t2
− J1

∂3ws

∂x∂t2
(24)
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∂2Mb
x

∂x2
−

(
NE + NH

)
∇2(wb + ws) � I0

∂2(wb + ws)

∂t2
+ I1

(
∂3u

∂x∂t2

)
− I2∇2

(
∂2wb

∂t2

)
− J2∇2

(
∂2ws

∂t2

)
+ q

(25)

(26)

∂2Ms
x

∂x2
+

∂Qxz

∂x
−

(
NE + NH + NT

)
∇2 (wb + ws) � J0

∂2 (wb + ws)

∂t2
+ J1

(
∂3u

∂x∂t2

)

− J2∇2
(

∂2wb

∂t2

)
− K2∇2

(
∂2ws

∂t2

)
+ q

−h/2∫

h/2

(
cos(ξ z)

∂Dx

∂x
+ ξsin(ξ z)Dz

)
dz � 0 (27)

−h/2∫

h/2

(
cos (ξ z)

∂Bx

∂x
+ ξsin (ξ z)Bz

)
dz � 0 (28)

The total stress at any point is defined as follows [7] based on the NSGT:

σ t
i � σ c

i − ∇2σ h
i , i � xx , xz. (29)

σ c
i , j �

∫

V

α0(x′, x, e0a)C i , j : εi , j ′
(
x′)dV

(
x′),

σ h
i , j � l2m

∫

V

α1(x′, x, e1a)C i , j : ∇εi , j ′
(
x′)dV

(
x′).

(30)

Here ∇ stands for the Laplacian operator and σ c
i and σ h

i are the higher-order stresses, and e0a and e1a
are the nonlocality coefficients, lm is the material length scale parameter, and α1 and α0 are the higher-order
and classical nonlocal kernel functions, respectively [13]. The following constitutive equations for the total
normal and shear stress are derived as [7] using the linear differential operator, assuming e � e0 � e1 and the
nonlocal functions α0(x′, x, e0a) and α1(x′, x, e1a) are in the frame of the assumptions of [13].

[
1 − (ea)2∇2]σ t

i , j�
[
1 − l2m∇2]Ci , j (z)εi , j , i , j � xx , xz. (31)

Here the strains and stiffnesses are Ci , j (z) and εi , j . Theory of nonlocal strain gradient elasticity for
magnetoelastic materials Eringen’s nonlocal theory [3, 13] introduces the stress state as a function of the
strains at all other points in the body. Strain gradient plasticity [105] presents the stiffness-enhancing effect
with a material size parameter. The nonlocal strain gradient elasticity has finally been proposed [7, 21, 106],
combining Eringen’s integral elasticity and strain gradient elasticity in one model. Therefore, the following
expression gives the fundamental relationships with zero body force for a nonlocal magneto-electro-elastic
structural element.

σi , j �
∫

v

α
(∣∣
∣

′
x −x

∣∣
∣, τ

)[
Ci jklεk

( ′
x
)

− emi j Em

( ′
x
)

− qmi j Hn

( ′
x
)]

dv
( ′
x
)

(32)

Di �
∫

v

α
(∣
∣∣

′
x −x

∣
∣∣, τ

)[
eiklεkl + sim Em

( ′
x
)

− dinHn

( ′
x
)]

dv
( ′
x
)

(33)

Bi �
∫

v

α
(∣∣
∣

′
x −x

∣∣
∣, τ

)[
qiklεkl

( ′
x
)
+ dim Em

( ′
x
)
+ χin Hn

( ′
x
)]

dv
( ′
x
)

(34)

The terms strain, stress, electric displacement, electric field components, magnetic field, and magnetic
induction components are denoted by the letters εi , j , σi , j , Di , Ei , Hi , and Bi , respectively. Piezoelectric,
elastic, dielectric, piezomagnetic, magnetic, and magnetoelectric constants are denoted by the letters emi j ,

Ci jkl , sim , qmi j , χin , and dim . The nonlocal kernel function is α
(∣
∣∣

′
x −x

∣
∣∣, τ

)
, and the Euclidean distance is

∣∣∣
′
x −x

∣∣∣. Lastly, an equivalent differential form for the constitutive relations of a MEE solid is as follows [103].



Thermal vibration and buckling analysis 1183

Elastic strain gradient included:

σi , j − (e0a)2∇2σi , j � (
1 − l2m∇2)[Ci jklεk − emi j Em − qmı j Hn

]
(35)

Di − (e0a)2∇2di � (
1 − l2m∇2)[eiklεikl + sim Em + dinHn] (36)

Bi − (e0a)2∇2Bi � (
1 − l2m∇2)[qiklεk + dim Em + χin Hn] (37)

Here ∇2 denotes the Laplacian operator, e0a denotes a nonlocal variable, and lm denotes the material size
parameter, both of which introduce the small-size effects. The stress–strain relations can be formulated as
follows:

(
1 − (e0a)2∇2)σxx � (

1 − l2m∇2)[C11εxx − e31Ez − q31Hz
]

(38)

(
1 − (e0a)2∇2)σxz � (

1 − l2m∇2)[C55γxz − e15Ex − q15Hx
]

(39)

(
1 − (e0a)2∇2)Dx � (

1 − l2m∇2)[e15γxz + s11Ex + d11Hx
]

(40)

(
1 − (e0a)2∇2)Dz � (

1 − l2m∇2)[e31εxx + s33Ez + d33Hz
]

(41)

(
1 − (e0a)2∇2)Bx � (

1 − l2m∇2)[q15γxz + d11Ex + x11Hx
]

(42)

(
1 − (e0a)2∇2)Bz � (

1 − l2m∇2)[q31εxx + d33Ez + x33Hx
]

(43)

For a more accurate FGM beam model, the NSGT and integrating Eqs. (38)–(43) over the cross section
area yield the following relations as:

(
1 − (e0a)2

∂2

∂x2

)
Nx �

(
1 + l2m

∂2

∂x2

)[
A11

∂u

∂x
− B11

∂2wb

∂x2
− Bs

11
∂2ws

∂x2
+ Ae

31� + Am
31� − NE

x − NH
x

]
.

(44)
(
1 − (e0a)2

∂2

∂x2

)
Mb

x �
(
1 + l2m

∂2

∂x2

)[
B11

∂u

∂x
− D11

∂2wb

∂x2
− Ds

11
∂2ws

∂x2
+ Ee

31� + Em
31� − ME

bx − MH
bx

]

(45)
(
1 − (e0a)2

∂2

∂x2

)
Ms

x �
(
1 + l2m

∂2

∂x2

)[
Bs
11

∂u

∂x
− Ds

11
∂2wb

∂x2
− Hs

11
∂2ws

∂x2
+ Fe

31� + Fm
31� − ME

sx − MH
sx

]

(46)
(
1 − (e0a)2

∂2

∂x2

)
Qxz �

(
1 + l2m

∂2

∂x2

)[
As
55

∂ws

∂x
− Ae

15
∂�

∂x
− Am

15
∂�

∂x

]
(47)

−h/2∫

h/2

(
1 − (e0a)2

∂2

∂x2

)
Dxcos(ξ z)dz �

(
1 + l2m

∂2

∂x2

)[
Ee
15

∂ws

∂x
+ Fe

11
∂�

∂x
+ Fm

11
∂�

∂x

]
(48)

−h/2∫

h/2

(
1 − (e0a)2

∂2

∂x2

)
Dzξsin(ξ z)dz

�
(
1 + l2m

∂2

∂x2

)[
Ae
31

(
∂u

∂x

)
− Ee

31∇2wb − Fe
31∇2ws − Fe

33� − Fm
33�

]
(49)

−h/2∫

h/2

(
1 − (e0a)2

∂2

∂x2

)
Bxcosξ(ξ z)dz �

(
1 + l2m

∂2

∂x2

)[
Em
15

∂ws

∂x
+ Fm

11
∂�

∂x
+ Xm

11
∂�

∂x

]
(50)

−h/2∫

h/2

(
1 − (e0a)2

∂2

∂x2

)
Bzsinξ(ξ z)dz �

(
1 + l2m

∂2

∂x2

)[
Am
15

(
∂u

∂x

)
− Em

31∇2wb − Fm
33� − xm33�

]
(51)
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with the following definitions applying to the cross-sectional rigidities:

{
A11, B11, B

s
11, D11,, H

s
11

} �
−h/2∫

h/2

{c11}
(
1, z, f , z2, z f , f 2

)
dz (52)

{
Ae
31, E

e
31, F

e
31

} �
−h/2∫

h/2

e31ξsin (ξ z)(1, z, f )dz (53)

{
Am
31, E

m
31, F

m
31

} �
−h/2∫

h/2

q31ξsin (ξ z)(1, z, f )dz (54)

{
Ae
15, E

e
15

} �
−h/2∫

h/2

e15cos (ξ z)(1, g)dz (55)

{
Am
15, E

m
15

} �
−h/2∫

h/2

q15cos (ξ z)(1, g)dz (56)

{
Fe
15, F

e
33

} �
−h/2∫

h/2

{
s11cos

2(ξ z), s33ξ
2sin2(ξ z)

}
dz (57)

{
Fm
11, F

m
33

} �
−h/2∫

h/2

{
d11cos

2(ξ z), d33ξ
2sin2(ξ z)

}
dz (58)

{
xm11, x

m
33

} �
−h/2∫

h/2

{
x11cos

2(ξ z), x33ξ
2sin2(ξ z)

}
dz (59)

As
55 �

−h/2∫

h/2

c55g
2dz (60)

The following definitions apply to the normal forces and moments resulting from the magnetoelectric field
in Eqs. (38)– (43).

NE
x � −

−h/2∫

h/2

e31
2V

h
dz, NH

x � −
−h/2∫

h/2

q31
2�

h
dz (61)

ME
bx � −

−h/2∫

h/2

e31
2V

h
zdz,MH

bx � −
−h/2∫

h/2

q31
2�

h
zdz (62)

ME
sx � −

−h/2∫

h/2

e31
2V

h
f (z)dz,MH

sx � −
−h/2∫

h/2

q31
2�

h
f (z)dz (63)

Equations (44)–(51) can be substituted into Eqs. (24)–(28) to derive the refined nanobeam’s governing
equations in terms of displacement:

(
1 + l2m

∂2

∂x2

)[
A11

∂2u

∂x2
− B11

∂3wb

∂x3
− Bs

11
∂3ws

∂x3
+ Ae

31
∂�

∂x
+ Am

31
∂�

∂x

]

+

(
1 + (e0a)2

∂2

∂x2

)(
−I0

∂2u

∂x2
+ I1

∂3wb

∂x∂t2
+ J1

∂3ws

∂x∂t2
+

)
� 0 (64)
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Table 2 Boundary conditions and the admissible shape function

Boundary Conditions Function Xm

At x � 0 At x � L

S–S
(Simply supported)

Xn(0) � 0 Xn(L)=0 sin
( nπ

L x
)

X ′′
n (0) � 0 X ′′

n (L) � 0
C-S
(Clamped-Simply)

Xn(0) � 0 Xn(L)=0 sin
( nπ

L x
)[
cos

( nπ
L x

) − 1
]

Xn ′(0) � 0 X ′′
n (L) � 0

C–C
(Clamped–Clamped)

Xn(0) � 0 Xn(L)=0 sin2
( nπ

L x
)

Xn ′(0) � 0 Xn ′(L) � 0
C–F
(Clamped-Free)

Xn(0) � 0 X ′′′
n (L)=0

(
1 − cos(n − 0.5) π

L x
)

Xn ′(0) � 0

(
1 + l2m

∂2

∂x2

)[
B11

∂3u

∂x3
− D11

∂4wb

∂x4
− Ds

11
∂4ws

∂x4
+ Ee

31

(
∂2�

∂x2

)

−Ae
15

(
∂2�

∂x2

)
+ Em

31

(
∂2�

∂x2

)
− Am

15

(
∂2�

∂x2

)]

+

(
1 + (e0a)2

∂2

∂x2

)[
−I1

∂3u

∂x∂t2
− I0

∂2(wb + ws)

∂t2
+ I2

∂4wb

∂x2∂t2

+J2
∂4ws

∂x2∂t2
−

(
NE + NH + NT

)(
∂2(wb + ws)

∂x2

)]
� 0 (65)

(
1 + l2m

∂2

∂x2

)[
Bs
11

∂3u

∂x3
− Ds

11
∂4wb

∂x4
− Hs

11
∂4ws

∂x4
+ As

55
∂2ws

∂x2
− Ae

15

(
∂2�

∂x2

)

+Fe
31

(
∂2�

∂x2

)
+ Fm

31

(
∂2�

∂x2

)
− Am

15

(
∂2�

∂x2

)]

+

(
1 + (e0a)2

∂2

∂x2

)[
−I0

∂2(wb + ws)

∂t2
− J1

∂3u

∂x∂t2
+ J2

(
∂4wb

∂x2∂t2

)

+K 2

(
∂4wb

∂x2∂t2

)
−

(
NE + NH + NT

)(
∂2(wb + ws)

∂x2

)]
� 0 (66)

(
1 + l2m

∂2

∂x2

)[
Ae
31

(
∂u

∂x

)
− Ee

31

(
∂2wb

∂x2

)
− (

Fe
31 − Ee

15

)
(

∂2ws

∂x2

)

+Fe
11

(
∂2�

∂x2

)
+Fm

11

(
∂2�

∂x2

)
− Fe

33� − Fm
33�

]
� 0 (67)

(
1 + l2m

∂2

∂x2

)[
Am
31

(
∂u

∂x

)
− Em

31

(
∂2wb

∂x2

)
− (

Fm
31 − Em

15

)(∂2ws

∂x2

)

+Fm
11

(
∂2�

∂x2

)
+Xm

11

(
∂2�

∂x2

)
− Fm

33� − Xm
33�

]
� 0 (68)

N 0
x � NE + NH

N E � −
−h/2∫

h/2

e31
2V

h
dz, NH � −

−h/2∫

h/2

q31
2�

h
dz

(69)

3 Solutions of the problem

For the solution of the motion Eqs. in (64–68), one can use the Navier’s methods in Eqs. (72–76) adapting the
desired boundary conditions in Table 2.
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The boundary conditions for simply supported (S):

wb � ws � Nx � Mx � 0at � 0, L (70)

For clamped (C):

u � wb � ws � 0atx � 0, L (71)

The other boundary conditions and the related displacement functions are presented in Table 2.
The displacement quantities are given in the formshownbelow to satisfy the boundary conditionsmentioned

above:

u �
∞∑

n�1

Un
∂Xn(x)

∂x
eiωnt (72)

wb �
∞∑

n�1

WbnXn(x)e
iωnt (73)

ws �
∞∑

n�1

WsnXn(x)e
iωnt (74)

� �
∞∑

n�1

φn Xn(x)e
iωnt (75)

� �
∞∑

n�1

Yn Xn(x)e
iωnt (76)

For the trigonometric solution of Eqs. (64–68), the assumed displacement Eqs. (72–76) are used for the
desired boundary conditions given in Table 2. Finally, the eigenvalue equations in Appendix (A.1–A.5) for the
displacementsUn ,Wbn , Wsn , and electric and magnetic potentials �n and Yn are derived, and the equations
can be shortened in the following matrix equation as follows:

{
[K ] − [M]ω2}

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Un
Wbn
Wsn
φn
Yn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

� 0 (77)

4 Numerical results and verification

4.1 Numerical validation

This research examined the BaTiO3, and CoFe2O4 porous FG nanobeam’s free vibration behavior. In Table 3,
the material’s mechanical and physical characteristics are listed. The numerical analyses considered a simply
supported beam with dimensions of length L � 10 nm, width b, and thickness h (and h � L/10). The bottom
and top surfaces of the nanobeam are made of BaTiO3 and CoFe2O4, respectively. The material composition
changes functionally with thickness in accordance with a power-law, as shown in Eq. (1). The material power-
law exponent is represented by the parameter p. When p � 0, the beam is entirely made of the material on the
upper side (BaTiO3), while when p, the material on the lower side makes up the entire beam. For instance, the
composition of the nanobeam material at p � 1 is 50% BaTiO3 and the rest CoFe2O4. While CoFe2O4 makes
up the remaining part of the nanobeam material when p � 5, BaTiO3 makes up about 83.33 percent of it.
Although the total amounts are equal, the distribution law dictates that the BaTiO3 ratio will decrease from the
bottom surface and increase through the thickness until only CoFe2O4 remains. The CoFe2O4 ratio is 100%,
and the BaTiO3 ratio is 0% on the upper surface. In that case, the eigenvalue equation is used to determine the
system’s natural frequencies (Eq. 78). The following equation defines the dimensionless frequencies in this
situation:

λi � ωi L
2
√

ρt A/Ct11 I , (78)
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Table 3 CoFe2O4 and BaTiO3’s magnetic, piezoelectric, electro, and thermal characteristics

CoFe2O4 BaTiO3

C11 [GPa] 286 166
C22 286 166
C33 269.5 162
C12 173 77
C13 170.5 78
C23 170.5 78
C44 45.3 43
C55 45.3 43
C66 56.5 44.5
e31 [C/m2] 0 − 4.4
e32 0 − 4.4
e33 0 18.6
q31 [N/A.m] 580.3 0
q32 580.3 0
q33 699.7 0
ξ11 [10−9C2/N.m2] 0.08 11.2
ξ22 0.08 11.2
ξ33 0.093 12.6
ζ11 � ζ22 � ζ 33 [s/m] 0 0
χ11 [10–6 N.s2/C] − 590 5
χ22 − 590 5
χ33 157 10
p11 � p22 [10−7C/m2K] 0 0
p33 0 − 11.4
λ11 � λ22 [10−5Wb/m2K] 0 0
λ33 − 36.2 0
α1 � α2 [10−6 K−1] 10 15.8
ρ [kg/m3] 5800 5300

Table 4 Dimensionless frequency comparison of magneto-electro-thermo-elastic FG nanobeams

Voltage p � 0.2 p � 1 p � 5 p � 0.2 p � 1 p � 5

V � − 5 [107] 8.08984 7.91790 8.03872 9.84516 9.00077 8.39941
[103] 8.08985 7.91806 8.03900 9.84516 9.00091 8.39968
Present 8.08982 7.91796 8.03908 9.84522 9.00088 8.39962

V � 0 [107] 7.94094 7.46642 7.30630 9.72317 8.60629 7.70137
[103] 7.94095 7.46659 7.30661 9.72318 8.60644 7.70166
Present 7.94094 7.46648 7.30652 9.72314 8.60636 7.70159

V � + 5 [107] 7.78919 6.98583 6.49177 9.59964 8.19284 6.93341
[103] 7.78920 6.98601 6.49212 9.59964 8.19299 6.93373
Present 7.78920 6.98592 6.49192 9.59961 8.19288 6.93361

Table 5 Comparisons of the dimensionless frequency λ1 for the L � 10 nm, h � 0.1 nm FGM nanobeam for different material
grading indices and nonlocal parameters

p � 0 p � 0.2 p � 5

(e0a)2

nm2
Present [108] [110] Present [108] [110] Present [108] [110]

0 9.86326 9.8631 9.86315 8.68948 8.6895 8.68954 5.93875 5.9389 5.93894
1 9.40966 9.4097 9.40973 8.29001 8.2901 8.29007 5.66584 5.6659 5.66592
2 9.01339 9.0136 9.01358 7.94116 7.9411 7.94106 5.42751 5.4274 5.42739
3 8.66353 8.6636 8.66360 7.63259 7.6327 7.63272 5.21671 5.2166 5.21665
4 8.35129 8.3515 8.35146 7.35753 7.3577 7.35772 5.02863 5.0287 5.02869
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Fig. 3 Comparison of the elasticity modulus of the nanobeam depending on the uniform porosity (Model 1, α � 0, and 0.2), four
different material grading indices (p � 0, 1, 2, and 5), and the ΔT in the range 0–1000 K, where the material grading index is
p � 0, the entire nanobeam is composed of CoFe2O4

Fig. 4 Comparison of the elasticity modulus of the nanobeam depending on the four different uniform porosities (α � 0, 0.1,
0.2, and 0.3), material grading index p, and the ΔT in the range 0–1000 K, a) At the material grading index is p � 0, the entire
nanobeam is composed of CoFe2O4 b) At p � 1 the nanobeam is composed of 50% CoFe2O4 and 50% BaTiO3 c) At p � 100,
the material composition is of 99% BaTiO3
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Fig. 5 Comparison of the thermal conductivity coefficient of the nanobeam depending on the uniform porosity (Model 1, α �
0, and 0.2), four different material grading indices (p � 0, 1, 2, and 5), and the ΔT in the range 0–1000 K, where the material
grading index is p � 0, the entire nanobeam is composed of CoFe2O4

Here a is the beam’s width, h is its thickness, and ρt and Ct11 are pure CoFe2O4’s specific gravity and elastic
modulus, respectively.

A comparison study between the current method and the analytical methods described in the literature
is carried out using a simply supported FGM beam made of BaTiO3 and CoFe2O4. Table 4 compares the
dimensionless fundamental frequency λ1 calculated using Eq. (46), using the same material properties [103,
107], for the same conditions. As shown in Table 2, the results of the current method and the analytical methods
[103, 107] are in good agreement.

Comparing the obtained dimensionless frequencies λi � ωi L2√ρc A/Ec I of a FGM nanobeam with L �
10 nm, h � L/10, and b � h to those reported in the literature for the same prior material properties (Table
3), taking into account the nonlocality effect, Table 5 shows the comparison’s findings, and it can be seen that
the outcomes of the present method for the nonlocality effect are in strong agreement with those presented by
[108, 109].

4.2 Temperature-dependent material properties of the MEE nanobeam

Using the temperature-dependent mechanical properties such as the thermal expansion coefficient, thermal
conductivity coefficient, and the modulus of elasticity given in Table 1, the nanobeam effective material
properties were calculated according to the porosity ratio α, the material grading index p, and the uniform
distribution function, which determine the material composition of the nanobeam, and the results are given in
Figs. (3–8).

The effective elasticity modulus of the nanobeam is given for four different material grading indices p �
0, 1, 2, 3, and for porosity volume fraction α � 0 in Fig. 3a and in Fig. 3b for porosity volume fraction α �
0.2. In Fig. 4a, p � 0, that is, the porosity ratios of the effective elasticity modulus of the nanobeam consisting
of pure CoFe2O4 are given for α � 0,0.1,0.2 and 0.3, while in Fig. 4b, p � 1, that is, the nanobeam composed
of 50% BaTiO3 and 50% CoFe2O4. In Fig. 4c, the temperature-dependent variation of the effective modulus
of elasticity of the nanobeam, which consists of approximately 99.1% pure BaTiO3 at p � 100, is presented
according to the same porosity ratios.

According to Fig. 3, the effective modulus of elasticity of the nanobeam decreases as the temperature
difference and the material grading index p increase. It is also seen that the effective modulus of elasticity
suddenly decreases when the material grading index increases from 0 to 1. For example, when the temperature
difference is 0 K and α � 0, the effective modulus of elasticity for p � 0, 1, 2, and 3 is 2.98×1011, 2.31×
1011, 2.09×1011 and 1.87×1011, respectively, whereas when the temperature difference is 0 K and α � 0.2,
that is, only when the porosity ratio is increased, the effective elasticity modulus of the nanobeam becomes
2.5×1011, 1.85×1011, 1.63×1011, and 1.41×1011, respectively. Therefore, the effective elasticity modulus
of the nanobeam decreases considerably with the increase of the porosity ratio.

InFig. 4, the variation of the effective elasticitymodulus according to the temperature difference is examined
by considering four different porosity ratios α and three different material grading indices p. The effective
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(a) (b)

(c) 

Fig. 6 Comparison of the thermal conductivity coefficient of the nanobeam depending on the four different uniform porosities
(α � 0, 0.1, 0.2, and 0.3), material grading index p, and the ΔT in the range 0–1000 K, a) The material grading index is p � 0,
the entire nanobeam is composed of CoFe2O4 b) At p � 1 the nanobeam is composed of 50% CoFe2O4 and 50% BaTiO3 c) At
p � 100, the material composition is of 99% BaTiO3

(a) (b)

Fig. 7 Comparison of the thermal expansion coefficient of the nanobeam depending on the uniform porosity (Model 1, α � 0,
and 0.2), four different material grading indices (p � 0, 1, 2, and 5), and the ΔT in the range 0–1000 K, where the material
grading index is p � 0, the entire nanobeam is composed of CoFe2O4
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(a) (b)

(c) 

Fig. 8 Comparison of the thermal expansion coefficient of the nanobeam depending on the four different uniform porosities (α
� 0, 0.1, 0.2, and 0.3), material grading index p, and the ΔT in the range 0–1000 K, a) At the material grading index is p � 0,
the entire nanobeam is composed of CoFe2O4 b) At p � 1 the nanobeam is composed of 50% CoFe2O4 and 50% BaTiO3 c) At
p � 100, the material composition is of 99% BaTiO3

Table 6 Comparisons of dimensionless frequencies of porous Model 1 beams for the ratio of porosities α, L/h, and p � 0.6,
e0a � lm � 0.

λ1 λ2 λ3

α L/h � 5 L/h � 10 L/h � 20 L/h � 5 L/h � 10 L/h � 20 L/h � 5 L/h � 10 L/h � 20

0 7.2155137 12.049875 22.681591 20.876917 29.801996 51.899693 40.071293 53.016670 83.894577
0.1 7.2244215 12.062846 22.704771 20.904593 29.827555 51.932728 40.130295 53.067688 83.947784
0.2 7.2355599 12.079213 22.734163 20.939123 29.859509 51.974220 40.203018 53.131298 84.014359
0.3 7.2498918 12.100503 22.772678 20.983395 29.900576 52.027908 40.294968 53.212807 84.100037
0.4 7.2690215 12.129365 22.825367 21.042229 29.955315 52.100128 40.415173 53.320984 84.214424
0.5 7.2958508 12.170756 22.901896 21.124170 30.031940 52.202560 40.579514 53.471527 84.374992

elasticity modulus of the nanobeam decreases with the increase of the temperature difference and the increase
of the porosity ratio. When the material grading index is p � 0, and the porosity ratio is α � 0, that is, when
the entire material is composed of CoFe2O4, the effective modulus of elasticity is 2.97×1011, while when the
material grading index is p� 1, that is, when half of the beam is CoFe2O4 and half of BaTiO3, it is 2.31×1011.
When almost all of the beam is BaTiO3, that is, when p � 100, the effective elasticity modulus of nanobeam is
1.67×1011. In other words, as the BaTiO3 ratio increases in the nanobeam material, the effective modulus of
elasticity decreases. In Fig. 5, the variation of the effective thermal conductivity coefficient of the nanobeam
according to the temperature difference is investigated by considering four different material grading indices
p and two different porosity ratios α. While the thermal conductivity coefficient decreases significantly with
the increase of the temperature difference, with the rise of the material grading index, the thermal conductivity
coefficient decreases until the temperature difference is approximately 750 K. In addition, when the porosity
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Table 7 Comparisons of dimensionless frequencies of porous Model 2 beams for the ratio of porosities α, L/h, and p � 0.6,
e0a � lm � 0

λ1 λ2 λ3

α L/h � 5 L/h � 10 L/h � 20 L/h � 5 L/h � 10 L/h � 20 L/h � 5 L/h � 10 L/h � 20

0 7.2155137 12.049875 22.681591 20.876917 29.801996 51.899693 40.071293 53.016670 83.894577
0.1 7.3555059 12.310587 23.198092 21.233166 30.368097 52.916531 40.684593 53.988323 85.482582
0.2 7.5130010 12.604138 23.779535 21.636274 31.003849 54.058701 41.285873 55.079441 87.265572
0.3 7.6916122 12.937328 24.439314 22.095404 31.723431 55.351799 41.707520 56.314209 89.283234
0.4 7.8960466 13.319014 25.194885 22.622425 32.545235 56.829041 40.586620 57.723907 91.587120
0.5 8.1325617 13.760971 26.069435 23.233025 33.493687 58.534580 51.028584 59.349998 94.245659

Table 8 Comparisons of dimensionless frequencies of porous Model 3 beams for the ratio of porosities α, L/h, and p � 0.6,
e0a � lm � 0

α λ1 λ2 λ3

L/h � 5 L/h � 10 L/h � 20 L/h � 5 L/h � 10 L/h � 20 L/h � 5 L/h � 10 L/h � 20

0 7.2155137 12.049875 22.681591 20.876917 29.801996 51.899693 40.071293 53.016670 83.894577
0.1 7.2902846 12.330877 23.348129 20.972103 30.022865 52.385086 40.265617 53.378117 84.408485
0.2 7.3685880 12.589186 23.946264 21.094852 30.267471 52.891937 40.458302 53.792866 84.993866
0.3 7.4528470 12.835018 24.501225 21.249187 30.542244 53.432629 40.624065 54.273201 85.667007
0.4 7.5457988 13.077240 25.033857 21.440813 30.855469 54.022137 40.695473 54.835400 86.449562
0.5 7.6507945 13.324512 25.563431 21.677713 31.218212 54.679611 40.459930 55.501480 87.371078

Table 9 The evaluation of the porosity distribution function’s impact on the porosity index α � 0.3

α � 0.3 	%λ1 	%λ2 	%λ3

L/h � 5 L/h � 10 L/h � 20 L/h � 5 L/h � 10 L/h � 20 L/h � 5 L/h � 10 L/h � 20

Uniform 0.476 0.420 0.401 0.510 0.330 0.247 0.558 0.369 0.244
Symm 6.598 7.364 7.749 5.836 6.447 6.651 4.083 6.219 6.423
Asymm. Bottom 3.289 6.515 8.022 1.783 2.483 2.953 1.379 2.370 2.112

ratio increases from α � 0 to α � 0.2, the thermal conductivity coefficient of the nanobeam decreases. For
example, when the temperature difference is 0, and thematerial grading index is p� 0, the thermal conductivity
coefficient is 3.73, while when α � 0.2, it is 3.03.

In Fig. 6, the variation of the effective thermal conductivity coefficient of the nanobeam according to
the temperature difference is investigated by considering four different porosity ratios α and three different
material grading indices p. In the three different graphs given, the thermal conductivity coefficient decreases
significantly with the increase of the temperature difference. In addition, the increase in the porosity ratio
reduces the thermal conductivity coefficient. However, as the temperature difference increases, the thermal
conductivity coefficient of nanobeam decreases to zero, regardless of the porosity ratio of the material. In
addition, as the material grading index p rises, the thermal conductivity coefficient decreases.

In Figs. 7 and 8, the variation of the effective thermal expansion coefficient of the nanobeam according
to the temperature difference is investigated by considering four different material grading indices p and
four different porosity ratios α. According to both graphs, the thermal expansion coefficient increases as the
temperature difference increases. According to Fig. 7, as the material grading index increases, the thermal
expansion coefficient increases, and according to Fig. 8, the porosity ratio decreases as it increases. Also,
increasing the porosity ratio from α � 0 to α � 0.2 in Fig. 7 decreases the thermal expansion coefficient, while
in Fig. 8, as the material grading index increases from p � 0 to p � 100, the thermal expansion coefficient
decreases.

4.3 Free vibration behavior depending on slenderness ratio and porosity index

Detailed analyses were made for the variation of the dimensionless frequencies of the nanobeam according to
the porosity distribution functions, and the results are presented in Tables 6, 7, 8. Table 6 shows the variation



Thermal vibration and buckling analysis 1193

(a) (b) 

(c) (d)

Fig. 9 Variation of the dimensionless frequencies λ1, λ2 and λ3 depending on temperature difference and material grading index
p; for the uniform porosity distribution model (Model 1): for α � 0.4, nonlocal parameter e0a � 0 and material size factor
lm � 0. a For uniform porosity model (Model 1) b For symmetric porosity model (Model 2) c For asymmetric ascending
downward porosity model (Model 3) d Comparison for three different Models

of the first three dimensionless natural frequencies λ1, λ2, and λ3 for aspect ratios L/h � 5, 10, and 20 and
the porosity ratios α � 0, 0.1, 0.2, 0.3, 0.4, and 0.5 for uniform porosity distribution function given in Model
1. Dimensionless frequencies are shown in Table 7 for the symmetric porosity distribution function given in
Model 2, and in Table 8 for the asymmetric ascending downward porosity distribution function given in Model
3. In Table 9, the differences between α � 0.3 and α � 0 porosity are presented comparatively according to
three different porosity distribution models.

According to the formula: 	%λi � λi ,α�0.3
λi ,α�0

100 − 100, the relative variation of the first three vibration
frequencies of porous FGMbeams is calculated. The results are shown in Table 9 for all taken into consideration
porosity models at α � 0.3. With a uniform porosity distribution, the relative increase in frequencies is
approximately 0.24–0.56%; however, for an asymmetric bottom distribution, it is observed to be between 1.38
and 8.02%. But for the symmetric distribution, a significant increase of 4–7.33% is noted.

4.4 Case study: free vibration behavior depending on nonlocal parameters and porosity index

In this chapter, the free vibration behaviors of the FG nanobeam, various porosity coefficient α and porosity
distribution functions (Model 1, Model 2, and Model 3), nonlocal parameter e0a, material gradient index p,
temperature difference ΔT, the material size factor lm , aspect ratio L/h, electric potential coefficients v, and
magnetic potential coefficients ε are taken into account in detail. In addition, the buckling behavior of the
temperature-dependent nanobeam was investigated in detail.

When the temperature difference is at 0 K and p� 0.4, the dimensionless first frequency λ1 decreases from
12.84 to 11.04 at p � 5 (17% CoFe2O4, 83% BaTiO3). If the temperature rise difference is at 	T � 100 K, the
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Fig. 10 Variation of the dimensionless frequencies λ1, λ2 and λ3 depending on the temperature difference 	T and four material
grading indices p � 0.2 0.8 3 5 for α � 0, nonlocal parameter e0a � 0 and material size factor lm � 0

first dimensionless natural frequency decreases from 12.6 at p � 0.4 to 11 at p � 5. Comparing the situation at
p � 0.4, the 	T � 100 K temperature difference reduces the natural frequency by 1.87%. If the temperature
rise difference is 	T � 200 K, the first dimensionless natural frequency decreases from 12.23 at p � 0.4 to
10.81 at p � 5. If the temperature difference is 	T � 300 K, the first dimensionless frequency is 11.75 at p �
0.4 and 10.46 at p � 5. Comparing the situation at p � 0.4, the 	T � 200 K temperature difference reduces
the natural frequency by 4.75%. As can be seen, the decrease in temperature difference at 100 K is 1.87%,
while the reduction in temperature difference at 200 K is 4.75%. The decrease rate is nonlinear because the
change of material properties depending on temperature is nonlinear, as given in Eq. (5). For Model 1 and
Model 2, the dimensionless frequencies reduce as the material grading index rises. In contrast, for Model 3,
the frequency decreases until the material grading index becomes p � 2 and rises after this value (Fig. 9).

The material grading index p has an essential place in the frequency behavior of the nanobeam because
the material grading index describes the material composition of the nanobeam. The formula calculates the
volume fractions of CoFe2O4 and BaTiO3 concerning p in Eq. 1. Accordingly, at p � 0, the entire nanobeam
is composed of CoFe2O4. At p � ∞, the entire nanobeam material consists of BaTiO3. In the case of p <2,
natural frequencies are higher because the CoFe2O4 in the nanobeam is high, and the elasticity of CoFe2O4
is high. If the p >2, the decrease in frequencies reduces with the increase of BaTiO3 in the nanobeam, and at
high p values, for example (p� 4.5), the reduction in frequencies goes toward the limit. This is because almost
all of the beam material is made up of BaTiO3. In other words, at high p values, the beam material becomes
homogeneous. For example, at p � 5, the CoFe2O4 ratio in the beam material is 17%, and the BaTiO3 ratio is
83%.
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Fig. 11 Variation of the dimensionless frequencies λ1 of different porosity models depending on the material grading index
p � 0.6, nonlocal parameter e0a � 0, material size factor lm � 0, and temperature difference 	T � 0, 100, 200 and300K

In Fig. 10, the dimensionless natural frequencies are examined according to the temperature difference
in four different cases with the material grading index p � (0.2 0.8 3 5). When the material grading index
is 0.2, 0.8, 3, and 5, 83.3%, 55.5%, 25%, and 16% of the beam material is composed of CoFe2O4, while
the remainder is composed of BaTiO3. As the material grading index rises, the first three natural frequencies
decrease. For the material composition (83.3% CoFe2O4, 16.6% BaTiO3) at material grading index p � 0.2,
when the temperature difference is 0K, the first natural frequency is 12.65, andwhen the temperature difference
is 900 K, it becomes buckling.

Dimensionless first natural frequency variation of uniform, symmetric, and bottom models for porosity
ratio α � 0–0.6 is given according to 	T � 0, 100, 200, and 300 K temperature differences and material
grading coefficient p � 0.6. As the temperature difference increased, the first and second natural frequencies
generally decreased, while the third natural frequency showed variable characteristics. But, as the porosity
ratio increases, all natural frequencies increase. The first dimensionless natural frequency is 12.2 for all models
when the temperature difference is 0 K and α � 0, while it is 12.73 forModel 1, 14.41 forModel 2, and 13.7 for
Model 3 when the temperature difference is 0 K and α � 0.6. That is, an increase in the porosity ratio from 0 to
0.6 increases the dimensionless first natural frequency for Model 1, Model 2, and Model 3 by 4.34%, 18.11%,
and 12.3%, respectively. When the other temperature differences are examined, the dimensionless first natural
frequency increase is almost the same.As the porosity ratio increases, the temperature-dependent dimensionless
frequency variation graphs converge in all models. This is because thermal conductivity decreases due to high
porosity, and the effect of temperature occurs. Besides the presence of porosity, it can be seen from the figures
that the distribution function of porosity affects the natural frequency of the nanobeam. For example, when
the uniform porosity distribution in Fig. 11a, the symmetrical porosity distribution in Fig. 11b, and the near-
subsurface porosity distribution in Fig. 11c are compared with each other, a rapid increase in symmetrical
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(a) (b) 

(c) 

Fig. 12 Variation of the dimensionless frequencies λ2 of different porosity models depending on the material grading index
p � 0.6, nonlocal parameter e0a � 0, material size factor lm � 0, and temperature difference 	T � 0, 100, 200 and300K

porosity, a slightly slower rise in uniform porosity than symmetrical porosity, and the slowest increase in the
lower surface porosity model are observed (Fig. 12).

The second dimensionless natural frequency is 30.1 for all Models when α � 0 and	T � 0, and 30.9, 34.9
and 31.9 for Model 1, Model 2, and Model 3 when α � 0.6 and 	T � 0, respectively. That is, the increase
in the porosity ratio increases by 2.6%, 15.9%, and 5.98%, respectively. If the dimensionless second natural
frequency is	T � 100, it increases by 3.5%, 17.16%, and 6.13% for Model 1, Model 2, andModel 3, with the
increase in porosity ratio from 0 to 0.6, respectively. Similarly, when 	T � 200, the porosity ratio increases
from 0 to 0.6, it increases by 4.89%, 18.8%, and 6.75% for Model 1, Model 2, and Model 3, respectively.
In the case of 	T � 300 K, it increases by 7.22%, 21.5%, and 7.98% for Model 1, Model 2, and Model 3,
respectively, with an increase in the porosity ratio from 0 to 0.6. In addition, the increase in the porosity ratio
increases the natural frequency, while the rise in the temperature difference increases the natural frequency
even more.



Thermal vibration and buckling analysis 1197

Fig. 13 Variation of the dimensionless frequencies λ3 of different porosity models depending on the material grading index
p � 0.6, nonlocal parameter e0a � 0, material size factor lm � 0, and temperature difference 	T � 0, 100, 200 and 300K

According to Fig. 13, the dimensionless third natural frequency was 53.66 when α � 0 and 	T � 0, while
the porosity value increased to 55.2 for Model 1, 61.9 for Model 2, and 56.85 for Model 3 when the porosity
value was 0.6. With the increase in the porosity ratio, the value of the dimensionless third natural frequency
increased by 2.87% for Model 1, 15.35% for Model 2, and 5.94% for Model 3.

In Fig. 14, the variation of the first dimensionless natural frequency is given according to the temperature
difference in the case ofmaterial grading coefficient p� 0.6 and three different porosity ratios. According to the
graph, as the temperature difference increases, the value of the dimensionless natural frequency decreases until
the temperature difference is 950 K. When this temperature difference is reached, the natural frequency values
increase considerably. In addition, the natural frequency reduces with the rise of the temperature difference,
while the natural frequency rises as the porosity ratio increases. If α � 0, the natural frequency gets its lowest
value at 930 K. If α � 0.2, 0.4, and 0.6, the lowest value for Model 1 is at 950 K, 980 K, and 1050 K,
respectively, and the lowest value for Model 2, respectively. It gets at 950 K, 975 K, and 1010 K. Regardless
of the porosity value for Model 1, if the temperature difference is 1073 K, the dimensionless natural frequency
value will be the same, while for Model 2, this temperature difference will be 1090 K.
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Fig. 14 Variation of the dimensionless frequency λ1 of different temperature differences 	T depending on the material grading
index p � 0.6, nonlocal parameter e0a � 0, material size factor lm � 0, and different porosity models

In Fig. 15, the variation of the first dimensionless frequency is given according to the porosity ratios α,
temperature difference 	T � 0 K, and material grading indexp � 0.8, 1, 2, and 5 for three different material
models. In Fig. 15b and c, the first dimensionless frequency rises as the porosity increases. But, in Fig. 15a, the
frequency decreases as the porosity ratio increases. When Fig. 15 is examined, if the material grading index
is p � 5, when α � 0, the dimensionless first frequency is 11.34 for all Models, and if α � 0.6, it is 10.98,
13.58 and 13.29 for Model 1, Model 2, and Model 3, respectively. In other words, as the porosity rise, the
dimensionless frequency in Model 1 decrease by 3.17%, while it rise by 19.75% and 17.19% for Model 2 and
Model 3, respectively. In Fig. 15d, three models are given according to the change in porosity. Accordingly,
as the porosity ratio increases, the first dimensionless frequency decreases for Model 1, while it increases
considerably for Model 2 and Model 3.

In Fig. 16, the variation of the first dimensionless three frequencies is examined in the case of material
grading coefficient p � 0–5, temperature difference 	T � 0 K and four different beam aspect ratios L/h �
10, L/h � 20, L/h � 30, and L/h � 50. It is understood from the graphs that as the aspect ratio increases, all
dimensionless frequencies increase.
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Fig. 15 Variation of the dimensionless frequencies λ1 of porosity α depending on material grading index p � 0.8, 1, 2, 5, the
material size factor lm � 0 and nonlocal parameter e0a � 0

Figure 17 examines the effect of four different beamaspect ratios on thefirst three dimensionless frequencies
when 	T � 0–800. According to the graphs, while the dimensionless frequency increases as the aspect ratio
rises, the frequency decreases considerably as the temperature difference increases. In Fig. 17a, if 	T � 0
and the beam aspect ratio is L/h � 10, L/h � 20, L/h � 30, and L/h � 50, the dimensionless first frequency
is 12.19, 22.92, 33.95, and 56.22, respectively. With the rise of the temperature difference, if the beam aspect
ratio is L/h � 50, the dimensionless frequency decreases to 0 at 	T � 715 K and becomes buckling. If the
beam aspect ratio is L/h � 30 and L/h � 20, buckling occurs at 	T � 730 K and 	T � 755 K, respectively. If
the beam aspect ratio is L/h � 10, the dimensionless frequency is reduced to 2.89 at a temperature difference
of ΔT � 800 K. In addition, in the case where the temperature difference is 	T � 706 K, the dimensionless
frequency value of the whole beam aspect ratio is the same.

To demonstrate how the material size factor lm � 0, 1, 2, and 4 nm2 affects the strain gradient elasticity,
Fig. 18 shows the effect of temperature change and material size factor on the dimensionless fundamental
frequency. Generally, as can be seen from the figure, the increase in the material size factor increases the
fundamental frequency depending on the value of the size factor. This is because the material size factor
creates a stiffness that enhance the effect in the nanobeam. But the dimensionless frequency decreases as the
temperature difference increases. For example, when the temperature difference is ΔT � 0, the dimensionless
frequencies for lm � 0, 1, 2, and 4 nm2 are 12.19, 12.62, 13, and 13.72, respectively, while in the case ofΔT �
900, they are 2.41, 4.49, 5.74, and 7.47, respectively. In other words, as the temperature difference increases,
the rate of decrease in frequencies becomes 80%, 64.42%, 55.84%, and 45.55%. In this case, the maximum
reduction rate occurs when lm � 0.
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Fig. 16 Variation of the dimensionless frequencies λ1 of material grading index p � 0, depending on temperature difference
	T � 0, porosityα � 0, the material size factor lm � 0 and nonlocal parameter e0a � 0

In Fig. 19, the variation of the first three dimensionless frequencies is given if thematerial grading index is p
� 0.6, temperature difference	T � 0, material porosity α � 0–0.6, and four different dimensionless magnetic
potential coefficients ε � 0, 0.0001, 0.0002, 0.0003. According to the graph, as the material porosity and
magnetic potential coefficient increase, the dimensionless frequency increases. However, the increase in the
magnetic potential coefficient was more effective on the rise of the dimensionless frequency than the increase
in the porosity. For example, the value of the dimensionless first frequency is 12.19 when the dimensionless
magnetic potential coefficient is ε � 0, and the porosity ratio is α � 0 and 12.72 when α � 0.6. In other words,
with the increase in porosity, the dimensionless first frequency increased by 4.35%. However, if α � 0, ε �
0.0003, the dimensionless first frequency increased by 70.3% to 20.76. In addition, if α � 0.6 and ε � 0.0003,
the dimensionless first frequency took the value of 22.9 and increased by 10.3% with the increase in porosity.
As can be understood from these data, the effect of porosity became more pronounced as the dimensionless
magnetic coefficient increased.

In Fig. 20, the variation of the first three dimensionless frequencies is given if the material grading index is
p� 0.6, temperature difference	T � 0, material porosity α � 0–0.6, and four different dimensionless electric
potential coefficients v � 0, 0.001, 0.002, 0.003. According to the graphs, the dimensionless frequencies
increase with the increase of both the porosity ratio and the dimensionless electric potential coefficient.
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Fig. 17 Variation of the dimensionless frequencies of material grading index p � 0, depending on temperature difference
	T � 0, porosity α � 0, the material size factor lm � 0, and nonlocal parameter e0a � 0

Fig. 18 Variation of the dimensionless frequencies λ1 of different temperature differences	T depending on the material grading
index p � 0.6, nonlocal parametere0a � 0, porosity α � 0, and different material size factors lm
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Fig. 19 Variation of the dimensionless frequencies λ1 of porosity α depending on the material size factor lm � 0, temperature
difference 	T � 0, the material grading index p � 0.6, nonlocal parameter e0a � 0, and different dimensionless magnetic
potentials

Fig. 20 Variation of the dimensionless frequencies λ1 of porosity α depending on the material size factor lm � 0, temperature
difference 	T � 0, the material grading index p � 0.6, nonlocal parameter e0a � 0, and different dimensionless electric
potentials

In Fig. 21, the variation of the first three dimensionless frequencies for the temperature difference 	T � 0,
porosity ratio α � 0 is investigated in the case of four different dimensionless magnetic potential coefficients
ε � 0, 0.0001, 0.0002, 0.0003, and material grading coefficient p � 0–6. As the material grading coeffi-
cient increases, the dimensionless frequencies decrease, while as the dimensionless magnetic field coefficient
increases, the frequencies increase.When the effect of magnetic potential is examined, when the material grad-
ing coefficient is p � 2, and the magnetic potential coefficient is ε � 0 and ε � 0.0003, the dimensionless first
natural frequency is 11.63 and 16.87, respectively. In other words, the increase in frequency is approximately
45%. In the same cases, the increase rate of the second dimensionless frequency is 27%, while the increase
rate of the third dimensionless frequency is 20%.

In Fig. 22, the variation of the first three dimensionless frequencies for the temperature difference 	T �
0, porosity ratio α � 0 is examined when four different dimensionless electric potential coefficients v � 0,
0.001, 0.002, 0.003 and the material grading index varies between p � 0–6. As the material grading index
increases, the dimensionless frequencies decrease, and the frequencies decrease as the dimensionless electric
field coefficient increases. For example, when p� 0.2, the dimensionless first frequency is 12.65, 12.61, 12.56,
and 12.51 for v � 0, 0.001, 0.002, and 0.003, respectively, and 11.34, 11.09, 10.8, and 10.59 when p � 5. In
this case, it is understood that as the dimensionless electric field coefficient increases, the rate of decrease in
frequencies also increases.

Everything is the same in the given graph compared to the previous one; only the material grading index is
analyzed according to p � 0.5 instead of p � 2. When both figures are examined, it is seen that the frequency
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Fig. 21 Variation of the dimensionless frequencies of material grading index p, depending on temperature difference 	T � 0,
porosityα � 0, nonlocal parameter e0a � 0, and the material size factor lm � 0, and different dimensionless magnetic potentials

value increased from approximately 11.3 to 12.1 while 	T � 0 K with the decrease of the material grading
index. In addition, when 	T � 770 K and p � 2, the frequency drops to 0, and buckling occurs.

In Fig. 23, according to the material grading index, which varies between p � 0–6 for the porosity ratio α
� 0, temperature difference 	T � 0, nonlocal parameter e0a �0, and material size factor lm � 0, 1, 2, and
4, the variation of the dimensionless first frequency is given. Increasing the material grading index decreases
the frequencies, while reducing the material size factor raises the frequencies. According to the graph, with
the increase of the material grading index p, the dimensionless frequency decrease from 12.65 to 11.33 when
lm � 0, from 13.11 to 11.71 when lm � 1, from 13.52 to 12.05 when lm � 2, and from 14.3 to 12.67 when lm
� 4. In this case, the maximum reduction rate occurs when lm � 4 with 11.39%. The decrease rate in other
material size factor values is approximately 10.6%.

Figure 24 shows the first dimensionless frequency variations depending on porosity distribution, four
different nonlocal parameters, and the composition of the materials for a constant porosity index α � 0.2.
According to the graphs, as the material grading index increases, the dimensionless frequency decreases for
all three models. However, the dimensionless frequency decreases rapidly when the material grading index is
between 0 and 1. The effect of the nonlocal parameter is noticeable as a decrease in the frequency. In other
words, as the nonlocal parameter increases, the frequency values decrease partially. In the case of nonlocal
parameter e0a � 0, 1, 2 in the uniform porosity (Model 1) and symmetric porosity (Model 2) models, the
frequency values are almost the same, while when e0a � 4, the frequency values decrease in Model 1 and
Model 2. In Fig. 24d, three different porosity models are examined to determine if e0a � 2. So, while the
highest decrease in frequency was observed in Model 1, the least decrease occurred in Model 2.
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Fig. 22 Variation of the dimensionless frequencies of material grading index p, depending on temperature difference 	T � 0,
porosity α � 0, nonlocal parameter e0a � 0, and the material size factor lm � 0, and different dimensionless electric potentials

Fig. 23 Variation of the dimensionless frequency λ1 of material grading index p depending on temperature difference 	T � 0,
porosity α � 0, nonlocal parameter e0a � 0, and the material size factor lm � 0, and different nonlocal
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Fig. 24 Variation of the dimensionless frequency λ1 of material grading index p depending on temperature difference 	T � 0,
porosity α � 0.2, the material size factor lm � 0, and different nonlocal e0a � 0, 1, 24

5 Conclusion

This research examined the FG porous beam’s behavior exposed to magnetic fields and thermal in terms of
free vibration and thermal buckling. The material composition of the investigated FG nanobeam is composed
of BaTiO3 at the bottom and CoFe2O4 at the top. In addition to the magnetic field and thermal effect, the
effects of parameters such as the porosity ratio of the nanobeam, material grading index, nonlocal parameter,
and material size factor were examined in detail. The effect of material composition, porosity, and nonlinear
temperature rise on the effective material properties of the FG nanobeam (thermal expansion, conductivity,
and modulus of elasticity) was also investigated.

The motion equations for the nanobeam’s free vibration response are obtained using trigonometric higher-
order shear deformation theory and taking into account the micromechanical effects of nonlocal differential
elasticity and strain grading elasticity. The effects of magnetic field strength, nonlinear temperature, nonlocal
parameters, porosity volume fraction, and porosity distribution on the nanobeam’s free vibration behavior have
been modeled and fully investigated. For porosity distribution functions, symmetric, uniform, and asymmetric
ascending downward porosity models are considered. Finally, a summary of the analyses’ findings is provided
below.

• Effective mechanical parameters alter with nonlinear temperature rise, with thermal expansion coefficient
increasing and elastic modulus and thermal conductivity decreasing. The thermal expansion coefficient rises
as the material grading index p grows, but the elasticity modulus and thermal conductivity drop. At higher
temperatures, the coefficient of thermal conductivity rises; however, it decreases till 750 K. As the porosity
ratio α rises, all mechanical qualities drop.
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• The material grading index p determines the nanobeam’s free vibration response. The nanobeam’s mag-
netostrictive and electro-elastic characteristics depend on BaTiO3 and CoFe2O4. These components may
provide a specialized nanobeam for nanosensors, mechanical sensing devices for nanorobotic grippers, etc.

• As the material grading index p increases, the ratio of BaTiO3 in nanobeams increases, resulting in a
decrease in dimensionless frequency. Model 3 frequency drops until material grading index is p � 2 and
climbs thereafter.

• The porosity ratio greatly impacts the free vibration of FG nanobeams. The porosity ratio rises at all dimen-
sionless frequencies. High volume fractions of BaTiO3 with high porosity ratios will increase dimensionless
frequencies in Model 1. As porosity increases, frequencies fall if p >1.

• The aspect ratio of the nanobeam is also crucial. As aspect ratio grows, dimensionless frequencies rise
significantly. However, temperature difference strongly affects aspect ratio growth. In a high aspect ratio,
L/h � 50, dimensionless frequencies diminish and buckling as the temperature difference grows.

• Magnetic and electric potentials alter nanobeam free vibrations. For instance, the all magnetic potential
raises dimensionless frequency, whereas the electric potential decreases frequencies. Additionally, when
subjected to a magnetic potential, frequencies increase marginally with porosity, whereas when exposed to
an electric potential, frequencies increase.

• As the nonlocality effect rises, dimensionless frequencies drop, but frequency increases with material size
factor.
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Appendix A

The eigenvalue equations for trigonometric solution considering general boundary conditions presented in
Table 2.
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