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Effect of the magnetic field on the thermomechanical flexural 
wave propagation of embedded sandwich nanobeams
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aEngineering Faculty, Mechanical Engineering Department, Sakarya University, Sakarya, Turkey; bEngineering 
Faculty, Mechanical Engineering Department, Karab€uk University, Karab€uk, Turkey; cTechnology Faculty, 
Mechatronics Engineering Department, Sakarya Applied Sciences University, Sakarya, Turkey 

ABSTRACT 
This work examines thermo-mechanical bending wave propagation in a 
sandwich nanobeam using advanced sandwich nanobeam and nanolocal 
strain gradient elasticity theories. The sandwich nanobeam is a unique 
structure with biocompatible ceramic ZrO2 and metal Ti6Al4V on the top 
and bottom sides. Sandwich nanobeam cores have functionally graded 
materials. This combination gives the nanobeam distinctive qualities and 
opens up many uses in diverse industries. The wave propagation equation 
is computed by applying the Navier method to the medium’s thermal, 
Lorentz, and viscoelastic equations of motion. The sandwich nanobeam is 
analyzed using four distinct models, taking into account its composition of 
ceramic and metal materials. The various factors that affect sandwich nano-
beam bending wave propagation have been extensively studied. In the 
scenario where the magnetic field intensity is Hm¼ 0, an increase in tem-
perature difference causes the wave frequency of all models (except Model 
2) to decrease to zero, resulting in buckling. In Model 2, the sandwich 
nanobeam exhibits a phase velocity of 0.43 Km/s at DT¼ 0, which subse-
quently decreases by �9% to 0.39 km/s at DT¼ 500. These factors include 
the strength of the magnetic field, the impact of thermal loads, the nonlo-
cal effect, the dimensions of the sandwich nanobeam, and the foundation’s 
influence. The findings of this research will help build nanosensor systems 
that can work in aerospace applications under extreme temperatures. 
These findings will contribute to the optimization of the design process, 
ensuring the reliability and functionality of the nanosensors under severe 
thermal conditions.
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1. Introduction

The dynamic behavior of small-scale systems under different thermal and mechanical loads has 
garnered significant research interest in recent years. This growing interest can be attributed to 
the increasing technological demands that require a deeper understanding of how these systems 
perform under various conditions. On the other hand, functionally graded materials (FGMs) have 
emerged as a highly sophisticated category of composite materials with the unique characteristic 
of having varying mechanical properties in one or more directions. This innovative feature sets 
them apart from traditional materials and opens up many possibilities for their application in 
various industries. Recently, due to advancements in fabrication methods and the development of 
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miniature systems, there has been a surge of attention toward nanotechnology. This cutting-edge 
field holds numerous applications in various sectors, including medicine (Morigi et al. 2012; 
Thrall 2004), engineering (Varadan et al. 2010), food science (Singh et al. 2017), as well as drug 
delivery and treatments (Emeje et al. 2012; Feizi et al. 2021).

Karami and Ghayesh conducted a study to analyze the vibrational behavior of microshells 
composed of multilayered materials (Karami and Ghayesh 2023). Studies have been conducted on 
the relationship between temperature and thermoelastic stresses, static and time-harmonic field 
solutions, and triaxial magnetic fields in anisotropic structures (Karami, Janghorban, and Tounsi 
2017; Vattr�e and Pan 2022, 2021). Karami et al. used Winkler-Pasternak to study wave propaga-
tion in magnetic fields in FG nanoplates with temperature-dependent porosity (Karami, 
Shahsavari, and Li 2018).

Sandwich structures have become increasingly popular in various industries, including aero-
space and automotive machinery, due to their ability to create lightweight yet strong structures. 
These structures consist of two outer layers, or face sheets, bonded to a lightweight core material. 
The primary advantage of sandwich structures is their ability to achieve a high strength-to-weight 
ratio. In the present setting, scholars have undertaken many investigations about sandwich forma-
tions. Sayyad et al. analyzed double curvature FGM sandwich shallow shells under static and free 
vibration conditions (Sayyad, Ghugal, and Kant 2023). Garg et al. conducted a comparative inves-
tigation on FG sandwich beams that incorporated varying laws for material property variation 
(Garg, Chalak, and Chakrabarti 2020). The study by Liu et al. focused on examining the free and 
forced vibrations of sandwich beams made of FGM. The researchers used the scaled boundary 
finite element technique to analyze these vibrations (Liu, Hao, et al. 2021). Free vibration of an 
elastomer sandwich beam, including a magnetorheological (MR) core and a FGM confining layer, 
was studied by Borogeni et al. in a high-temperature environment (Mirzavand Borojeni et al. 
2022). Sahoo et al. focused on examining the effects of geometric nonlinearity on the thermal fre-
quencies and temperature distributions of FG sandwich structures (Sahoo et al. 2022). The vibra-
tion performance of a truss sandwich beam with a pyramidal truss core and FGM surface layers 
at elevated temperatures was examined by Zhang et al. (2022). Yas and Mohammadi conducted 
an empirical and theoretical investigation into the analysis of free vibrations in a three-layer sand-
wich beam with functional classification, utilizing the Timoshenko beam theory (Yas and 
Mohammadi 2020). Youzeraa et al. focused on examining the nonlinear damping and frequency 
curves of sandwich beams with three layers (Youzera et al. 2023). The study conducted by 
Burlayenkoa et al. focused on the examination of free vibrations in single-layer and sandwich flat 
panels made of FGM (Burlayenko, Sadowski, and Altenbach 2022). Shahvari et al. focused on the 
free vibration response of nano-sized plates resting on elastic foundations against different micro-
mechanical models (Shahsavari and Karami 2022). Also, Shahsavari et al. conducted a study on 
wave propagation analysis in a viscoelastic system comprising curved nanobeams composed of 
porous FGMs (Shahsavari, Karami, and Tounsi 2023). Karami et al. examined time-dependent 
transverse deflection in aragonite nano-sized panels using a quasi-3D curvilinear coordinate 
model (Karami, Janghorban, and Fahham 2022).

A novel nonlocal strain gradient isogeometric model (NGST) is introduced by (Phung-Van, 
Ferreira, et al. 2021; Phung-Van and Thai 2022; Thai, Hung, et al. 2023) to analyze functionally 
graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates, porous nanoplates, and 
for magneto-electro-elastic nanoplates (Thai, Fereira, et al. 2023) has used the NGST. Studies by 
Nguyen et al. (2023) and Phung-Van, Lieu, et al. (2021) present a size-dependent isogeometric 
analysis of smart functionally graded porous nanoscale plates composed of two piezoelectric 
materials, utilizing nonlocal elasticity theory (NET), and for multilayer functionally graded gra-
phene platelet-reinforced composite (FG GPLRC) nanoplates. The classical continuum mechanics 
theory is insufficient in modeling micro-structures’ mechanical responses due to its inability to 
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consider size effects. A modified strain gradient theory (MSGT) is proposed by Hung, Thai, and 
Phung-Van (2023a).

In a recent study by Vu et al., the dynamic analysis of bidirectional FG sandwich beams was 
investigated. The study focused on the influence of partial support by a Pasternak foundation on 
the beams’ behavior under a moving mass. This research aimed to gain a better understanding of 
the structural response of these beams (Vu, Le, and Nguyen 2021). Using a nonlinear finite 
element approach, Nguyen et al. investigated the impact of various homogenization methods on 
the significant deformations of bi-phase FGM sandwich beams (Nguyen, Bui, et al. 2022). Xiao 
and Wang have proposed a novel model for an FGM sandwich nanoplate, including surface 
effects (Xiao and Wang 2023).

The investigation of buckling has been studied across different models and conditions. For 
example, the study conducted by Sah and Ghosh focused on examining the phenomena of free 
vibration and buckling in multi-directional porous FGM sandwich plates (Kumar Sah and Ghosh 
2022). Nguyen and Phung’s objective is to conduct a thorough examination of the static bending, 
free vibration, and buckling phenomena exhibited by two-layer FGM plates. These plates are 
equipped with shear connectors and are supported by elastic foundations (Nguyen and Phung 
2023). Le et al. developed a proficient beam element of third-order shear deformation to analyze 
the free vibration and buckling behavior of bidirectional functionally graded sandwich (BFGSW) 
beams (Le, Le, and Nguyen 2021). Kim and Cho conducted an investigation of the characteristics 
of free vibration in FG carbon nanotube-reinforced composites (Kim and Cho 2023). Ghayesh 
et al. conducted a comprehensive examination of chaos in the viscoelastic nonlinear coupled 
dynamics of perfectly straight nanotubes subjected to pulsatile fluid flow (Ghayesh, Farajpour, 
and Farokhi 2020). Belarbi et al. introduced a novel and improved shear deformation beam 
theory to analyze the bending characteristics of a curved beam made of FG sandwich material 
(Belarbi, Houari, et al. 2022).

Katili et al. examined the mechanical buckling analysis of sandwich plates made of FGM. To 
mitigate shear locking, they employed the quadrilateral element Q4cs based on the discrete shear 
projection method (DSPM) (Katili et al. 2023). Liu et al. proposed a new semi-analytical approach 
based on the scaled boundary finite element method (SBFEM) to solve the buckling problem of 
sandwich beams with FGM (Liu, He, et al. 2021). Ellali et al. studied the thermal buckling 
behavior of FG beams combined with piezoelectric layers (Ellali, Bouazza, and Amara 2022). 
Utilizing the binary mechanics theory, Gul and Aydogdu researched the buckling analysis of FG 
nanobeams (Gul and Aydogdu 2021). Lal and Markad conducted a study including the analysis 
of post-buckling and dynamic nonlinear stability of a sandwich FGM composite beam under 
in-plane compressive static and periodic loading conditions (Lal and Markad 2021).

Belarbi et al. primarily examined the buckling analysis of curved sandwich beams with 
functionally graded (FG) properties. The researchers used a three-unknown refined shear theory 
that was both efficient and straightforward (Belarbi, Garg, et al. 2022). Feri et al. examined the 
bending behavior of a viscoelastic FGM in three dimensions (Feri, Krommer, and Alibeigloo 
2021). Ye et al. have developed a semi-analytical scale boundary finite element model to analyze 
the buckling behavior of sandwich plates made of FGM (Ye et al. 2022). Madjid and Bouderbab 
studied the buckling analysis of plates made of FGMs subjected to different load conditions 
(Hamza Madjid and Bouderba 2022). Bui et al. introduced a methodology for conducting stochas-
tic analysis of vibration and buckling in I-section, FG sandwich thin-walled beams (Bui, Nguyen, 
and Nguyen 2023). Liu et al. used the scaled boundary finite element technique to study FGM 
sandwich beam bending (Liu et al. 2023). Civalek et al. investigate the stability analysis of nano-
beams with FGM properties, considering size-dependent effects (Civalek, Uzun, and Yaylı 2022).

The impact of porosity on large-scale structures has become a significant study area. 
Numerous research papers (Derikvand, Farhatnia, and Hodges 2021; Ebrahimi and Jafari 2016; 
Eltaher et al. 2018; Xu, Karami, and Shahsavari 2021) have delved into porous structures’ static 
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and dynamic behavior. Hung, Thai, and Phung-Van (2023b) present an analysis of the natural 
vibration of magneto-electro-elastic functionally graded porous (MEE-FGP) plates. These plates 
are made up of piezoelectric and piezomagnetic materials and have both even and uneven poros-
ity distributions. These investigations have focused on various structures, including conventional, 
curved, and sandwich beams. Researchers have employed different shear theories to analyze these 
structures, utilizing analytical and finite element methods. Chaabani et al. introduce a proficient 
methodology for examining porous FGM plates’ buckling and post-buckling characteristics 
(Chaabani et al. 2023). Chan et al. included an analysis of a sandwich cylindrical panel’s critical 
buckling load and vibration frequencies. The panel consisted of a porous core made of FG mater-
ial, with surface plates also composed of FG material. The panel was exposed to mechanical stress 
and heat conditions throughout the analysis (Chan et al. 2022). Chedad et al. examined the 
impact of porosity on the buckling behavior of FG sandwich plates when subjected to a nonlinear 
thermal loading (Chedad et al. 2022). Chami et al. conducted a study that employed the theory of 
an enhanced shear deformable beam to investigate the impact of pores on the natural frequencies 
of an FG sandwich beam with simply supported ends (Chami, Kahil, and Hadji 2022). Karakoti 
et al. proposed a finite element formulation for the purpose of analyzing and comparing the non-
linear transient behavior of sandwich plates and shell panels made of porous FGM (Karakoti, 
Pandey, and Kar 2022). Nguyen et al. provide a methodology to address the issue of free vibra-
tion in rotating FG porous sandwich cylindrical shells (Nguyen, Tran, et al. 2022).

Predicting the propagation of waves in micro/nano materials is a crucial aspect when it comes to 
designing with precision. Extensive research has been conducted on the topic of wave propagation. 
The study conducted by Li et al. explores the behavior of wave propagation in porous FG piezoelec-
tric nanoplates, with a focus on the influence of size on this phenomenon (Li et al. 2023). Karami 
et al. propose a novel method for analyzing wave dispersion in anisotropic double-curved nanoshells 
(Karami, Janghorban, and Tounsi 2018). In a recent study conducted by Faroughi et al., the research-
ers investigated the wave propagation in a rotating 2D FGM porous nanobeam. Al-Furjan et al. 
investigated using porous FGMs and magnetostrictive nanocomposite layers to improve the stiffness 
and control of wave propagation in micro-aircraft wings (Al-Furjan et al. 2023). Karami et al. study 
size-dependent guided wave propagation in porous, functionally graded nanoplates (Karami, 
Janghorban, and Li 2018). Furjan et al. studied the wave propagation characteristics of micro- 
sandwich beams. The sandwich beam in issue comprises three distinct layers: the core layer made of 
auxetic honeycomb material, the top layer made of piezoelectric material, and the bottom layer made 
of 2D-FGM (Al-Furjan et al. 2022). Karami et al. aim to study the distribution of elastic waves in 
double-curved nanoshells (Karami, Janghorban, and Tounsi 2020). Karami et al. investigated the elas-
tic bulk wave properties of a functionally graded (FG) anisotropic nanoshell with double curvature 
(Karami, Janghorban, and Tounsi 2019). The objective of the study conducted by Avcar et al. is to 
examine the natural frequencies of sandwich beams with different configurations, specifically focusing 
on sigmoid FG, by employing high-order shear deformation theory (Avcar, Hadji, and Civalek 2021). 
Hassainea et al. examined the impact of transverse fractures on the natural frequencies of Euler- 
Bernoulli FG beams (Hassaine et al. 2022). Ebrahimi and Sepahvand aimed to examine the impact of 
the auxiliary layer on wave propagation and the resulting effective characteristics in cylindrical sand-
wich shells (Ebrahimi and Sepahvand 2023). Al-Osta investigated the wave propagation characteristics 
of a plate composed of FG materials adopting the exponential law, with additional support from 
viscoelastic foundations (Al-Osta 2023). Eyvazian et al. examined the characteristics of damped 
propagation in bulk-type waves within a sandwich nanoplate (Eyvazian et al. 2022).

1.1. Novelty of the study

The literature lacks studies on wave propagation in FGM sandwich nanobeams. This study exam-
ines the thermomechanical wave propagation behavior of sandwich-embedded nanobeams under 
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the influence of a magnetic field. The investigation focuses on the potential applications of this 
behavior in advanced bioapplications, such as micro and nano-sized biorobotic systems and sen-
sors. This study demonstrates a significant and practical approach to altering the thermomechani-
cal wave propagation behavior of the magnetic field nanobiosensor beam. Furthermore, the 
viscoelastic environment’s influence on the nanobeam’s wave behavior is discussed, as bioapplica-
tion environments typically exhibit viscoelastic properties.

2. Sandwich embedded nanobeam

The nanobeam sandwich being investigated consists of three layers and is seen in Fig. 1. It is 
characterized by its dimensions L and b. The x and y axes are situated inside the median plane at 
z¼ 0. Furthermore, the origin is positioned at the corner of the beam. The sandwich nanobeam’s 
exterior sides are positioned at z¼ (±h/2). The vertical locations of the bottom surface, the two 
interfaces between the core layers, and the top surface are denoted as h0¼−h/2, h1, h2, and 
h3¼þh/2, respectively.

The sandwich nanobeam’s core consists of an FGM with properties that gradually change 
along the thickness in the z direction. It should be noted that the FGM layers consist of a com-
posite of metal and ceramic, whereas the surfaces are comprised of ceramic, metal, or a hybrid 
combination of these materials. The volume fraction of the constituent materials is a determining 
factor for the properties of FGM nanobeams. Furthermore, it is assumed that the Poisson’s ratio 
remains constant. Whereas, the effective material properties, including the elastic modulus E and 
the coefficient of thermal expansion a, are not assumed to be constant for each layer.

The formation dispersion of the nanobeam might vary depending on the specific manufactur-
ing processes used. Empirical investigations have shown that the assumption that beams consist 
only of a single material inadequately captures the decline in stiffness exhibited by beams. 
Consequently, this research anticipates the presence of five distinct distribution functions to rep-
resent the material distribution. As shown in Fig. 2, the beam exhibits several compositions, 
including an entire ceramic composition, a complete metal composition, a core composed of 
metal with ceramic surfaces, a core composed of ceramic with metal surfaces, and a core com-
posed of FGM with ceramic-metal mixture surfaces. The core component of the Model 5 is made 
of FGM, while the surfaces are made up of a complex combination of ceramics and metal. In this 
particular investigation, the upper and lower surfaces are made up of a blend of ceramics and 
metals that is around fifty percent each.

The temperature’s impact is crucial for accurately predicting the behavior of a structure. The 
effective Poisson’s ratio �ef, modulus of elasticity Eef, the coefficients of thermal expansion jef, 
and conductivity wef are considered temperature-dependent properties and can be defined using a 
nonlinear function of temperature (Touloukian 1966, 1967).

Figure 1. Configuration of a sandwich embedded nanobeam in thermal and magnetic fields.
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P ¼ P0 P−1T−1 þ 1þ P1T þ P2T2 þ P3T3
� �

(1) 

The temperature-dependent properties of a constituent, represented by P, are characterized by 
the material’s P0, P-1, P1, P2, and P3 values, corresponding to the orders (−1, 0, 1, 2, and 3) of 
temperature T (in Kelvin). Furthermore, the mass density q(z) is primarily determined by the 
effective material properties and is only influenced to a small extent by changes in temperature.

2.1. Temperature rises

This section provides the equations for uniform temperature increase (UTR), linear temperature 
increase (LTR), and nonlinear temperature increase (NLTR) along the thickness of the nanobeam. 
The equation used to uniformly raise the temperature of a FGM nanobeam with an initial tem-
perature T0¼ 300 K to its final temperature T in a stress-free state with uniform temperature rise 
(UTR) is as follows:

DT ¼ T − T0 (2) 

The temperature distribution within a beam extending along the z-direction can be determined 
using the following equation, assuming a linear temperature rise (LTR) from the bottom surface 
(Tb) to the top surface (Tt) along the thickness (Kiani and Eslami 2013):

T zð Þ ¼ Tb þ Tt − Tbð Þ
hþ 2z

2h

� �

(3) 

The given one-dimensional heat transfer equation in a steady-state scenario can be solved 
using known temperature boundary conditions to determine the temperatures of the nanobeam’s 
top surface (Tt) and bottom surface (Tb). This analysis is applicable when nonlinear temperature 

Figure 2. Four models of porosity distribution across the thickness (a) Model 1; Ceramic-Ceramic-Ceramic (CCC), (b) Model 2; 
Metal-Metal-Metal (MMM), (c) Model 3; Ceramic-Metal-Ceramic (CMC), (d) Model 4; Metal-Ceramic-Metal, and (e) Model 5; 
Zrþ Ti-FGM-Zrþ Ti (NFN).
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raises (NLTR) occur throughout the nanobeam’s thickness (Zhang 2014).

−
d
dz

j zð Þ
dT
dz

� �

¼ 0, T
h
2

� �

¼ Tt , T −
h
2

� �

¼ Tb (4) 

Hence, given a set of specified boundary conditions, the temperature at any point z, which 
extends throughout the thickness, can be determined.

T zð Þ ¼ Tb þ
Tt − Tbð Þ

Ð h
2
−h

2

1
w zð Þ d zð Þ

ðz

−h
2

w zð Þdz (5) 

3. Non-local strain gradient theory

In accordance with the nonlocal strain gradient theory (NSGT), the normal and shear stress at 
any given point can be mathematically represented as stated in reference (Lim, Zhang, and Reddy 
2015):

rt
xx ¼ rc

xx −r2rh
xx

rt
xz ¼ rc

xz −r2rh
xz:

(6) 

In which:

rc
xx ¼

ð

V
E zð Þa0 x0, x, e0að Þe0xx x0ð ÞdV 0,

rh
xx ¼ l2m

ð

V
E zð Þa1 x

0

, x, e1a
� �

re0xx x
0
ð ÞdV 0,

rc
xz ¼

ð

V
G zð Þa0 x

0

, x, e0a
� �

c0xz x
0
ð ÞdV 0,

rh
xz ¼ l2m

ð

V
G zð Þa1 x

0

, x, e1a
� �

rc0xz x
0ð ÞdV 0:

(7) 

In this context, r“c” and, r“h” denote the classical and higher-order normal and shear stresses, 
respectively, while r signifies the Laplacian operator. The nanoscale size effect is characterized by 
the material parameter lm. The nonlocality coefficients are denoted as e0a and e1a (Eringen 1983), 
accompanied by the classical and higher-order nonlocal kernel functions a0 and a1: Assuming the 
equality of e0a and e1a, and employing a linear differential operator, one can derive the subse-
quent equation in relation to the nonlocal strain gradient theory (NSGT) (Lim, Zhang, and 
Reddy 2015):

1 − e0að Þ
2 r2

h i
rt

xx ¼ 1 − l2mr
2� �

E zð Þexx

1 − ðe0aÞ2r2� �
rt

xz ¼ 1 − l2mr
2� �

GðzÞcxz

(8) 

where r“t” represents the total stress and exx and cxz denote the normal and shear strains, 
Equation (8) can be expressed as follows:

rt
xx − ðe0aÞ2

@2rt
xx

@x2 ¼ exx − l2m
@2exx

@x2

� �

EðzÞ

rt
xz − ðe0aÞ2

@2rt
xz

@x2 ¼ cxz − l2m
@2cxz
@x2

� �

GðzÞ
(9) 

For nonlocal elasticity and gradient elasticity, a recent study (Askes and Aifantis 2009) has 
utilized higher-order elasticity theories to forecast the dispersion properties of flexural waves in 
carbon nanotubes (CNTs).
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4. Mathematical formulation

To account for the shear deformation effect, we employ a sophisticated sinusoidal higher-order 
shear deformation theory (Tounsi et al. 2013), which incorporates the following displacement 
field within the beam.

u1 x, z, tð Þ ¼ u x, tð Þ − z
@w
@x
þ f zð Þ/ x, tð Þ

u2 x, z, tð Þ ¼ 0

u3 x, z, tð Þ ¼ w x, tð Þ

(10) 

Let u1, u2, and u3 denote the displacements in the x, y, and z directions, respectively. 
Additionally, let / x, tð Þ represent the rotation of the cross-section, while w x, tð Þ and u x, tð Þ

represent the transverse and axial displacements in the neutral plane. Based on the trigonometric 
shape function f ðzÞ ¼ z − h

p
sin p

h z
� �

and the displacement field, the strains can be mathematically 
represented as (Li and Hu 2016; Ma, Gao, and Reddy 2008).

exx ¼ e0
xx − ze1

xx þ f zð Þe2
xx, cxz ¼

df zð Þ
dz

(11) 

In which

e0
xx ¼

@u
@x

−
1
2

@w
@x

� �2

, e1
xx ¼

@2w
@x2 , e2

xx ¼
@/x
@x

(12) 

4.1. Classical stress-strain relations

The constitutive equation pertaining to the strains (17) is as follows:

rxx

sxz

� �

¼
Q11 0

0 Q66

� �
exx

cxz

� �

(13) 

Given the provided values of stiffness:

Q11 ¼
E zð Þ

1 − t2 , Q66 ¼
E zð Þ

2 1þ tð Þ
(14) 

By utilizing linear elasticity principles, the end force and moment resultants of an infinitesi-
mally small beam element can be characterized as follows:

Nxx

Mxx

Pxx

8
><

>:

9
>=

>;
¼

ð−h=2

−h
2−hp

1
z

f zð Þ

8
><

>:

9
>=

>;
rxxdz þ

ðh=2

−h=2

1
z

f zð Þ

8
><

>:

9
>=

>;
rxxdz þ

ðh
2þhp

h=2

1
z

f zð Þ

8
><

>:

9
>=

>;
rxxdz

Qxz ¼

ð−h=2

−h
2þhp

df zð Þ
dz

sxzdz þ
ðh=2

−h=2

df zð Þ
dz

sxzdz þ
ðh

2þhp

h=2

df zð Þ
dz

sxzdz

(15) 

By substituting the strains from Equations (13) and (14) into Equation (15), the force resul-
tants can be derived.

Nxx

Mxx

Pxx

8
><

>:

9
>=

>;
¼

A11 B11 C11

B11 D11 F11

C11 F11 H11

2

6
4

3

7
5

e0
xx

e1
xx

e2
xx

8
><

>:

9
>=

>;
,

Qxz ¼ J66cxz:

(16) 
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with the following stiffness coefficients:

A11, B11, C11, D11, F11, H11ð Þ

¼ b
ð−h

2

−h
2−hp

1, z, z2, f zð Þ, zf zð Þ, f zð Þ2
� �

Q11dz þ b

ðh=2

−h=2
1, z, z2, f zð Þ, zf zð Þ, f zð Þ2
� �

Q11dz þ b

ðh
2þhp

h=2
1, z, z2, f zð Þ, zf zð Þ, f zð Þ2
� �

Q11dzJ66

¼ b
ð−h=2

−h
2−hp

df zð Þ
dz

� �2

Q66dz þ b
ðh=2

−h=2

df zð Þ
dz

� �2

Q66dz þ b
ðh

2þhp

h=2

df zð Þ
dz

� �2

Q66dz:

(17) 

4.2. Magnetic field and thermal force

In this study, the evaluation of the magnetic field’s effect is conducted using Maxwell’s equations 
(Arani and Jalaei 2017; Kraus 1992), which describe the magnetic field intensity (H), 
current density vector (J), magnetic field vector (h), electric field vector (e), and magnetic field 
permeability (e).

J ¼ r� h;r�e ¼ −e
@h
@t

,r:h¼ 0 (18) 

e ¼ −e
@U
@t
�H

� �

, h¼r� U�Hð Þ (19) 

In this context, let U ¼ u~iþ v~jþ w~k represent the displacement vector. Given a nanobeam 
subjected to a horizontal magnetic field with an intensity of H ¼ Hx~i, the magnetic field vector 
can be expressed as:

h ¼ − �Hx
@v
@y
þ
@w
@z

� �

~iþ �Hx
@v
@x
~jþ �Hx

@w
@x
~k (20) 

The Lorentz force resulting from the interaction between a magnetic field and a charged par-
ticle can be derived using the following equation:

fm ¼ fmx~iþ fmy~jþ fmz~k ¼ e J�Hð Þ

¼ g 0~iþ �H2
x
@2v
@x2þ

@2v
@y2 þ

@2w
@y@z

 !

~jþ �H2
x
@2w
@x2 þ

@2w
@z2 þ

@2v
@y@z

 !

~k

" #
(21) 

In the transverse z direction, the Lorentz force can be expressed concisely as:

fmz ¼ e�H2
x
@2w
@x2 þ

@2w
@z2 þ

@2v
@y@z

 !

(22) 

Ultimately, the Lorentz force can be defined as per equations (21) and (22).

Fl ¼

ðh=2

−h=2
fmzdz ¼ eh �H2

x
@2u3

@x2 ¼ eh �H2
x
@2w
@x2 (23) 
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As a consequence of the consistent rise in temperature, the quantities of force NT and moment 
MT can be precisely characterized.

NT ¼ b
ðh=2

−h=2
E z, Tð Þw z, Tð ÞDTdz (24) 

MT ¼ b
ðh=2

−h=2
E z, Tð Þzw z, Tð ÞDTdz (25) 

4.3. Variational statements

The application of Hamilton’s principle (Reddy 2007) is employed in this study to derive the 
equations of motion for the sandwich nanobeam under consideration.

ðt2

t1
dT − dU þ dVð Þdt ¼ 0: (26) 

U, T, and V represent the respective energies associated with strain, kinetic, and external 
potential. Given the various stresses, force resultants, and strains, the total deformation energy 
U of the embedded sandwich beam can be mathematically represented as follows:

U ¼
1
2

ð

V
rxxexx þ sxzcxzð ÞdV ,

U ¼
1
2

ðL

0
Nxxe

0
xx þMxxe

1
xx þ Pxxe

2
xx þ Qxzcxz

� �
dx

(27) 

For the assumed displacements, the kinetic energy is written as:

T ¼
1
2

ð l

0

ð

A
q zð Þ u_

2
þ w_

2
� �h i

dAdx (28) 

The external potential energy is expressed as a function of the thermal load NT , magnetic field 
intensity �Hx, spring kw, shear kp foundations, and the transverse load qðx, tÞ:

dV ¼
ð

X

kww x, tð Þdwþ kp
@2w
@x2 w x, tð Þdwþ q x, tð Þdw − NT @

2w
@x2 w x, tð Þdwþ eh �H2

x
@2w
@x2 w x, tð Þdw

� �

dX

(29) 

By substituting Equations (27)–(29) into Hamilton’s principle (27) and performing integration 
by parts, the displacement equations for the current sinusoidal shear deformation theory can be 
obtained by setting the coefficients of du, dw, and d/x to zero.

du :
@Nxx

@x
¼ I0

@2u
@t2 − I1

@3w
@x@t2 þ I3

@2/x
@t2 ,

dw :
@2Mxx

@x2 ¼ q x, tð Þ þ I0
@2w
@t2 þ I1

@3u
@x@t2 - I2

@4w
@x2@t2 þ I4

@3/x
@x@t2 ,

d/x :
@Pxx

@x
− Qxz ¼ I3

@2u
@t2 − I4

@3w
@x@t2 þ I5

@2/x
@t2

(30) 
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The inertia coefficients are as follows:

I0, I1, I2, I3, I4, I5ð Þ ¼ b
ð−h

2

−h
2−hp

q zð Þ 1, z, z2, f zð Þ, zf zð Þ, f zð Þ2
� �

dz

þ b
ðh=2

−h=2
q zð Þ 1, z, z2, f zð Þ, zf zð Þ, f zð Þ2

� �
dz

þ b
ðh

2þhp

h=2
q zð Þ 1, z, z2, f zð Þ, zf zð Þ, f zð Þ2

� �
dz (31) 

By incorporating the nonlocal strain gradient elasticity into Equation (10) and utilizing the 
force-displacement relations expressed in Equation (16), we can establish the governing equations 
of motion for the higher-order FG porous nanobeam.

1 − l2
m
@2

@x2

� �

A11
@2u
@x2 − B11

@3w
@x3 þ C11

@2/

@x2

� �

þ 1 − e0að Þ
2 @

2

@x2

� �

−I0
@2u
@t2 þ I1

@3w
@x@t2 − I3

@2/x
@t2

� �

¼ 0,

1 − l2
m
@2

@x2

� �

B11
@3u
@x3 − D11

@4w
@x4 þ F11

@3/

@x3

� �

þ 1 − e0að Þ
2 @

2

@x2

� �

eh �H2
x − NT þ kp

� ��

@2w
@x2 þ kw − q x, tð Þ − I0

@2w0

@t2 − I1
@3u
@x@t2 þ I2

@4w
@x2@t2 − I4

@3/x
@x@t2Þ ¼ 0,

1 − l2
m
@2

@x2

� �

C11
@2u
@x2 − F11

@3w
@x3 þ H11

@2/

@x2 þ J66/

� �

þ 1 − e0að Þ
2 @

2

@x2

� �

−I3
@2u
@t2 þ I4

@3w
@x@t2 − I5

@2/x
@t2

� �

¼ 0:

(32) 

4.4. Analytical solution

Given the assumption of a periodic solution in time, the displacements uðx, tÞ, wðx, tÞ, and /ðx, tÞ
in Equation (10) can be approximated using Navier’s approach for the simply supported bound-
ary conditions, as outlined in the following manner (Ebrahimi et al. 2022):

u x, tð Þ ¼ Unei bx−xntð Þ,
w x, tð Þ ¼Wnei bx−xntð Þ,
/ x, tð Þ ¼Wsei bx−xntð Þ,

b ¼
np

L

� �

:

(33) 

The solution of Equation (33) satisfies the classical and non-classical boundary conditions at 
x ¼ 0 and x ¼ L, which describe the unknowns Un, Wn and Un:

The classical:

Nxx ¼ 0, w ¼ 0, M ¼ 0: (34) 

And the non-classical:
@u
@x
¼ 0, Qh

xz ¼ 0,
@/

@x
¼ 0 (35) 

In Equation (33), the variable i represents the imaginary unit, which is equal to the square 
root of the negative one. The variable xn denotes the nth natural vibration frequencies. By substi-
tuting Equation (33) into Equation (34), we obtain the subsequent equation for the eigenvalues:

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 11



K − x2
nM

� �
d ¼ 0 (36) 

In this context, let d ¼ Un Wn Un
� �T denote the vector of defined unknowns. M and K 

matrices correspond to the mass and stiffness matrices, respectively. The coefficients for these 
matrices can be found in Appendix A.

By equating the determinant of the matrix ðK − x2
mnMÞ to zero and solving for the frequency 

xmn, the angular frequencies of the waves corresponding to the modes Mn can be determined.

xn ¼ Mn knð Þ (37) 

After establishing the angular frequencies using Equation (37), the phase velocity of each 
mode can be derived.

vn ¼
xn

kn
, n ¼ 1, 2, 3 (38) 

In the limit, as the wave number k approaches infinity, the escape frequency of the nanoplate 
is determined.

~xn ¼ lim
k!1

xn

2p
, n ¼ 1, 2, 3, ::: (39) 

In parametric studies, the utilization of the following dimensionless parameters is customary:

Hm ¼
eh �H2

xL2

Dc
, DC ¼

Q11ch3

12 1 − vc2ð Þ
(40) 

In which Hm represents the magnetic field intensity parameter. The elasticity modulus and 
Poisson’s ratio of ceramic material (ZrO2) at room temperature are denoted as Q11c and vc, 
respectively.

5. Numerical analyses and verification

To validate the current methodology, a comparative study is performed, utilizing the analytical 
and finite element methods as described in the existing literature. The study focuses on a simply 
supported FM beam comprising Alumina (99.5%) and Aluminum. Table 2 presents a comparison 
of the dimensionless fundamental frequency k1, calculated using Equation (41) for the same con-
ditions as the material properties (Esen 2019; Nguyen, Gan, and Le 2013; Sina, Navazi, and 
Haddadpour 2009) provided in Table 1. Table 2 demonstrates a strong concurrence between the 
results obtained from the present approach and those derived from the finite element method 
(Nguyen, Gan, and Le 2013) and the analytical method (Sina, Navazi, and Haddadpour 2009).

k1 ¼ x1L2
ðh=2

−h=2
q zð Þdz

 !0:5

h2
ðh=2

−h=2
E zð Þdz

 !−0:5

(41) 

When subjected to dynamic loads, another comparative analysis is performed on the forced vibra-
tion behavior of an FGM beam consisting of Alumina and SUS304. The material properties used 
in this study are based on the data provided in Table 3, which is sourced from reference (Khalili, 

Table 1. The material properties of the constituents in functionally graded materials (FGMs) at standard room temperature 
(Nguyen, Gan, and Le 2013; Sina, Navazi, and Haddadpour 2009).

Properties Aluminum (metal) Alumina (Al2O3) (ceramic)

q (kg/m3) 2700 3800
E (GPa) 70 380
t 0.23 0.23
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Jafari, and Eftekhari 2010). The results obtained in this study are then compared with the find-
ings reported in references (Khalili, Jafari, and Eftekhari 2010) and (Şimşek and Kocat€urk 2009). 
Table 4 presents the comparisons of normalized maximum midpoint responses, revealing a close 
correspondence between the outcomes obtained from the current methodology and those docu-
mented in existing scholarly literature.

The dimensionless frequencies ki ¼ xiL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qcA=EcI

p
, which account for the nonlocality effect, 

are calculated using the current procedure. These frequencies are obtained by multiplying the 
angular frequencies xi by the square of the length scale L, and then dividing by the square root 
of the product of the density qc, the speed of sound in the material A, the Young’s modulus Ec, 
and the moment of inertia I. The resulting values are then compared with the frequencies 
reported in Table 3 of the literature for an FGM nanobeam with the same material properties as 
mentioned earlier. The nanobeam has a length L of 100 nm, a height h equal to one-tenth of L, 
and a width b equal to h. Table 4 presents the results of the comparison, indicating a strong con-
currence between the outcomes of the current methodology for the nonlocality effect and the 
findings reported by previous studies (Ebrahimi and Salari 2015a; Rahmani and Pedram 2014).

Table 2. The dimensionless frequency (k1) comparisons of the simply supported (SS) functionally graded material (FGM) beam 
composed of Al2O3 and Aluminum.

Power-law exponent p Fundamental frequency, k1

Refs. L=h ¼ 10 L=h ¼ 30 L=h ¼ 100

0 Present 2.7971 2.8431 2.8480
From Nguyen, Gan, and Le (2013) 2.7970 2.8430 2.8480
From Sina, Navazi, and Haddadpour (2009) 2.8026 2.8438 2.8486
From Esen (2019) 2.8027 2.8458 2.8488

0.3 Present 2.6951 2.7371 2.7421
From Nguyen, Gan, and Le (2013) 2.6950 2.7370 2.7420
From Sina, Navazi, and Haddadpour (2009) 2.6992 2.7368 2.7412
From Esen (2019) 2.6953 2.7361 2.7421

Table 3. The coefficients of temperature dependent properties.

Material Property P-1 P0 P1 P2 P3

ZrO2 q (kg/m3) 0 5680 0 0 0
E (Pa) 0 244.27 � 109 −1.371 � 10−3 1.214 � 10−6 −3.681 � 10−10

t 0 0.2882 1.133 � 10−4 0 0
a (1 K−1) 0 12.766 � 10−6 −1.491 � 10−3 1.006 � 10−5 −6.778 � 10−11

w (W/mK) 0 1.7 1.276 � 10−4 6.648 � 10−8 0
Ti6Al4V q (kg/m3) 0 4512 0 0 0

E (Pa) 0 122.56 � 109 −4.586 � 10−4 0 0
t 0 0.2884 1.121 � 10−4 0 0
a (1 K−1) 0 7.5788 � 10−6 6.638 � 10−4 −3.147 � 10−6 0
w (W/mK) 0 15.397 −1.264 � 10−3 2.092 � 10−6 −7.223 � 10−10

Table 4. For a FGM nanobeam with L¼ 100 nm, h¼ 0.1 nm, compare the dimensionless frequency ki for a range of material 
grading indices and nonlocal factors.

p¼ 0 p¼ 0.2 p¼ 5

ðe0aÞ2  

nm2 Present

Rahmani 
and 

Pedram 
(2014)

Ebrahimi 
and Salari 

(2015b) Present

Rahmani 
and 

Pedram 
(2014)

Ebrahimi 
and Salari 

(2015b) Present

Rahmani 
and 

Pedram 
(2014)

Ebrahimi 
and Salari 

(2015b)

0 9.86312 9.8631 9.86315 8.68951 8.6895 8.68954 5.93892 5.9389 5.93894
1 9.40972 9.4097 9.40973 8.29008 8.2901 8.29007 5.66591 5.6659 5.66592
2 9.01355 9.0136 9.01358 7.94107 7.9411 7.94106 5.42742 5.4274 5.42739
3 8.66361 8.6636 8.66360 7.63271 7.6327 7.63272 5.21663 5.2166 5.21665
4 8.35144 8.3515 8.35146 7.35770 7.3577 7.35772 5.02873 5.0287 5.02869

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 13



In Fig. 3, the variation of the sandwich nanobeam wave frequency (Fig. 3b) and phase velocity 
(Fig. 3a) according to the wave number for four different power law index p¼ 0, 0.5, 2, 5 show-
ing the material component of the FG core of the sandwich nanobeam is given. Here, the core 
beam consists of the functional grading of the biocompatible materials metal (Ti6Al4V) and cer-
amic (zirconia; ZrO2) material components, while the faces of the sandwich nanobeam are 
assumed to consist of a homogeneous mixture of these two materials at Ti ¼ 0.5 and Zr ¼ 0.5 
volumetric ratios. The length of the nanobeam was taken as L¼ 100 nm, thickness h¼ L/10, core 
thickness hc¼ 0.6h, surface sandwich sections of equal height, and hp¼ 0.2h. At p¼ 0, the core 
part consists entirely of zirconium. Since the material of the surfaces is half zirconia, 80% of the 
nano sandwich beam material consists of zirconia, and 20% is Ti6Al4V. This ratio is calculated 
from core hc, surface hp thicknesses, and power law index. Accordingly, the total ceramic ratio is 
calculated as C¼ 0.6h(1)þ 0.2(0.5)hp(2). Here, 0.6 indicates the core part height ratio, (1) the 
core part consists entirely of ceramic because the power law index is zero, 0.2 indicates the sur-
face thickness ratio, 0.5 indicates 50% of the zirconia ratio in the surface, and (2) the surface has 
two parts. The other parameters are temperature rise DT¼ 0 K, nonlocal parameter e0a¼ 0, 
material size parameter lm¼ 0, magnetic field intensity Hm¼ 0, spring foundation parameter 
K1¼ 0, and shear foundation parameter K2¼ 0.

Since 80% of the sandwich beam material is zirconia ceramic at p¼ 0, the maximum phase 
velocity is 1.95027 km/s, and its associated wave number is k¼ 43.98 (1/nm). As can be seen 
from the figure, the minimum phase velocity is 1.76306 km/s at k¼ 40.8 (1/nm) wave number at 
p¼ 5. At p¼ 5, 83% of the core consists of Ti6Al4V. M¼ 0.6h(0.83)þ 0.2(0.5)hp(2)¼ 0.698, which 
means that 69.8% of the sandwich nanobeam is composed of metal Ti6Al4V. In general, the phase 
velocity increases rapidly up to the wave number k¼ 12.56 (1/nm), after which the increase slows 
down, and this trend goes up to a maximum and starts to decrease. If it is around k¼ 314.018 
(1/nm), it approaches the horizontal limit and does not change for the following wave numbers. 
The frequency when it reaches this horizontal limit is called the escape frequency, and the speed 
at which it occurs is called the escape velocity. In Fig. 3(b), wave frequencies increase with 
increasing ceramic ratio and decrease with increasing metal ratio.

According to the graphs, as the number of waves changes, the phase velocity and frequency 
change. While the wave frequency increases exponentially according to the wave number, the 
phase velocity takes its maximum value when the wave number is 45 (1/nm), and the phase vel-
ocity decreases after this value. In addition, as the power law index p increases, the phase velocity 

Figure 3. Variation of the phase velocity and wave frequency of the sandwich nanobeam vs. wave number k (1/nm) depending on 
the power law index of the core beam for p¼ 0, 0.5, 2, 5; (a) Phase velocity (km/s); (b) Wave frequency (MHz); L¼ 100 nm, h¼ L/10, 
b¼ h, hc¼ 0.6h, hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2; the other parameters: temperature rise 
DT¼ 0 K, nonlocal parameter e0a¼ 0, material size parameter lm¼ 0, magnetic field intensity Hm¼ 0, spring foundation parameter 
K1¼ 0, and shear foundation parameter K2¼ 0.
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and wave frequency decrease. For example, in the region where the phase velocity reaches its 
maximum value, when the power law index increases from p¼ 0 to p¼ 5, it is seen that it 
decreases by 9.7%.

In Fig. 4, the sandwich nanobeam’s phase velocity and wave frequency are given for the tem-
perature difference’s DT¼ 0, 50, 100, and 150 K values. As mentioned above, at p¼ 0, the core 
part is made of ceramic, and in this case, 80% of the total material of the sandwich nanobeam is 
made of ceramic. As can be seen from the graphs, the phase velocity decreases with the increase 
in temperature, and the wave frequency also decreases with the increase in temperature. 
At DT¼ 0 K, when the wave number is k¼ 3.14159 (1/nm), the phase velocity is 0.4594 km/s, 
and when the wave number is k¼ 43.98 (1/nm), the phase velocity reaches its maximum value at 
1.991 km/s. If the temperature difference is DT¼ 150 K, the phase velocity is 0.3074 km/s when 
the wave number is k¼ 3.14 (1/nm), and when the wave number is k¼ 43.98 (1/nm), the phase 
velocity reaches its maximum value at 1.844 km/s. Therefore, a temperature increase of 150 K 
reduces the maximum phase velocity of the sandwich nanobeam by 7.38%. In Fig. 4(b), it is seen 
that the rise of temperature decreases the wave frequencies for all wave numbers.

Figure 4. Variation of the phase velocity and wave frequency of the sandwich nanobeam vs. wave number k (1/nm) depending 
on the temperature difference of the sandwich nanobeam for DT¼ 0, 50, 100, 150 K; power law index of FG core p¼ 0: full cer-
amic (zirconia); (a) Phase velocity (km/s); (b) Wave frequency (MHz); L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, hp¼ 0.2h; Material 
ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2; the other parameters: e0a¼ 0, lm¼ 0, Hm¼ 0, K1¼ 0, and K2¼ 0.

Figure 5. Variation of the phase velocity and wave frequency of the sandwich nanobeam vs. wave number k (1/nm) depending 
on the nonlocal parameter of the sandwich nanobeam core for eoa¼ 0, 1, 2, 4 nm2; power law index of FG core p¼ 0: full cer-
amic (zirconia); (a) Phase velocity (km/s); (b) Wave frequency (MHz); L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, hp¼ 0.2h; Material 
ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2; the other parameters: DT¼ 0, lm¼ 0, Hm¼ 0, K1¼ 0, and K2¼ 0.
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Figure 5 shows the effect of wave number on phase velocity and wave frequency according to 
four different nonlocal parameters. According to Fig. 5(a), the phase velocity varies with the non-
local parameter, and its maximum value is 1.98 km/s when e0a¼ 0 and 1.52 km/s when the non- 
local parameter increases and e0a¼ 4 nm2. In other words, as the nonlocal parameter increases, 
both the value of the phase velocity and the value of the wave number it occurs decrease. In add-
ition, if the nonlocal parameter is e0a¼ 0 after the phase velocity takes its maximum value, the 
rate of decrease of the phase velocity is relatively slow compared to the others. On the other hand, 
while the wave frequency increases continuously until the wave number reaches 80 in Fig. 5(b), 
the wave frequency decreases in all nonlocal parameters except e0a¼ 0. When e0a¼ 0, the wave 
frequency increases exponentially. In addition, increasing the nonlocal parameter significantly 
reduces both the phase velocity and the wave frequency.

Figure 6 shows the phase velocity and wave frequency variation of FG sandwich nanobeam by 
considering the material size factor. According to the graphs, the phase velocity and wave fre-
quency increase considerably as the material size factor increases. In addition, if the number of 
waves is 20 or more, phase velocity and wave frequency increase exponentially, except for lm¼ 0.

Figure 6. Variation of the phase velocity and wave frequency of the sandwich nanobeam vs. wave number k (1/nm) depending 
on the material size factor of the sandwich nanobeam core for lm¼ 0, 0.02, 0.04, 0.08 nm2; power law index of FG core p¼ 0: full 
ceramic (zirconia); (a) Phase velocity (km/s); (b) Wave frequency (MHz); L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, hp¼ 0.2h; Material 
ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2; the other parameters: DT¼ 0, e0a¼ 0, Hm¼ 0, K1¼ 0, and K2¼ 0.

Figure 7. Variation of the phase velocity and wave frequency of the sandwich nanobeam vs. wave number k (1/nm) depending 
on the magnetic field intensity of the sandwich nanobeam core for Hm¼ 0, 10, 20, 30; power law index of FG core p¼ 0: full cer-
amic (zirconia); (a) Phase velocity (km/s); (b) Wave frequency (MHz); L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, hp¼ 0.2h; Material 
ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2; the other parameters: DT¼ 0, e0a¼ 0, lm¼ 0, K1¼ 0, and K2¼ 0.
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Figure 7 gives the effect of magnetic field intensity on phase velocity and wave frequency of 
sandwich nanobeam according to wave number. According to Fig. 7(a), increasing the magnetic 
field intensity increases the phase velocity. However, when the wave number is about 19, the 
phase velocity is the same regardless of the magnetic field intensity. In addition, the maximum 
value of the phase velocity occurs when the average number of waves is 50, while the phase vel-
ocity decreases after this value. According to Fig. 7(b), while the wave frequency increases as the 
wave number increases, the increase in the magnetic field partially increases the wave frequency.

In Figs. 8 and 9, the sandwich nanobeam’s phase velocity and wave frequency were examined 
according to the different foundation effects and considering the number of waves. According to 
the graphics, the maximum value of the phase velocity occurs when the wave number is 44, while 
the phase velocity and wave frequency are the same in almost the entire foundation coefficient. 
The wave frequency increases considerably with the increase of the wave number.

In this part, FG nanobeams are considered as four different models, and the phase velocity 
graphs of these models are examined in detail. The situation where the nanobeam is completely 
composed of pure zirconium is represented as Model 1, while the situation consisting entirely of 
pure titanium is represented as Model 2. Model 3, on the other hand, is composed of zirconium 

Figure 8. Variation of the phase velocity and wave frequency of the sandwich nanobeam vs. wave number k (1/nm) depending 
on the foundation effect for K1¼ 0, 50, 100, 200; power law index of FG core p¼ 0: full seramic (zirconia); (a) Phase velocity (km/ 
s); (b) Wave frequency (MHz); L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: 
Ti6Al4V, Zr:ZrO2; the other parameters: DT¼ 0, e0a¼ 0, lm¼ 0, and K2¼ 0.

Figure 9. Variation of the phase velocity and wave frequency of the sandwich nanobeam vs. wave number k (1/nm) depending 
on the foundation effect for K2¼ 0, 1, 2, 3; power law index of FG core p¼ 0: full ceramic (zirconia); (a) Phase velocity (km/s); (b) 
Wave frequency (MHz); L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, 
Zr:ZrO2; the other parameters: DT¼ 0, e0a¼ 0, lm¼ 0, and K1¼ 0.
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at the top and bottom of the nanobeam and titanium in the middle. Model 4 is composed of 
titanium at the top and bottom of the nanobeam and zirconium in the middle. In Model 5, the 
core part is FGM, and the surfaces consist of a mixture of ceramic and metal.

In Fig. 10, the phase velocity variation of four different FG composite nanobeam models is 
given considering the temperature difference and four different magnetic field intensities, Hm¼ 0, 
1, 2, and 3. When the graphs are examined, the phase velocity increases as the magnetic field 
intensity increases, the phase velocity decreases as the temperature difference increases, and buck-
ling occurs in all models except Model 2. For example, if Model 1 is examined in Fig. 10(a), the 
phase velocity at DT¼ 0 K is 0.485, 0.536, 0.58, and 0.619 km/s for Hm¼ 0, 1, 2, and 3, respect-
ively. As the temperature increases, the phase velocity drops to zero at 216.4, 246.5, 273.2, and 
297.3 K, respectively, and buckling occurs. When Model 2 is examined, the phase velocity at 
DT¼ 0 K is 0.43, 0.5, 0.55, and 0.6 km/s for Hm¼ 0, 1, 2 and 3, respectively. At DT¼ 500 K, it 
becomes 0.39, 0.44, 0.49 and 0.52 km/s, respectively. In other words, as the temperature difference 
increases for Model 2, the phase velocity of the nanobeam decreases by 10% on average. It is also 
seen in Fig. 10(b) that the phase velocity takes its minimum value at the temperature difference 
DT¼ 350 K. When Fig. 10(c) is examined, with the increase of magnetic field intensity, buckling 
occurs by decreasing the phase velocity of the nanobeam to zero at DT¼ 337.8, 385.6, 427, and 
463.8 K, respectively. In Fig. 10(d), buckling occurs at DT¼ 242.1, 286.6, 324.5, and 357.8 K, 
respectively. As a result, as the temperature difference increases, buckling occurs first in Model 1.

Figure 10. Variation of the phase velocity depending on temperature difference and magnetic field intensity Hm. (a) All of the 
nanobeam completely %100 zirconium (Model 1:CCC). (b) All of the nanobeam completely %100 titanium (Model 2). (c) The top 
and bottom of the nanobeam is made entirely of zirconium, while the core is made of titanium (Model 3). (d) The top and 
bottom of the nanobeam is made entirely of titanium, while the core is made of zirconium (Model 4).
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The variation of phase velocity of FG nanobeam with temperature increase is given in Fig. 11, 
considering four different nonlocal effects and four different Models. When Fig. 11(a) is exam-
ined, while the phase velocity is 1.53� 10−7 km/s for the whole nonlocal effect at temperature dif-
ference DT¼ 0, the phase velocity decreases rapidly to zero with the increase of the temperature 
difference, and buckling occurs. In addition, buckling occurs at lower temperature differences 
with the increase of nonlocal effect. For example, at e0a¼ 0, the phase velocity of the nanobeam 
is buckling at 216.4 K, while at e0a¼ 1, 2, and 4, the phase velocity decreases to zero at 204.3, 
193.8, and 175.8 K, respectively. In Fig. 11(b), the phase velocity change according to the tem-
perature difference of Model 2 is given. In Fig. 11(b), the phase velocity is 1.22� 10−7 km/s at 
temperature difference DT¼ 0, while the phase velocity decreases as the temperature difference 
increases and becomes 1.65� 10−7 km/s at DT¼ 500. In this graph, as the nonlocal effect 
increases, the rate of decrease of the phase velocity increases partially up to DT¼ 400 K, while 
the increase of the nonlocal effect decreases the rate of decrease of the phase velocity after this 
temperature difference. In Fig. 11(c), when the phase velocity of Model 3 is examined according 
to the temperature change, it is seen that with the increase of the temperature difference, buckling 
occurs first in cases where the nonlocal effect is high. Similarly, buckling occurs at lower tempera-
ture differences with the increase of the nonlocal effect in Fig. 11(d).

In Fig. 12, the effect of four different material size factors on the phase velocity of the nanobeam 
is given by considering the temperature difference and four different models. When the graphs are 

Figure 11. Variation of the phase velocity depending on temperature difference and nonlocal parameter e0a. (a) All of the nano-
beam completely %100 zirconium (Model 1). (b) All of the nanobeam completely %100 titanium (Model 2). (c) The top and bot-
tom of the nanobeam is made entirely of zirconium, while the core is made of titanium (Model 3). (d) The top and bottom of 
the nanobeam is made entirely of titanium, while the core is made of zirconium (Model 4).
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examined, the phase velocity decreases as the temperature difference increases, while the phase vel-
ocity increases as the material size factor increases. For example, at DT¼ 0 K and lm¼ 0, the phase 
velocity of the nanobeam is 1.53� 10−7, 1.22� 10−7, 1.35� 10−7, and 1.4� 10−7 km/s for Model 
1,2,3, and 4, respectively. When lm¼ 4, it becomes 1.81� 10−7, 1.44� 10−7, 1.6� 10−7, and 
1.65� 10−7 km/s, respectively. In other words, an increase in the material size factor increases the 
phase velocity by 18% on average. In addition, the rise in the material size factor also increases the 
temperature difference required for the buckling of the nanobeam. For example, when Fig. 12(a) is 
examined, with the increase of lm, the phase velocity of the nanobeam decreases to zero at 216.4, 
228.9, 240.6, and 262.7 K, respectively, and buckling occurs. Similarly, buckling occurs in other 
models as the temperature difference increases, while in Model 3, the temperature difference at 
which the nanobeam is buckling is the highest.

Figure 13 investigated the phase velocity of the nanobeam considering the effect of FG com-
posite nanobeam thickness and varying temperature differences. Here, nanobeam thickness was 
investigated in four different thicknesses: h¼ L/10, h¼ L/25, h¼ L/50, and h¼ L/100. According 
to the graphs, the nanobeam thickness does not significantly affect the phase velocity. However, 
only in Model 2, the phase velocity increases as the thickness increases. In addition, as the tem-
perature difference increases, the phase velocity decreases, and buckling occurs at �220, 340, and 
245 K values for Model 1, Model 3, and Model 4, respectively. In this case, if the nanobeam con-
sisted entirely of titanium, buckling did not occur with the increase of the temperature difference.

Figure 12. Variation of the phase velocity depending on temperature difference and material size factor lm. (a) All of the 
nanobeam completely %100 zirconium (Model 1). (b) All of the nanobeam completely %100 titanium (Model 2). (c) The top and 
bottom of the nanobeam is made entirely of zirconium, while the core is made of titanium (Model 3). (d) The top and bottom of 
the nanobeam are made entirely of titanium, while the core is made of zirconium (Model 4).
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In Fig. 14, the phase velocity of the FG nanobeam was examined by considering the tempera-
ture change and three different core thicknesses as hc/h¼ 0.4, hc/h¼ 0.6, hc/h¼ 0.8. According to 
the graphs, the increase in the thickness of the core increases the phase velocity, while it decreases 
as the temperature difference increases. In addition, it can be seen from other graphics, except 
Model 2, that buckling occurs as the temperature difference increases. For example, in Fig. 14(a), 
buckling occurs at 164.3, 216.4, and 266.2 K for hc/h¼ 0.4, hc/h¼ 0.6, hc/h¼ 0.8, respectively, 
while these values are 235.4, 337.8, and 266.2 K for Model 3. For Model 4, they are 197.1, 242.1, 
and 287.6 K, respectively. When Fig. 14(b) is examined, the phase velocity of the nanobeam for 
DT¼ 0 K and hc/h¼ 0.4, hc/h¼ 0.6, hc/h¼ 0.8 is 1.04� 10−7, 1.22� 10−7, and 1.37� 10−7 km/s, 
respectively. When the temperature difference is DT¼ 500 K, these values are 0.92�10−7, 
1.06�10−7, and 1.19�10−7 km/s, respectively. In this case, the phase velocity of the nanobeam 
decreases by an average of 12–13% with the increase of the temperature difference for Model 2.

In Fig. 15, the phase velocity of an FG sandwich nanobeam is given by considering the funda-
mental wave n¼ 1 and n¼ 14 wave numbers and their variation according to four different mag-
netic field intensities and temperature differences. In Fig. 15(a), the n¼ 1 phase velocity of the 
fundamental wave decreases as the temperature difference increases. For example, when DT¼ 0, 
the phase velocity of the nanobeam becomes 0.46, 0.51, 0.56, and 0.61 km/s, respectively, accord-
ing to the magnetic field intensity Hm¼0, 1, 2, and 3. In Fig. 15(b), if n¼ 14 and the temperature 

Figure 13. Variation of the phase velocity depending on temperature difference and nanobeam thickness h. (a) All of the 
nanobeam completely %100 zirconium (Model 1). (b) All of the nanobeam completely %100 titanium (Model 2). (c) The top and 
bottom of the nanobeam is made entirely of zirconium, while the core is made of titanium (Model 3). (d) The top and bottom of 
the nanobeam is made entirely of titanium, while the core is made of zirconium (Model 4).
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difference is DT¼ 0, the phase velocity decreases from an average of 2 km/s to an average of 
1.63 km/s when DT¼ 500 K.

Figure 15. Variation of the phase velocity of the sandwich nanobeam vs. temperature difference DT (K) depending on the mag-
netic field intensity for Hm¼ 0, 1, 2, 3. (a) Fundamental wave number n¼ 1. (b) Wave number n¼ 14; L¼ 100 nm, h¼ L/10, 
b¼ h, hc¼ 0.6h, hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2.

Figure 14. The variation of the phase velocity depending on the core thickness ratio hc/h¼ 0.4, 0.6, 0.8, and temperature differ-
ence. (a) All of the nanobeam completely %100 zirconium (Model 1). (b) All of the nanobeam completely %100 titanium (Model 
2). (c) The top and bottom of the nanobeam is made entirely of zirconium, while the core is made of titanium (Model 3). (d) The 
top and bottom of the nanobeam is made entirely of titanium, while the core is made of zirconium (Model 4).
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In Fig. 16, the phase velocity of the nanobeam is given according to two different wave num-
bers in case the power law index changes between p¼ 0–5 and exposed to four different magnetic 
field intensities. In Fig. 16(a), as the power law index p and magnetic field intensity Hm increase, 
the phase velocity of the FG sandwich nanobeam increases. For example, if Hm¼0, 1, 2, and 3 at 
p¼ 0, the phase velocity is 0.459, 0.515, 0.564, and 0.606 km/s, respectively. If the power law 
index was p¼ 5, that is, 83.3% of the core was composed of Ti6Al4V, these values were 0.467, 
0.524, 0.572, and 0.614 km/h, respectively. In other words, with the increase of the power law 
index, the phase velocity increases by 1.5% on average, while the increase in the magnetic field 
intensity increases the phase velocity by about 20%. In Fig. 16(b), if n¼ 14, the phase velocity of 
the nanobeam decreases logarithmically as the power law index increases.

In Fig. 17, the phase velocity variation of the sandwich nanobeam is given by considering the 
four different material size factors and temperature variation. According to the graph, if the num-
ber of fundamental waves is n¼ 1, the phase velocity decreases, and buckling occurs as the tem-
perature difference increases, while if the wave number is n¼ 14, the increase in the temperature 
difference partially reduces the phase velocity. In Fig. 17(a), buckling occurs between DT¼ 245–280 
K of the temperature difference according to the material size factor.

Figure 16. Variation of the phase velocity of the sandwich nanobeam vs. power law index depending on the magnetic field 
intensity for Hm¼ 0, 1, 2, 3. (a) Fundamental wave number n¼ 1. (b) Wave number n¼ 14; L¼ 100 nm, h¼ L/10, b¼ h, 
hc¼ 0.6h, hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2.

Figure 17. Variation of the phase velocity of the sandwich nanobeam vs. temperature difference DT (K) depending on the 
material size factor for lm¼ 0, 1, 2, 4. (a) Fundamental wave number n¼ 1. (b) Wave number n¼ 14; L¼ 100 nm, h¼ L/10, b¼ h, 
hc¼ 0.6h, hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2.
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In Fig. 18, the phase velocity graphs of FG sandwich nanobeams are given considering the 
power law index varying between p¼ 0–5 and four different material size factors. Phase velocity 
decreases as the power law index and material size factor decrease in all graphs. For example, 
when p¼ 0 and lm¼0, 1, 2, and 4 nm2 in Fig. 18(a), the phase frequency becomes 1.47�10−7, 
1.54�10−7, 1.61�10−7, and 1.74�10−7 km/s, respectively, while When p¼ 5, the phase fre-
quency of the nanobeam is 1.32�10−7, 1.38�10−7, 1.44�10−7, and 1.56�10−7 km/s, respect-
ively. In this case, the core part of the nanobeam consists entirely of ceramic, and the phase 
velocity in the fundamental wave number of the nanobeam decreases by about 10% with the 
increase of the metal ratio, that is, the increase in the power law index. In Fig. 18(b), when 
n¼ 14, p¼ 0 and lm¼0, 1, 2, and 4 nm2, the phase velocity of the nanobeam is 4.3�10−7, 
19.55�10−7, 27.24�10−7, and 38.39�10−7 km/s, respectively. and when p¼ 5, it becomes 
3.72�10−7, 16.82�10−7, 23.43�10−7, and 33.01�10−7 km/h, respectively.

The change of phase velocity depending on the temperature of the sandwich nanobeam is 
examined in Fig. 19 by considering four different slenderness ratios. When the graphs are exam-
ined, when n¼ 1 fundamental wave number, phase velocity decreases rapidly with the increase in 
temperature difference, and buckling occurs at �235 K, regardless of the value of the slenderness 

Figure 18. Variation of the phase velocity of the sandwich nanobeam power law index p depending on the material size factor 
for lm¼ 0, 1, 2, 4. (a) Fundamental wave number n¼ 1. (b) Wave number n¼ 14; L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, 
hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2.

Figure 19. Variation of the phase velocity of the sandwich nanobeam temperature difference DT (K) depending on the slender-
ness ratio for L/h¼ 10, 25, 50, 100. (a) Fundamental wave number n¼ 1. (b) Wave number n¼ 14; L¼ 100 nm, h¼ L/10, b¼ h, 
hc¼ 0.6h, hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2.
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ratio. If the wave number is n¼ 14, phase velocity decreases as the temperature difference and 
slenderness ratio increase. For example, in Fig. 19(b), while the phase velocity of sandwich nano-
beam is 4.34�10−7 km/s at slenderness ratio L/h¼ 10 and DT¼ 0 K when the temperature differ-
ence is DT¼ 500 K, it decreases by 17.5% and becomes 3.58�10−7 km/s. In the same case, if the 
slenderness ratio is L/h¼ 100, the phase velocity decreases from 2.37�10−7 to 1.99�10−7 km/s.

In Fig. 20, the effect of four different slenderness ratios on phase velocity was investigated by 
considering the power law index showing the material component of the FG core of the sandwich 
nanobeam. According to the graphs, with the increase of the power law index, the ceramic ratio 
of the core part of the sandwich nanobeam decreases, and the metal ratio increases, in this case, 
the phase velocity decreases almost at a similar rate. When Fig. 20(a) is examined, if the slender-
ness ratio is L/h¼ 25, the phase velocity is 1.39�10−7 km/s at p¼ 0 and 1.3�10−7 km/s at p¼ 5. 
In other words, as the ceramic ratio of the nanobeam core decreases from 100 to 17%, the phase 
velocity decreases by 6.47%. In addition, the slenderness ratio, which shows the ratio of the length 
and thickness of the sandwich nanobeam, also affects the phase velocity. For example, in Fig. 
20(a), when L/h¼ 10, phase velocity is 1.47�10−7 km/s, and when L/h¼ 50, it decreases 8.8% to 
1.34�10−7 km/s. In addition, if the slenderness ratio is L/h¼ 50 and L/h¼ 100 in this graph, the 
phase velocity of the nanobeam is the same, while it is different in Fig. 20(b). Because, in Fig. 

Figure 20. Variation of the phase velocity of the sandwich nanobeam power law index p depending on the slenderness ratio for 
L/h¼ 10, 25, 50, 100. (a) Fundamental wave number n¼ 1. (b) Wave number n¼ 14; L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, 
hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2.

Figure 21. Variation of the phase velocity of the sandwich nanobeam temperature difference DT (K) depending on the thickness 
of beam core for hc/h¼ 0.4, 0.6, 0.8. (a) Fundamental wave number n¼ 1. (b) Wave number n¼ 14; L¼ 100 nm, h¼ L/10, b¼ h, 
hc¼ 0.6h, hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2.
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20(b), the wave number is n¼ 14. If the number of waves increases from n¼ 1 to n¼ 14, the 
phase velocities increase approximately three times.

The effect of temperature change in Fig. 21 on the phase velocity of the nanobeam was 
investigated by considering the ratio of the core part of the nanobeam to the beam thickness. The 
thickness ratio of the core of the sandwich nanobeam was examined in three different thicknesses: 
hc/h¼ 0.4, hc/h¼ 0.6, and hc/h¼ 0.8. When the graphs are examined, as the temperature differ-
ence increases, the phase velocity of the sandwich nanobeam decreases considerably. However, 
one thing to consider here is the number of waves. When the number of waves is n¼ 1, buckling 
occurs when the temperature difference increases, while the number of waves is n¼ 14, buckling 
does not occur, only the phase velocity decreases. For example, when the thickness of the core is 
hc/h¼ 0.4, hc/h¼ 0.6, and hc/h¼ 0.8, buckling occurs if the temperature difference is DT¼ 181.3 
K, DT¼ 231.4 K, and DT¼ 279.7 K, respectively. In this case, with the increase in the thickness 
of the core, both the buckling formation temperature and the phase velocity of the nanobeam 
increase. For example, in Fig. 21(b), if the temperature difference is DT¼ 0 K and the thickness 
of the core is hc/h¼ 0.4, hc/h¼ 0.6 and hc/h¼ 0.8, the phase velocity of the sandwich nanobeam 
is 4.07�10−7 km/s, 4.34�10−7 and 4.42� 10−7 km/h, when the temperature difference is 
DT¼ 500 K, it becomes 3.4�10−7, 3.58�10−7, and 3.64�10−7 km/s, respectively. In this case, 
when the wave number is n¼ 14, the phase velocity of the sandwich nanobeam decreases by 
about 17% as the temperature difference increases.

In Fig. 22, the effect of the power law index varying in the range of p¼ 0–5 on the phase vel-
ocity of the sandwich nanobeam was investigated by considering the thickness of the nanobeam 
core. As can be seen in these graphs, as the thickness of the core of the nanobeam increases, the 
phase velocity increases, while the power law index decreases as p increases. However, when the 
wave number is n¼ 14, and the power law index is p¼ 5, the graphs of both the phase velocity 
values of the nanobeam are quite close to each other. When n¼ 1 this situation is different.

6. Conclusion

The present study examines the characteristics of free vibration and thermal buckling in sandwich 
structures composed of FGMs with embedded nanobeams. These structures are subjected to both 
magnetic and thermal fields. The study focuses on examining the impact of material composition 
and nonlinear temperature rise on the effective material properties (modulus of elasticity, 

Figure 22. Variation of the phase velocity of the sandwich nanobeam power law index p depending on the thickness of beam 
core for hc/h¼ 0.4, 0.6, 0.8. (a) Fundamental wave number n¼ 1. (b) Wave number n¼ 14; L¼ 100 nm, h¼ L/10, b¼ h, hc¼ 0.6h, 
hp¼ 0.2h; Material ratios of faces Ti ¼ 0.5, Zr ¼ 0.5; Ti: Ti6Al4V, Zr:ZrO2.
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Poisson’s ratio, thermal expansion, and conductivity coefficients) of the FGM sandwich-embedded 
nanobeam. Furthermore, this study examines the impact of the power law index, material size 
factor, and material distribution functions on the nonlinear temperature and stress distributions 
across the nanobeam’s thickness. The analysis takes into account a bottom surface temperature of 
Tb¼300 K and the application of a temperature difference of DT¼ 300 K. Subsequently, the 
motion equations for the free vibration response of the nanobeam are derived by employing the 
trigonometric higher-order shear deformation theory, which incorporates the micromechanical 
influences of nonlocal differential elasticity and strain gradient elasticity. The study extensively 
models and investigates the impact of nonlocal parameters, nonlinear temperature, magnetic field 
intensities, and material distribution function on the free vibration behavior of the sandwich 
embedded nanobeam. In conclusion, the findings derived from the analyses are succinctly pre-
sented as follows.

� The phase velocity exhibits a rapid increase until reaching a wave number of k¼12.56 (1/ 
nm), beyond which the rate of increase diminishes. This trend continues until reaching a max-
imum value, after which the phase velocity decreases.

� As wave number varies, phase velocity and frequency vary. While the wave frequency 
grows exponentially with wave number, the phase velocity peaks at 45 (1/nm) and drops 
thereafter.

� The sandwich nanobeam’s core is formed of ceramic at p¼0, making up 80% of its material. 
The plots indicate that phase velocity and wave frequency drop when temperature rises.

� The phase velocity exhibits variation about the nonlocal parameter, with a maximum value of 
1.98 km/s observed when e0a equals zero. As the nonlocal parameter increases and e0a reaches 
4 nm2, the phase velocity decreases to 1.52 km/s.

� The phase velocity exhibits a positive correlation with the magnetic field intensity, while it 
demonstrates a negative correlation with the temperature difference. Additionally, buckling is 
observed in all models except for Model 2 (MMM).

� The phase velocity for the entire nonlocal effect is 1.53� 10−7 km/s when the temperature dif-
ference DT¼0. As the temperature difference increases, the phase velocity decreases rapidly 
and eventually reaches zero, leading to buckling.

� An augmentation in the material size factor results in an average 18% increase in the phase 
velocity. Furthermore, the increase in the size of the material also leads to an augmentation in 
the temperature differential necessary for the buckling phenomenon to occur in the 
nanobeam.

� Variations do not significantly influence the phase velocity in the thickness of the sandwich 
nanobeam. However, it is only in Model 2 (MMM) where the phase velocity exhibits an 
increase with an increase in thickness.

� The phase velocity is positively correlated with the increase in core thickness but negatively 
correlated with the increase in temperature difference. Furthermore, it is evident from alterna-
tive graphics, apart from Model 2, that buckling transpires with the augmentation of tempera-
ture disparity.

� Functionally graded sandwich nanobeam phase velocity grows with a power law index p and 
magnetic field strength Hm. For example, Hm¼0, 1, 2, and 3 at p¼0 have phase velocities of 
0.459, 0.515, 0.564, and 0.606 km/s. If the power law index was p¼5, meaning 83.3% of the 
core was Ti6Al4V, these values were 0.467, 0.524, 0.572, and 0.614 km/h.

� If the central component of the nanobeam is composed exclusively of ceramic material. The 
phase velocity at the fundamental wave number of the nanobeam exhibits a decrease of �10% 
as the metal ratio increases, i.e., as the power law index increases.

� The phase velocity of the sandwich nanobeam decreases with an increase in both the slender-
ness ratio and power law index. Furthermore, when the slenderness ratio is L/h¼25, the phase 
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velocity is 1.39� 10−7 Km/s at p¼ 0 and 1.3� 10−7 km/s at p¼ 5. To clarify, when the ceramic 
ratio of the nanobeam core is reduced from 100 to 17%, there is a corresponding decrease in 
the phase velocity by 6.47%.

� The investigation focused on three distinct thickness ratios (hc/h) of the core in the sandwich 
nanobeam: 0.4, 0.6, and 0.8. When the number of waves is n¼ 1, buckling phenomena mani-
fest as the temperature difference increases. Conversely, when the number of waves is n¼ 14, 
buckling does not occur. However, it is observed that both the phase velocity and wave fre-
quency experience a decrease. In the given scenario, buckling is observed at different tempera-
ture differences, DT, when the ratio of the core thickness, hc, to the total thickness, h, is 0.4, 
0.6, and 0.8. Specifically, buckling occurs at DT values of 181.3, 231.4, and 279.7 K, 
respectively.
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Appendix A 

The coefficients of symmetric Mij and Kij matrices are described as follows:
M11 ¼ −I0c1, M12 ¼ −I1bc1, M13 ¼ I3c1, M21 ¼ M12,

M22 ¼ I0 þ I2b
2

� �
c1, M23 ¼ −I4bc1, M31 ¼ M13,

M32 ¼ M23, M33 ¼ I5c1, K11 ¼ −A11c2b
2, K12 ¼ B11c2b

3,
K13 ¼ −C11c2b

2, K21 ¼ B11b
3c2,

K22 ¼ −D11b
4c2 þ −NTb2 þ eh �H2

xb
2 þ kpb

2 þ kw

� �

c1, K23 ¼ −F11b
3c2,

K31 ¼ K13, K32 ¼ K23, K33 ¼ H11b
2þJ66

� �
c2,

c1 ¼ 1þ e0að Þ
2b2, c2 ¼ 1þ l2mb2

(A1) 
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