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A B S T R A C T   

This study proposes an integrated framework that incorporates essential manufacturing and supply chain 
functions. These functions encompass process planning, scheduling, due-date assignment, and delivery optimi
zation. The objective of this integrated approach is to achieve multiple benefits, including balanced workload 
distribution, enhanced company performance, generation of more realistic planning schedules, and ultimately, 
the achievement of shorter due dates. As a result, the overall efficiency of operations is substantially improved, 
with approximately a 50 % increase over isolated function management. Additionally, the isolated integration of 
the delivery function within systems comprising three integrated functions has been found to improve efficiency 
by 18%. The study employs various heuristic techniques, including genetic algorithms, simulated annealing, 
random search, hybrid search, and evolutionary strategy, to assess the optimal solution method and rules for 
these functions. The Taguchi technique is employed to ascertain the optimal values for critical parameters, such 
as population size, mutation rate, crossover points, and random search rate. Among the solution methods 
investigated, genetic algorithms consistently yielded superior results Additionally, the weighted slack rule 
consistently exhibited notable effectiveness compared to other due-date assignment rules. Similarly, the savings 
algorithm outperformed other delivery optimization rules. However, it is important to note that among the 
scheduling rules evaluated, none has emerged as dominant.   

1. Introduction 

A thriving manufacturing ecosystem relies on the seamless integra
tion of critical functions, each of which is pivotal for achieving opera
tional excellence. In manufacturing systems, where effectiveness and 
optimization are paramount, the convergence of process planning, 
scheduling, due date assignment (DDA), and delivery functions has 
emerged as a critical driver for enhancing operational efficiency and 
increasing customer satisfaction. Although each function has individual 
significance, its combined impact within a unified system is substan
tially greater. Process planning, one of these essential functions, in
volves systematically assessing, determining, and organizing the 
processes and materials used throughout the manufacturing of products. 

It encompasses tasks such as defining operational routes and selecting 
appropriate machines. However, it is crucial to note that process plan
ning comes with associated costs, and planners must carefully consider 
these expenses. Implementing manual and independent process plan
ning on the shop floor (SF) can lead to chaos, reduce performance, and 
increase dissatisfaction. The only tangible benefits of manual process 
planning reside in its modest cost implications and flexibility, which 
allow for expeditious and facile system modifications (Scallan, 2003). 

Scheduling is critical function in the manufacturing industry that 
directly impacts various operational aspects (Zhao et al., 2021). Opti
mizing the scheduling process has numerous benefits, including 
increased efficiency, heightened product quality, and meeting customer 
demands. The primary objective of production scheduling is to 
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maximize resource allocation and job sequencing, even when faced with 
varying requirements and challenges across different industries. 
Scheduling is not only a cost-saving function but also contributes to 
revenue generation by reducing expenses, minimizing delays, and sta
bilizing machine workloads (Chen & Hall, 2008). 

DDA is of pivotal importance in manufacturing. Prioritizing 
customer satisfaction is paramount when assigning due dates to indi
vidual tasks. Setting overly distant due dates can harm a business’s 
reputation and lead to customer loss. This situation can also result in 
due-dates and earliness penalties, with early task completion leading to 
unnecessary stockpiling and holding costs. Conversely, unrealistic due- 
dates can result in increased tardiness costs, damaged reputation due 
to unfulfilled promises, and additional expenses, such as compensatory 
price reductions offered to dissatisfied customers. The Just-in-Time (JIT) 
principle aims to complete work precisely on the due date (Gordon et al., 
2002). Timely delivery enhances customer satisfaction and bolsters a 
company’s reputation. 

The literature reveals a variety of sub-integrations of four key func
tions in production and logistics. Notably, the integration of process 
planning and scheduling (IPPS) has been rigorously investigated by 
Phanden et al., (2011 and further discussed by Li and Gao (2020). 
Similarly, SWDDA has been explored by Vinod and Sridharan (2011) 
and by Koulamas and Kyparisis (2022) or while SWDWA has been 
addressed by Janiak et al. (2015) and by Wang and Li (2019). IPODS 
problems have been studied by Fu et al. (2017), PTSP problems were 
examined by Lacomme et al. (2016) and Karaoğlan and Kesen (2017). 
Furthermore, the integration of process planning, scheduling, and due- 
date assignment (IPPSDDA) was analyzed by Demir, Kökçam, and 
Erden (2023) and (2021). Dynamic versions of IPPSDDA were intro
duced by Demir and Erden (2020) and further elaborated by Erden et al. 
(2023), which integrated three functions. According to our compre
hensive review of the existing literature, this study represents the first 
instance of integrating all four functions, marking a significant 
advancement in the field. 

When reviewing all sub-integrations, it becomes apparent that each 
emphasizes the necessity and value of integration. Notably, the inte
grated functions of process planning, scheduling, and delivery are 
independently classified as NP-hard problems, as detailed in the litera
ture (Demir, Kökçam, & Erden, 2024; Liu, Li, Gao, & Fan, 2022; Tarhini, 
Danach, & Harfouche, 2022). Consequently, the complexity of all inte
grated problems escalates, with the integration of the four functions, as 
considered in this study, representing the most complex scenario. The 
integration of these functions marks a pioneering research area and 
holds the potential to deliver the highest global return. This compre
hensive integration encapsulates all the benefits and challenges previ
ously identified in individual sub-integrations, and even more. 

In the literature concerning scheduling with due-date assignment 
(SWDDA) and scheduling with due-window assignment (SWDWA), due 
dates are defined as the expected or planned completion times for pro
duction. These due dates can also indicate the specific times when 
products are loaded onto vehicles or when goods are prepared for de
livery. In this study, the due date is the promised delivery date for the 
products to the customer. Moreover, in numerous vehicle routing 
problems (VRP), integrated production and outbound distribution 
scheduling problems (IPODS), and production and transportation 
scheduling problems (PTSP), delivery due dates or due windows are not 
optimized as part of the problem formulation; instead, these problems 
are typically solved using pre-determined delivery due dates or due 
windows. The SWDDA problem, explored extensively by scholars such 
as (Gordon et al. (2002), Keskinocak & Tayur (2004)), and Vinod and 
Sridharan (2011), and further discussed in Demir, Kökçam, & Erden 
(2024), is presented in its most general form. This configuration assigns 
a specific due date to tasks, defining the target completion time. 
Conversely, the SWDWA problem, as delineated in studies by Janiak 
et al. (2015) and again in Demir et al. (2024), involves assigning a due 
window rather than a precise due date. This variant provides a time 

frame within which the task should be completed, offering a more 
flexible approach to scheduling. This distinction highlights the evolution 
of scheduling methodologies to accommodate different operational 
flexibilities and constraints, thereby addressing a broader spectrum of 
industrial and logistical challenges. 

In order to delve into the specific benefits and challenges of this 
study, a systematic analysis of the current sub-integrations is crucial. 
IPPS has shown multiple advantages, such as increased profitability and 
enhanced product quality. Furthermore, the efficient utilization of re
sources leads to improved delivery times. Moreover, the seamless 
implementation of alternative production plans in the SF enables quick 
responses to unforeseen situations, thus highlighting the essential role of 
IPPS in optimizing the coordination between product design and prac
tical manufacturing processes (Liu et al., 2022; Phanden et al., 2011; Yu 
et al., 2018). 

The complexity of IPPS is greatly intensified due to the NP-hard 
classification of the job shop scheduling problem. As integration levels 
increase, the complexity of manufacturing flexibility also grows, making 
it harder to address these challenges. When the complexity of problems 
escalates, precise solutions often become unachievable within restricted 
time limits. Therefore, the literature mostly focuses on the success of 
metaheuristic methods in dealing with these challenging issues (Liu 
et al., 2022). Without IPPS, the achievement of a functional Computer- 
Integrated Manufacturing System (CIMS) that integrates diverse 
manufacturing phases into a unified system is impeded. Furthermore, 
IPPS is poised to significantly enhance flexibility, adaptability, agility, 
and global optimization within distributed and collaborative 
manufacturing environments. This underscores the urgent need for 
continued research into IPPS, as Li and Gao (2020) posited in their work. 
Such endeavors are critical for advancing the field and optimizing 
manufacturing processes to meet contemporary demands. 

In this research, the delivery function represents the fourth and 
critical component integrated into the problem, potentially offering the 
most substantial contribution to the overall system performance. While 
single-item and single-customer deliveries may not necessitate complex 
routing strategies, more general delivery scenarios often evolve into a 
type of VRP. In the context of SWDDA and SWDWA, delivery is 
considered at the point when products are ready to be dispatched. 
However, in integrated production and outbound distribution sched
uling problems (IPODS) or production and transportation scheduling 
problems (PTSP), delivery may be handled by a third-party logistics 
(3PL) company through outsourcing. Typically, delivery entails 
distributing products directly to the customers’ locations, which inher
ently involves solving a VRP subproblem. 

The principal target is to handle assignments on due dates and 
scheduling concurrently. Nonetheless, two methodologies have been 
posited in academic literature due to the complexity of integrated so
lutions. These methodologies are outlined as follows: 1) Addressing both 
functions concurrently by merging their objectives. 2) Recognizing the 
challenge of addressing both functions simultaneously, one objective 
function is addressed while integrating the other as a constraint in the 
problem. Due date assignment significantly influences performance, as 
performance is contingent upon both scheduling and due date assign
ment. While tardiness traditionally incurs penalties in performance 
evaluations, the advent of Just-in-Time (JIT) philosophy has led to 
penalties for both earliness and tardiness simultaneously. The impor
tance of due date assignment amplifies as production transitions from 
make-to-stock (MTS) to make-to-order (MTO) types (Keskinocak & 
Tayur, 2004). 

The primary focus of this study is to incorporate the quadruple 
function, a domain that has not been explored previously. The delivery 
function is introduced into the IPPSDDA problem as the fourth function 
for the first time, resulting in the attainment of more comprehensive and 
successful solutions. This integration encompasses all the challenges and 
benefits delineated thus far. IPPSDDA, the core manufacturing function, 
is a highly effective approach for organizations seeking to maximize 
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customer satisfaction compared to the traditional independent 
approach. Despite the extensive academic research concerning integra
tion, these functions commonly operate sequentially and independently. 
Integration reduces costs and shortens delivery times, increasing 
customer satisfaction when effectively coordinated. An integrated 
manufacturing system and scheduling decisions are derived from 
process-planning outputs, as shown in Fig. 1. This integration fosters a 
balanced workload, enhances operational efficiency, enables realistic 
plans, shortens timelines, and enhances adaptability to change. 

In the manufacturing and logistics landscape, integrating operational 
functions has emerged as a key strategy to enhance efficiency and 
customer satisfaction. Traditional methodologies often treat process 
planning, scheduling, due-date assignment, and delivery in isolation. 
However, this approach fails to capture the interdependencies between 
these critical functions. Our study introduces an innovative framework 
that integrates these four functions within a manufacturing system to 
provide a comprehensive solution leveraging their interconnectedness. 
This paper explores the challenges involved in such integration but aims 
to address them by adopting an integrated approach for more effective 
management. The study utilizes a range of advanced metaheuristic 
methodologies, including genetic algorithms (GA), simulated annealing 
(SA), and other hybrid search techniques, to navigate the increased 
complexity and provide viable solutions within practical timeframes. 

The novelty of this research lies in its attempt to merge these func
tions and prioritize customer-centric outcomes, ensuring that delivery 
dates and production schedules are optimized to enhance customer 
satisfaction and operational performance. This paper details the devel
opment of a sophisticated mathematical model that supports this inte
gration, presenting a significant advancement in the field of Computer- 
Integrated Manufacturing Systems (CIMS). Through this integrated 
framework, the study seeks to deliver a significant contribution to the 
literature and practice, demonstrating the potential for increased global 
performance and customer-oriented manufacturing strategies. 

This study establishes an integrative framework between the de
livery function and process planning, scheduling, and due-date assign
ment. Contrary to the SWDDA sub-integration in the literature, the due 
date here does not indicate when the production is completed but when 
the goods will be delivered to the customer at the door. The intention is 
to facilitate the integration of production and supply chain processes, 
consequently enhancing efficiency and productivity. This study aims to 
demonstrate the viability of integration, compare the advantages offered 
by integrated solutions in contrast to sequential and independent ap
proaches, and evaluate the impact of partial integration by explicitly 
focusing on the delivery function. 

Acknowledging that customers who engage in order placement 
exhibit heterogeneity in their importance to a company is essential. 
Customers who consistently order products or place substantial order 
volumes are typically regarded as more valuable than others. One of the 
important aspects of the present study is to analyze the repercussions of 
assessing customers based on their distinctive levels of importance 
rather than uniformly treating all customers on global performance. 
Specifically, this study aims to investigate the influence of integrating 
customer importance considerations into DDA, scheduling, and order 
delivery processes. Notably, this study diverges from previous research 
by including penalties for earliness, tardiness, and due date-related 

based on customer-specific importance weights, thereby advancing the 
existing understanding of this issue. The main contributions and novelty 
of this paper can be summarized as follows:  

• The integration of the delivery function and delivery date with 
process planning and scheduling functions represents a novel aspect 
of this study.  

• Unlike traditional approaches that assign due dates for scheduling, 
this study assigns doorstep delivery dates to customers. 

• Production planning and delivery operations deviate from the con
ventional practice of adhering to predetermined external delivery 
dates found in existing literature. Instead, delivery dates are inter
nally optimized within the problem framework.  

• The delivery dates, scheduling, and actual delivery operations are 
assigned based on customer weights, reflecting their relative 
importance. Priority is given to important customers to enhance 
overall weighted performance. 

• Process planning, scheduling, and vehicle routing represent inher
ently combinatorial and NP-hard problems. Additionally, IPPS, 
SWDDA, IPODS, and PTSP problems exhibit increased complexity, 
with the IPPSDDA problem presenting an even greater level of in
tricacy. Furthermore, the IPPSDDAD problem under investigation 
within this study emerges as the most complex challenge.  

• Even relatively less intricate problems and sub-integrations, such as 
scheduling, vehicle routing, IPPS, SWDDA, IPODS, PTSP, and 
IPPSDDA, often necessitate the utilization of metaheuristic meth
odologies for resolution. Accordingly, this study utilizes standard 
metaheuristics to tackle the most intricate problem, IPPSDDAD. 
Additionally, a complex mathematical model has been devised and 
presented to address this intricate problem in parallel with this 
research. 

2. Related works 

Tan and Khoshnevis (2000) conducted an empirical investigation of 
an integrated process planning and scheduling (IPPS) framework, 
highlighting the advantages of integration and delving into the various 
techniques employed by researchers in this domain. Sobeyko and Mönch 
(2017) implemented IPPS in a large-scale flexible job-shop production 
environment with different product trees and routes. They considered 
the weighted total tardiness as a performance measure and used mixed- 
integer programming to solve the problem. Petrović et al. (2016) 
assessed a new heuristic algorithm, antlion optimization, for IPPS and 
demonstrated its feasibility. Márquez and Ribeiro (2022) prepared a 
review paper on the problems in SF and flow manufacturing environ
ments between 2000 and 2022. Yang et al. (2022) considered an IPPS to 
minimize the total completion time for single-machine parallel batching 
with different job families. To our knowledge, most IPPS studies in the 
literature presume that customers have equal significance levels. This 
study emphasizes that each customer may have different degrees of 
importance. 

The emergence of new operations management concepts, such as JIT 
and supply chain management, has increased interest in SWDDA. Zhao 
and Tang (2014) considered a single-machine scheduling problem in 
which the processing time of a job depends on its position in the queue. 

Fig. 1. Integrated manufacturing system.  
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They have an objective function that includes the cost of changing the 
due date, the cost of discarded jobs, and the sum of jobs that finish early. 
Three different DDA rules are used. The customer determines a 
reasonable and acceptable due date, and it is assumed that no penalty 
cost is incurred unless the due date is set above this limit. Pan et al. 
(2023) investigated the single-machine SWDDA problem with earliness, 
tardiness, and due-date costs. Arik (2023) studied a SWDDA in which 
jobs are given different earliness and tardiness weights. Qian and Han 
(2022) studied a single-machine scheduling problem with delivery time 
and deteriorating jobs under three forms of due dates. Yin et al. (2021) 
studied a SWDDA in which an agent represented each function. Xu et al. 
(2021) studied a multitask SWDDA in a batch manufacturing environ
ment in which each job is processed individually. Mor et al. (2021) 
developed a set of universal heuristic algorithms to solve single-machine 
scheduling problems with resource-dependent processing times. 

In some studies where scheduling and delivery are integrated, 
products are delivered by the manufacturer and shipped to the cus
tomer’s doorstep (Garcia & Lozano, 2004; Tonizza Pereira & Seido 

Nagano, 2022), In some studies, delivery optimization was performed 
until the products are loaded onto the vehicle and the vehicle’s path was 
not examined (Li et al., 2017). Some studies use third-party logistics 
(3PL) companies for delivery planning (Han et al., 2019). Berghman 
et al. (2023) reviewed studies on integrated production and distribution 
scheduling (IPDS). Chen and Li (2020) studied an IPDS problem in 
which each product is processed on specialized machines. It is possible 
to obtain various products in order using three heuristic algorithms. 
Huang et al. (2023) studied the IPDS problem in a batch manufacturing 
environment with multiturn vehicles and due-window assignments. 
Solina & Mirabelli (Solina & Mirabelli, 2021) studied the IPDS problem 
in a natural food business, considering the perishability factor. Tarhan 
and Oğuz (2021) studied an IPDS problem that aimed to maximize net 
revenue using a local search scheme. 

Moons et al. (2017) provided a comprehensive assessment of the 
existing literature on IPDS, highlighting that prior research has pre
dominantly focused on relatively simplistic scenarios, wherein each 
order comprises a single process. Many studies have primarily 

Table 1 
Categorical review of studies in the literature.  

Problem Reference MM GA ACO SA TS MIP PSO DA Other 

IPPS Lee and Kim (2001)  ✓        
Morad and Zalzala (1999)  ✓        
Zhang and Wong (2015)  ✓        
Shen and Yao (2015) ✓         
Leung et al. (2010)   ✓       
Guo et al. (2009)       ✓   
Özgüven et al. (2010) ✓         
Moon et al. (2008) ✓     ✓    
Zhang and Wong (2018)   ✓       
Ba et al. (2018)       ✓   
Luo et al. (2017)  ✓        
Petrović et al. (2016)       ✓   
Jin et al. (2016)         ✓ 
Yu et al. (2015)  ✓     ✓   
Mohapatra et al. (2015)  ✓        
Wang et al. (2014)   ✓       
Chu et al. (2015)      ✓     

SWDDA Chen et al. (2007) ✓     ✓    
Zhang and Wu (2012)  ✓        
Yue and Zhou (2021)         ✓ 
Chen et al. (2023)        ✓ ✓ 
Zhang et al. (2022)        ✓  
Atsmony and Mosheiov (2024)    ✓      
Shabtay et al. (2022) ✓         
Arik et al. (2022)        ✓   

IPDS Grigoreva (2020)         ✓ 
Shahin Moghadam et al. (2014)   ✓ ✓      
Hou et al. (2022)         ✓ 
Liu et al. (2021) ✓         
Long et al. (2022)       ✓   
Luo et al. (2023)         ✓ 
Ullrich (2013)  ✓        
Zhan and Wan (2018)     ✓     
Wang et al. (2020) ✓     ✓    
Ghannadpour and Zarrabi (2018)  ✓        
Yağmur and Kesen (2021)      ✓    
Chen et al. (2009) ✓         
Bo et al. (2021)        ✓  
Reiter et al. (2011)      ✓     

IPPSDDA Erden et al. (2019)  ✓  ✓ ✓     
Demir et al. (2015)  ✓        
Demir and Phanden (2019)  ✓  ✓      
Demi̇r et al. (2021)    ✓      
Demir and Erden (2020)   ✓         

This Study (IPPSDDAD)  ✓  ✓       

O. Canpolat et al.                                                                                                                                                                                                                               



Computers & Industrial Engineering 192 (2024) 110240

5

investigated single or parallel machine environments, often employing 
the same parallel machines. However, considering the widespread 
adoption of production environments characterized by multiple pro
duction levels, such as job shops or flow shops for mass production, there 
is a need to integrate these environments with vehicle routing, pre
senting a promising avenue for future research. Yağmur and Kesen 
(2023) analyzed the IPDS problem within a job shop environment, 
allowing multiple customer visits. Table 1 presents an overview of 
pertinent studies addressing integration and outlines the methods used 
in these studies such as a mathematical model (MM), Ant Colony Opti
mization (ACO), Tabu Search (TS), Mixed Integer Programming (MIP), 
Particle Swarm Optimization (PSO), and the author’s proprietary algo
rithm, referred to as DA. 

Although IPPSDDA has the potential to generate highly efficient 
outcomes, it has yet to receive significant attention in the academic 
literature due to its inherent challenges and complexities. Initially, 
Demir and Taskin (2005) investigated this topic within the scope of their 
doctoral thesis. Although they penalized earliness and tardiness, this 
study extends this approach by penalizing due-dates and earliness. 
Furthermore, this thesis determined due dates without considering 
customer weights. In contrast, this study assigns critical customers closer 
due dates and schedules important ones at earlier time slots. 

Erden (2019) dynamized IPPSDDA with stochastic and dynamic job 
arrivals in PhD thesis. In that thesis, jobs can arrive at the SF at any time, 
according to an exponential distribution. Demir and Erden (2020) 
solved the dynamic IPPSDDA problem using the ACO algorithm. In this 
study, the IPPSDDA problem in the literature is extended with a delivery 
function, and earliness, tardiness, and due-date costs are included in the 
objective function with customer weights. Two different routes are used 
in process planning: four rules are used in the DDA, ten are used in 
scheduling, and nine are used in delivery. 

In reviewing the literature, notable research has been conducted on 
integrated process planning, scheduling, due-date assignment, and de
livery within manufacturing systems, but a notable research gap per
sists. Although previous studies have addressed individual components 
of this integrated system, such as process planning or scheduling, few 
have holistically tackled the integration of all these functions simulta
neously. Moreover, existing research predominantly focuses on 
simplistic scenarios or specific production environments, leaving a sig
nificant void in addressing the complexities of real-world manufacturing 
systems characterized by diverse production levels and intricate logis
tics. Therefore, the research presented in this paper fills this critical gap 
by proposing an integrated framework that comprehensively addresses 
process planning, scheduling, due-date assignment, and delivery within 
a manufacturing system, thereby offering a novel approach to optimize 
production operations and meet customer demands effectively. 

Extending the framework of IPPSDDA by integrating the delivery 
function, this study explores an aspect of integration that, to the best of 
our knowledge, has not been studied before. Additionally, by incorpo
rating due date costs–elements that have found minimum representation 
in prior studies- into the performance function and aspects of earliness 
and tardiness, this study aims to devise solutions in line with the JIT 
principle. 

3. Materials and methods 

3.1. Problem definition 

This study is about integrated process planning, scheduling, delivery 
date assignment, and delivery (IPPSDDAD), a new topic that has never 
been studied in the literature. Process planning, scheduling, vehicle 
routing issues, and combinatorial and NP-Hard problems have been 
widely studied. Starting from the last decades of the previous century, 
these functions have been integrated dually and triple. IPPS, SWDDA, 
IPODS, and PTSP problems have been commonly studied in the litera
ture. Recently, the problem of Process planning, scheduling, and Due- 

date assignment integration, namely IPPSDDA, has started to be stud
ied, but the (IPPSDDAD) issue has not been addressed yet, and this study 
is the first study to address this problem and solve problems on this 
subject. 

In this study, J jobs will be divided into P lots, and each batch will 
have a maximum of b jobs. Each batch will be processed and scheduled 
on the floor according to its priorities. M machines on the shopfloor 
process these jobs. Each job j has total R alternative routes, and each 
route has O operations. Each job is denoted by j while m signifies the 
machine. In this context, p denotes the party of the job among P parties, j 
represents the job among J jobs, r signifies the selected route of the job j 
among R alternative routes, o represents the current operation of job j 
according to route r among O operations, and m denotes the machine 
that operates operation o among M machines. In this study, in the 
mathematical model, the vehicle is assumed to be ready when necessary, 
and in the simulation, a single vehicle is assumed to make multiple trips. 
It is accepted that J jobs are waiting when the simulation started, and a 
static shop floor simulation is performed. 

The following assumptions are accepted in this study.  

1. At the outset, the study presupposes the presence of J jobs 
comprising multiple operations.  

2. Delivery dates are determined concurrently with the problem as 
integrated into the problem, and considering these dates, the jobs 
are produced and delivered to the customers, and the total per
formance measure is calculated.  

3. When multiple jobs wait for the same machine, the job selection 
adheres to dispatching rules.  

4. Completed operations are distributed in batches according to 
selected delivery rules.  

5. The duration of each operation conforms to a normal distribution 
and is characterized by non-deterministic behavior.  

6. Each job follows a unique process route.  
7. Predecessor operations must be completed before subsequent 

operations can commence.  
8. Jobs may necessitate operations to be executed on diverse 

machines.  
9. Both machines and vehicles will not encounter breakdowns.  

10. Each order belongs to a different customer.  
11. Each customer has a different importance and, consequently, a 

weight.  
12. Jobs not completed within a working day are postponed to the 

next day.  
13. Machines are different, and each machine can perform certain 

tasks.  
14. The arrival time of each job on the shop floor is predetermined 

(deterministic).  
15. There is a single vehicle capable of making multiple tours.  
16. Routes for each job contain an equal number of operations.  
17. There are J independent jobs and M machines.  
18. The processing time of an operation on alternative machines is 

predefined.  
19. Operations cannot be interrupted while being executed.  
20. Each operation can only be performed on one machine; similarly, 

a machine can only handle one operation at a time.  
21. In batch delivery, it is assumed that the vehicle sets out with a 

specific number of orders, neither below nor above.  
22. Loading products at the shop floor during delivery and unloading 

them from the vehicle upon reaching the customer occurs within 
the delivery time.  

23. If the last batch of jobs does not fill the vehicle’s capacity, the 
remaining portion from the next group is transferred.  

24. The vehicle does not leave the shop floor until its capacity is 
filled.  

25. Each route starts and ends at the shop floor. 
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3.2. Mixed-integer linear programming model 

This study explores a job-shop-style manufacturing environment, 
wherein jobs are presumed to be known and available at the onset. The 
selection of process plans, optimal batching, job scheduling, assignment 
of delivery dates, and determination of vehicle routing are all concur
rently established through the mathematical model. Upon completion of 
a production batch, it is loaded onto a vehicle and dispatched to the 
customers. Vehicles are presumed to be available as required. 

The mathematical model employed in our study is structured upon 

the notations delineated in Table 2, with the performance function and 
constraints elucidated in Table 3. This approach draws upon the foun
dational study of (Özgüven et al., 2010), who developed comprehensive 
mathematical models for flexible job-shop scheduling problems (FJSPs), 
incorporating both routing and sequencing sub-problems, as well as 
process plan flexibility (FJSP-PPFs). Below model includes process plan 
selection, optimal batching, machine load balancing, minimizing total 
machining time, optimizing delivery date of every job, job shop sched
uling and vehicle routing of each batch. Objective function minimizes 
makespan of all job, makespan of every batch and completion time of 
every job. Total transportation cost and total weighted earliness, tardi
ness and delivery date penalties are minimized. 

Variables 
Ypjropʹj́ rʹoʹm,Xpjrom,Vjkp,Zpjr = 0 or 1 

Ppjrom, Spjrom, Cpjrom, Lm, Lmax,Cpj,Cmax
p ,Cmax, epj, lpj, apk, Epj,Tpj,Dpj ≥ 0  

Dpj ​ (in this case due dates are optimized with the problem)

Parameters 
toj, tjk, b, Sj, Ct

0j, Ct
jk, tc, wj, Dpj   

3.3. Problem structure and specifications 

The investigated problem encompasses four distinct SFs, specifically 
SF1, SF2, SF3, and SF4, each characterized by differing job quantities of 
25, 50, 75, and 100, respectively. Notably, each job undergoes pro
cessing via two alternative production routes, encompassing three 
discrete operations. Another salient aspect of this study pertains to the 
varying levels of customer importance, stratified into four distinct cat
egories: especially important, important, moderately important, and less 
important, corresponding to the relative importance scores of 2.5, 1, 0.5, 
and 0.33, respectively. Therefore, it is imperative to prioritize customers 
of higher importance at each stage of the production process. Customers 
are equally distributed to each category. 

Process plans should be the primary focus of SF integration. The 
process plan defines the tasks that must be accomplished in the SF, 
specifying the execution methods, tools required, time frame for 
completion, and other relevant details. The sample processing plan is 
presented in Table 4. 

The jobs are grouped into batches, with each job assigned to only one 
batch and each batch containing a maximum of five jobs (customers). 
The batches are created by ordering the jobs in SF based on their batch 
value (BV), which is determined by the processing time for each job in SF 
(pj), importance of the customer (wj), and the customer’s distance from 
SF (d0j), all in descending order of priority. The BV value is calculated 
using Eq. (22) below. 

BV =
(∑

pj + d0j

)
*

1
wj

(22)  

Once the BV values of the jobs have been established, they are arranged 
in ascending order. This sorting process is based on the rationale that a 
lower BV value corresponds to closer proximity to the SF, association 
with a more significant customer, or increased importance due to a 
shorter production time. The allocation of important jobs to priority 
batches substantially contributes to overall performance, as it guaran
tees that more important customers are served with heightened priority. 

To ensure successful delivery, it is crucial to have accurate knowl
edge of each customer’s location. This study defines customer locations 
as random points on a coordinate system, with SF being the system’s 
center (0,0). The distances between each customer and the SFs are 
calculated according to the rectilinear distance between them by using 
Eq. (23). 

dij =

⃒
⃒
⃒(yj − yi)

⃒
⃒
⃒+

⃒
⃒(xj − xi)

⃒
⃒ (23)  

In this equation, dij represents the distance between two points and x and 
y represent the coordinates of those points. Table 5 shows the distance 
matrix. 

Table 2 
Summary of notations used in the mathematical model.  

Notation Description Notation Description 

Xpjrom pjro(batch, job, route, 
operation) 1 if processed on 
machine m, 0 otherwise 

J Jobs (j ∈ J) in every 
batch 
n = J+1 depot +
customers in a batch 

Ppjrom Processing time of pjro 
operation on machine m 

P Parties (p ∈ P)

Spjrom Start time of pjro operation 
on machine m 

K Customers (k ∈ K)

Cpjrom End time of pjro operation on 
machine m 

Mc Machines (m ∈ Mc)

Zpjr 1 if job j is selected to batch p 
and uses route r, 0 otherwise 

M A big number 

V0kp 1 if customer k belonging to 
batch p was the first to arrive 
from the shop floor, 
0 otherwise (0 represents 
shop floor) 

b Batch size 

Vjkp In batch p, 1 if we go from 
customer j to customer k, 
0 otherwise 

tc Transport cost per km 

Cpj Completion time of job j of 
batch p 

Sj service time at customer j 

Cmax
p ,Cmax Makespan of batch p, 

makespan of all jobs 
t0k, tjk Arrival time from shop 

floor (0) to customer k/ 
from customer j to k 

Dpj Delivery-date of job j in party 
p 

Ct
0j,Ct

jk Distance from shop floor 
(0) to customer j/from 
customer j to k 

Epj,Tpj Earliness and Tardiness times 
regarding the delivery-date 

Lm, Lmax The total load of machine 
m and load of the 
machine with maximum 
load 

Le,LT Earliness and tardiness 
penalties per unit time 

apk Arrival time at customer 
k belonging to party p 

Ypjropʹ j́ ŕ oʹm 1 if operation Ppjrom precedes 
operation Ppʹ j́ ŕ oʹ,m; otherwise, 
0. 

L Delivery-date penalty 
per unit time 

wj Weight or importance of 
customer j    

Dpj ​ (in this case due dates are given to the model as an outside parameters)
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The chromosome comprises three essential genes: due-date assign
ment, scheduling, and delivery. The first gene had four rules, whereas 
the others contained ten and nine rules. Fig. 2 illustrates this problem in 
its simplest terms. 

Regardless of the rules selected for each function (DDA, scheduling, 
or delivery) in the chromosome, the problem is resolved by integrating 
these rules. Each rule had a corresponding value for the relevant gene. 
Each chromosome is formed by combining the functional and route 

genes. The chromosomal structure is shown in Fig. 3. The number of jobs 
in a shop influences the length of the chromosomes. 

Table 6 shows a part of the sample chromosomes of a population. The 
length of the chromosomes varies according to the number of jobs on the 
shop floor. Since there are two routes for each job, the route genes have a 
value of 0 or 1. 

For each rule, a corresponding value is assigned to the pertinent 
gene. The rules based on these functions are listed in Table 7, where di 

Table 3 
The constraints of the integrated problem and their explanations.  

No Equation Explanation 

(1) MinZ =
(

McLmax +
∑M

m=1Lm

)
+

(
Cmax +

∑P
p=1Cmax

p +
∑P

p=1
∑J

j=1Cpj

)
+

(∑P
p=1

∑J
j=0,j∕=k

∑J
k=0tcCt

jkVjkp

)
+

(∑J
j=1wjEpjLe +

∑J
j=1wjTpjLT +

∑J
j=1wjDpjL

)

In the performance function, in the first parenthesis (the load of the maximum loaded machine + the total 
load on the machines is tried to be minimized. In the second parenthesis (makespan of all job, makespan 
of every batch and completion time of every job are tried to be minimized). In the third bracket 
(transportation costs are minimized). In the fourth bracket (Weighted Earliness + Tardiness + Length of 
delivery date are penalized) 

(2) 
∑

p
∑

rZpjr = 1 ∀j If Zpjr = 1 job j is in batch p and uses route r. Job j can belong to only one party and only one of the routes 
can be selected. 

(3) 
∑

j
∑

rZpjr ≤ b ∀p There can be a maximum of b (batch size) jobs in a batch. 
(4) Xpjrom ≤ Ppjrom ∀p,∀j,∀r,∀o,∀m If Ppjrom is zero then Xpjrom should be zero. 
(5) Xpjrom = Zpjr ∀p,∀j,∀r,∀o, 

m ​ for ​ ∀o 
If Zpjr = 1 then operations o of job j, which is in batch p and uses route r, should be processed on machines 
m. 

(6) 
∑

p
∑

j
∑

r
∑

oXpjromPpjrom = Lm ∀m Lm returns the total workload on machine m. 
(7) Lm ≤ Lmax ∀m Lmax the load of the maximum loaded machine which is the highest machine load among the loads of all 

the machines. 
(8) 

∑
rZpjr ≤

∑
k=0Vjkp(8) 

∑
rZpkr ≤

∑
j=0Vjkp(8′) 

∀j, ∀p(8) 
∀k, ∀p(8′) 

These two constraints are coordination constraints between party assignment, job shop scheduling and 
vehicle routing. Suppose any location from customer j in party p is visited in the vehicle routing section. 
In that case, then customer j belongs to party p in the party assignment, scheduling and vehicle routing 
section. In the scheduling section of the indices, jobs start from j = 1 to the number J jobs. In vehicle 
routing j starts from 0 where 0 represents the shop floor and the number of customers ends at J.  
8′) If customer k in party p is reached from anywhere in the vehicle routing section, then customer k 
belongs to party p in the party assignment, scheduling and vehicle routing section. 

(9) Spjrom + Cpjrom ≤ XpjromM ∀p,∀j,∀r,∀o,∀m If a job j belongs to batch p, uses route r, is processed by operation o and is processed on machine m, then 
that operation of that job can have a start and end time on that machine. Shortly if Xpjrom is 1 then Spjrom ,

Cpjrom start time and completion time can have value. These constraints are written only when Ppjrom 

values are positive. For zero values no such constraints are required to write. 
(10) Cpjrom ≥ Spjrom + Ppjrom −

(
1 − Xpjrom

)
M ∀p,∀j,∀r,∀o,∀m If an operation is processed on a machine, the end time of that job on that machine must be greater than 

the start time + the processing time of that operation. These constraints are written only when Ppjrom 

values are positive. For zero values no such constraints are required to write. 
(11) Spjrom ≥ Cpʹ j́ ŕ oʹm −

(
Ypjropʹ j́ ŕ oʹm

)
M(11) 

Spʹ j́ ŕ oʹ,m ≥ Cpjrom −
(
1 − Ypjropʹ j́ ŕ oʹ,m

)
M(11′) 

∀p,∀j,∀r,∀o,∀ṕ ,∀j́ ,∀
ŕ ,∀ó , ∀m 

These constraints are either, or constraints. The Ppjrom operation is before or after the ṕ j́ ŕ ó m operation. 

Either the start of the operation pjrom must be before the operation ṕ j́ ŕ oʹm (jobs processed on the same 
machine m, then the binary variable 

(
Ypjropʹ j́ ŕ oʹ,m

)
= 1), or the beginning of the ṕ j́ ŕ ó m operation should be 

before the pjrom operation, then the binary variable 
(
Ypjropʹ j́ ŕ oʹ,m

)
= 0). These constraints are written only 

when Ppjrom or Ppʹ j́ ŕ oʹ,m values are positive. For zero values no such constraints are required to write. 
(12) Spjrom ≥ Cpjr,o− 1,m ∀p,∀j,∀r,∀o − {o(f)} The start of the pjro operation must be after the end of the pjr(o − 1) operation. Because (o − 1) is the 

operation before the o operation in the rth route. These constraints are written starting from the second 
operation (Except o(f) first operation) 

(13) Cpj =
∑

r
∑

o=o(l) Cp,j,r,o(l) ,m ∀p,∀j Cpj that is, the completion time of job j selected for batch p, must be equal to the last processing time last 
operations, o(l) of all routes of this job. Among all last operations’ o(l) completion times on all machines 
Cp,j,r,o(l) ,m only one route, one last operation and one machine take value, the others are zero. 

(14) Cmax
p ≥ Cpj ∀p,∀j The makespan of batch p is greater than the completion time of all jobs in that batch. The makespan of all 

jobs is greater than the makespan of all parties. (15) Cmax ≥ Cmax
p ∀p 

(16) apk = Cmax
p + tok if V0kp = 1 ∀k, ∀p Arrival at customer k is the makespan of the lot this customer is in the delivery time from the shop floor to 

this customer (if this customer is the first delivery in that lot) 
(17) apk = apj + Sj + tjk if Vjkp = 1 ∀k, ∀p,∀j, j ∕= k If customer k is not the first delivery, then if customer j is visited before this customer, then arrival time at 

this customer is equal to the arrival time at customer j + service time at customer j + transportation time 
between j and k. 

(18) Epj = max
{
Dpj − apj,0

}
∀j,∀p Early arrival according to the delivery date is found by subtracting the arrival time to customer j from the 

delivery date. The delay is found by subtracting the delivery date from the arrival time to customer j. 
Here, the delivery date of job j (Dpj) can be variable and optimized with the mathematical model or can be 
given form outside as parameters to the model and model is solved according to the given delivery dates. 
The model works for both cases. 

(19) Tpj = max
{
apj − Dpj, 0

}
∀j,∀p 

(20) 
∑

k=0,k∕=j

∑

p=1
Vjkp = 1

∑

j=0,j∕=k

∑

p
Vjkp = 1 

∀j, j ∕= 0 ∀k,k ∕= 0 These are vehicle routing constraints. The first constraint tells us that in each batch (i.e., each vehicle), we 
need to go from each customer j to another customer k or the shop floor 0. The second constraint tells us 
that in each batch (that is, in each vehicle), we need to come from another customer, j or 0, from the shop 
floor to a k customer. 

(21) uj − uk + n × Vjkp ≤ n − 1
2 ≤ uj ≤ n 

∀j ∕= 0, ∀k ∕= 0, j ∕=
k∀j, j ∕= 0 

These two SEC constraints are sub-tour elimination constraints. We start from the shop floor and end on 
the shop floor. If we do not count start and end, every customer in that batch should be visited once in one 
unique sequence between 1(shop floor) and n + 1(shop floor). that means the sequence of customer j 
must be unique and should be in between 2 ≤ uj ≤ n.  
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represents the delivery date, wi denotes the customer weight, Ni signifies 
the number of operations for job i, qi denotes the slack value, pi repre
sents the total process time for job i, k denotes the predetermined con
stant value. Z1 and Z2 are determined inversely proportional to customer 
weights. 

According to the approach outlined before, rather than handling the 
production and the delivery functions independently, they will be 
structured to work together and serve a unified purpose, as shown in 
Fig. 4. 

Table 4 
Sample process plan.  

Jobs Routes Operation 1 Operation 2 Operation 3 CustomerImportance 

Process Time Machine Process Time Machine Process Time Machine 

J1 R0 6 1 5 2 9 2 2.50 
R1 8 2 6 2 5 1 

J2 R0 9 2 8 1 3 1 0.50 
R1 8 1 4 1 3 2 

J3 R0 3 1 3 1 9 2 2.50 
R1 4 1 7 2 6 1 

J4 R0 9 2 5 2 7 1 1.00 
R1 6 2 7 1 5 1  

Table 5 
Distance matrix.  

Distance SF J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 

SF − 1 44 77 80 69 5 22 44 35 11 22 25 32 49 
J1 44 − 1 121 46 63 45 66 18 43 37 60 61 72 51 
J2 77 121 − 1 93 80 76 55 121 112 88 61 60 49 126 
J3 80 46 93 − 1 35 75 90 64 89 83 58 105 112 97 
J4 69 63 80 35 − 1 64 79 63 78 72 47 94 101 86 
J5 5 45 76 75 64 − 1 21 45 36 12 17 30 37 50 
J6 22 66 55 90 79 21 − 1 66 57 33 32 15 22 71 
J7 44 18 121 64 63 45 66 − 1 25 33 60 61 72 33 
J8 35 43 112 89 78 36 57 25 − 1 24 51 52 63 14 
J9 11 37 88 83 72 12 33 33 24 − 1 27 28 39 38 
J10 22 60 61 58 47 17 32 60 51 27 − 1 47 54 65 
J11 25 61 60 105 94 30 15 61 52 28 47 − 1 11 66 
J12 32 72 49 112 101 37 22 72 63 39 54 11 − 1 77 
J13 49 51 126 97 86 50 71 33 14 38 65 66 77 − 1  

Fig. 2. The IPPSDDAD problem.  
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3.4. Performance criterion 

The objective is a function based on the delivery time. This function 
penalizes the promised due date, tardiness, and earliness, if any. 
Tardiness (Tpj) is calculated using Eq. (24), and earliness (Epj) is calcu
lated using Eq. (25). 

Tpj = max(apj − Dpj, 0) (24)  

Epj = max
(
Dpj − apj, 0

)
(25)  

The penalties are determined using Eq. (26) and (27), where wj is the 
customer’s weight, apj is the completion time, and Dpj is the delivery 
date. 

PEj = wj*(5 + 4*(
Epj

480
)) (26)  

PTj = wj*(10 + 8*(
Tpj

480
)) (27)  

The performance function incorporates a promised due date, which 
aligns with the emphasis of the JIT production philosophy on timely job 
completion (Gordon et al., 2002). The philosophy prioritizes meeting 
due dates precisely and considers earliness or tardiness unfavorable. 
Because the problem prefers lower performance function values, 
assigning jobs closer to their order time minimizes the penalties calcu
lated using Eq. (28) for the given due-date length. The total penalty (Pj) 
for a job (denoted by tp) is the sum of the PDj, PEj, PTj as formulated in Eq. 
(29). The performance criterion (PC) in this study minimizes the sum of 
the penalties calculated for all jobs, as shown in Eq. (30). 

PDj = wj*(8*(
Dpj

480
)) (28)  

Pj = PDj +PEj +PTj (29)  

PC =
∑n

j=1
Pj (30)  

3.5. Meta-heuristic algorithms 

Meta-heuristic algorithms and their applications can be classified 
into various domains based on the problem they aim to solve and the 
specific characteristics of the algorithm. It spans various domains, from 
optimization and searches to machine learning, data mining, decision- 
making, and control systems, offering versatile solutions to complex 
problems in various fields. For a second classification approach, they can 
be classified based on the underlying strategy they employ to explore 
and exploit the solution space. One common classification scheme cat
egorizes meta-heuristics into single solution-based and population-based 
algorithms. Single solution-based meta-heuristics operate with a single 
candidate solution at a time. These algorithms iteratively explore the 
solution space by making incremental modifications to the current 

DD DR VR R1 R2 . Rn 1 2 n. . . .

Routes of Jobs Routes of Vehicle

Delivery Gene

Scheduling Gene

Due-Date Assignment Gene

Fig. 3. Chromosome structure.  

Table 6 
A sample chromosome.  

Chromosomes  DD DR VR J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16  

Chromosome 1 [ 0 5 3 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 ] 
Chromosome 2 [ 1 1 5 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 0 ] 
Chromosome 3 [ 0 8 7 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 0 ] 
Chromosome 4 [ 3 3 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 ] 
Chromosome 5 [ 0 9 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 ] 
Chromosome 6 [ 2 5 4 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 ] 
Chromosome 7 [ 1 2 3 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 ] 
Chromosome 8 [ 2 1 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 ] 
Chromosome 9 [ 1 7 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 ] 
Chromosome 10 [ 1 0 0 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 ]  

Table 7 
Gene values of the rules.  

No DDA rules Dispatching rules Delivery type 

0 WSLK di = pi + qi*Zi WSPT Ii =
wi

pi 

Single delivery 

1 WPPW di = pi*k*Z1 +

qi*Z2 

WSOT Ii =
wi

pij 

Batch delivery 

2 WNOP di = Ni*k*Zi WLOT Ii =
pij

wi 

Nearest 
neighbor 

3 WTWK di = pi*k*Zi WLPT Ii =
pi

wi 

Savings 
algorithm 

4   WATC Ii =

wi

pi
e

(
max(slack,0)

Kp

)
Sweep 
algorithm 

5   ATC Ii =

1
pi

e

(
max(slack,0)

Kp

)
Random 
delivery 

6   MS Ii = − (slack) Hybrid 
delivery 

7   WMS Ii = − (slack)wi Priority 
Algorithm 1 

8   EDD Ii =
1
di 

Priority 
Algorithm 2 

9   WEDD Ii =
wi

di    
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solution, aiming to improve its quality. Several single solution-based 
meta-heuristic algorithms include hill climbing, simulated annealing, 
and tabu search. Single solution-based algorithms are simpler and 
require fewer computational resources, while population-based algo
rithms offer better exploration capabilities and can handle complex so
lution spaces more effectively. However, both types of meta-heuristics 
offer advantages depending on the problem characteristics. 

Another characteristic of meta-heuristic algorithms is whether they 
are directed or undirected to search for better solutions. Directed search 
algorithms such as GA, ES, and SA use the best solutions found so far to 
find better solutions. Undirected search algorithms such as RS do not use 
the best solutions found, and, in every iteration, they try brand new 
solutions in the solution space. RS algorithm scans the solution space 
extremely fast at the beginning, but the chance of finding better solu
tions decreases as iterations go on. On the other hand, directed searches 
use the best solutions to find better solutions, which is the power of 
directed search algorithms. A hybrid search is applied to combine the 
power of the undirected RS algorithm and the power of directed GA. The 
first five iterations are applied using the RS algorithm at the beginning, 
and the remaining iterations are applied using GA. 

3.6. Solution representation and decoding 

To address this problem, a range of optimization algorithms is 
employed, including SA, GA, ES, HS, and RS. SA focuses on optimizing 
an individual chromosome throughout each iteration, as opposed to 
operating with populations, which is a practice observed in certain 
alternative algorithms. The SA algorithm begins by establishing the 

temperature and last temperature and the cooling coefficient. Subse
quently, a chromosome is selected as the initial solution, and its per
formance is evaluated and recorded as both the current and optimal 
solutions. This chromosome is then subjected to mutation to generate a 
neighboring solution, which is then stored as the new solution. The 
performance of the new solution is assessed and compared with that of 
the current solution. 

If an enhancement in the solution is observed, the new solution is 
deemed as the current solution (Cura, 2008). However, if no improve
ment is evident, the acceptance of the new solution relies on the 
outcome of the acceptance probability (paccept). Once the paccept is 
computed, a random number is generated and compared with paccept . If 
the paccept surpasses the random number, the new solution is accepted. 
Otherwise, the current solution is retained, the temperature is lowered, 
and a new iteration is initiated. This process persists until the temper
ature value drops below the final temperature preset. Fig. 5 shows the 
SA algorithm. 

Rather than exploring the entire solution space, the GA expedites the 
process by testing a subset of existing solutions, yielding suitable solu
tions in a reduced timeframe (Ismail et al., 2022). The GA selects ideal 
chromosomes from an ample space by employing solution values known 
as fitness functions (Lin & Jou, 2000). The search for improved solutions 
centers on the best solutions identified thus far within each iteration of 
the GA. During each iteration, a specific number of chromosomes is 
chosen from the parent population, and a cross-population is subse
quently generated via the crossover operator. Subsequently, the muta
tion operator selects a designated number of chromosomes for mutation, 
creating a mutation population. The crossover and mutation rates in the 

Main Problem

Process Planning Phase

Scheduling Phase

Subproblem

Detailed Scheduling

a) Hierarchical and Classical Approach

Main Problem

Planning Model

Scheduling Phase

Subproblem

Detailed Scheduling

b) Circular Approach

Feedback

Integrated Problem

Proses Planning

Delivery date /
Delivery Window

c) Integrated Approach

Scheduling Model

Delivery and Distribution

Subproblem

Delivery and Distribution

Subproblem

Delivery and Distribution

Delivery date
/Delivery Window Delivery date / Delivery Window

Fig. 4. Solution strategies of production functions.  
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GA are 60 % (6 out of 10 chromosomes) and 40 % (4 out of 10 chro
mosomes), respectively. After these processes, chromosomes exhibiting 
superior performance are more likely to be selected (Göçken et al., 
2018). Fig. 6 illustrates the steps involved in the GA. 

In each iteration, 6 out of 10 chromosomes belonging to the popu
lation are randomly selected for crossover so that they are not repeated. 
The multi-point crossover performed in the study is shown in Fig. 7 and 
Fig. 8. 

In each iteration, a subset of chromosomes, specifically four out of 
the total ten, are selected for mutation. During the mutation process, a 
particular number of genes, optimized through Taguchi methods, are 
modified within each chromosome. Notably, the mutation is executed 
using two distinct approaches. This differentiation arose from the fact 
that genes other than the first three within the chromosome exhibit bi
nary characteristics, taking either a value of 1 or 0. Conversely, the first 
three genes within the chromosome encompass various numerical 
values. 

For instance, the second gene is associated with scheduling and offers 
a choice from ten different scheduling methods. Should this gene be 
selected for mutation, a random selection is made from the permissible 
values (excluding the current value). In contrast, the mutation operator 
functions differently for other genes, employing a mechanism where the 
value of the gene transitions to 1 if it is previously 0 or 0 if it is formerly 
1. An illustration of the mutation process is presented in Fig. 9. 

ES is an approach that aims to explore and identify improved solu
tions within the neighbors of reasonable solutions, drawing inspiration 

from evolutionary theory. In contrast to GA, which employs crossover 
and mutation operators, ES relies exclusively on the mutation operator. 
The iterative process commences by concatenating the chromosomes 
from the current population (initial population in the first iteration) into 
an array. Subsequently, the fitness function values denoting penalties 
are computed for each chromosome, arranged in ascending order, and 
used to derive the selection probability for each chromosome based on 
this order. 

Next, a chromosome is randomly chosen for mutation using the se
lection probabilities and subjected to the mutation operation. The mu
tation process is executed on a total of 10 chromosomes. Notably, the 
same chromosome may be re-selected for mutation based on its selection 
probabilities, ensuring that superior-quality chromosomes are granted 
multiple opportunities for mutation. The resulting mutated chromo
somes are collected and stored in the mutation array. 

The fitness function values for the chromosomes within both the 
original and mutation population arrays are computed. These chromo
somes are subsequently ranked in ascending order based on their fitness 
function values. Up to the extent of the population size, the top-ranking 
chromosomes are then transferred to the subsequent iteration as the best 
chromosomes. This iterative process is repeated for the designated 
number of iterations. 

The RS algorithm randomly generates a population comprising ten 
chromosomes. Subsequently, the performance of the generated chro
mosomes is assessed. The top ten chromosomes exhibiting the most 
favorable performance from the iterations are selected for subsequent 

Fig. 5. Steps of the SA.  
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iterations. Notably, the RS algorithm operates for the same number of 
iterations as GA. 

The HS algorithm is obtained by integrating the GA and RS algo
rithms. 5 out of 100 iterations employed the RS algorithm, whereas the 

remaining 95 are conducted using the GA. Ten chromosomes are 
generated in the initial five iterations, and their performance is evalu
ated. At the sixth iteration, the top ten chromosomes from the RS al
gorithm become the starting population for the GA. The GA lasted for 95 
iterations, commencing with the updated population. Through this 

Fig. 6. Steps of the GA.  

Fig. 7. Chromosomes before crossover.  
Fig. 8. Chromosomes after crossover.  
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process, the best-performing chromosome is determined. To ensure 
fairness and comparability, identical initial populations are employed 
for ES and GA. Moreover, an equivalent number of iterations is imple
mented for all methods. Additionally, the population size is consistently 
maintained throughout all population-based techniques. 

3.7. Taguchi design of experiments 

The design of experiments (DOE) aims to obtain the optimum output 
with a minimum number of experiments without requiring the testing of 
all parameters and levels of these parameters (Taguchi, 1986). When 
confronted with situations in which exhaustive exploration of the entire 
solution pool is challenging, a precious approach involves conducting a 
limited number of experiments using orthogonal arrays. This method 
allows for examining parameter effects on the solution without 
compromising the underlying structure and output of the problem. 
Table 8 presents the relevant parameters utilized in the problem and the 
corresponding orthogonal arrays required by the number of levels for 
each parameter. 

This study examined the effects of four different parameters con
sisting of three levels. The Minitab Statistical Software is used for the 
DOE. The results are analyzed based on the signal-to-noise ratio. The 
parameters and levels used in DOE are listed in Table 9. The DOE 
methodology suggests the application of L9 orthogonal arrays, where a 
4-parameter experimental design encompasses three levels. Signifi
cantly, while conducting 81 experiments would be necessary to obtain a 
comprehensive understanding of the impact of the parameters on the 
problem, only nine experiments are conducted using DOE. Table 10 
provides complete information about the experiments and their corre
sponding results. 

The parameter values that provide the signal-to-noise ratio and the 
minimum penalty values in the 95 % confidence interval are taken as the 
basic values for all shop floors in the study. A graph of the signal-to-noise 
ratio is shown in Fig. 10. 

Based on the findings presented in Fig. 10, it can be observed that 
among the four parameters analyzed about the problem, the “population 
size” of 10 demonstrates the most optimal performance. Similarly, for 
the parameter “number of crossover points”, a value of 1 yields the most 
effective outcome. Furthermore, the “RS rate” of 0.1 and a parameter 
value of 13 for the “number of genes to mutate” are found to achieve the 
most efficient performance. Consequently, employing a population size 
of 10 chromosomes, implementing a single-point crossover approach, 
maintaining an RS ratio of 0.1, and mutating 13 genes across all SFs is 
recommended. 

4. Experimental results and discussions 

To solve the problem, a computer code is developed in Python using 

PyCharm IDE on a computer with an Intel(R) Core(TM) i7-4700HQ 
processor with 2.40 GHz and 16 GB RAM. NumPy, random and math 
libraries are used. An experimental analysis assessed the impact of 
integrating the four distinct functions, commencing with a non- 
integrated SF (SIRO-RDM). Subsequently, various levels of integration 
are established and compared with the four integrated SFs. Solution 
methods are employed to obtain the SF results. The iteration numbers 
are standardized to facilitate precise evaluation and comparison, and all 
random numbers used in the software are held constant. Detailed in
formation on the level of integration is presented in Table 11. 

The integration levels contain 50 jobs, and their performance 
without the solution method (raw) and their solution with GA are 
examined. Table 12 presents the comparative results. 

The GA presents a highly productive solution across all levels of 
integration. At the integration level of SIRO-RDM (Level 1), wherein 
each function operates independently without explicit rules, the GA 
remarkably demonstrates a 45 % improvement. Moreover, the GA has 
significantly improved at the Level4 integration level, representing 
complete integration. However, it is important to note that this 
improvement ratio is expected to increase with the number of iterations. 
As the integration level advances, the problem exhibits the capacity to 
obtain superior solutions. Fig. 11 illustrates the performance of different 
integration levels. 

Empirical observations demonstrate that, as the level of integration 
increases, it leads to superior outcomes compared to irregular and 
random configurations because each function’s degree of customer 
importance becomes more pronounced and structured. Furthermore, the 
empirical evidence suggests that the highest integration level, Level4, 
outperforms the other levels. Table 13 presents the recovery rates across 
the various integration levels. Additionally, incorporating rules into a 
problem that contains customer importance enables a marked 
enhancement in the global solution. 

Table 13 clearly indicates a 35 % improvement at the Level2 inte
gration level compared with the SIRO-RDM (Level1) integration level. 
This signifies the significant impact of integrating even just delivery in a 
rule-based manner on the problem’s solution. Furthermore, at the 
Level3 integration level, characterized by random delivery, rule-based 
due-date assignment, and scheduling, a 41 % enhancement is 
observed for Level1. Notably, this represents an 9 % improvement 
compared with the Level2 integration level. 

If one bifurcates the integration levels into two distinct groups, 
Level1 and Level2, and Level3 and Level4, it will facilitate a more 
comprehensive understanding of the implications of integrating the 
delivery function. Specifically, when all functions are devoid of rules 
(Level1), the mere introduction of the delivery function augmented with 
rules (Level2) enhances the performance by 35 %. Similarly, the level at 
which all functions are integrated (Level4) outperforms its counterpart 
by 18 % when delivery is conducted randomly (Level3). The findings 
demonstrate that incorporating the delivery function into the over
arching system consistently yields superior and more efficient global 
solutions. Table 14 presents an overview of the advantages linked to the 
integration of delivery at the Level1, with the exclusion of delivery rules 
[0], [1], and [5] due to their anticipated unfavorable outcomes resulting 
from their inherent characteristics. 

It is observed that integrating delivery rules into a randomized sys
tem (Level1) improves performance by at least 30 percent and at most 

Fig. 9. Mutation process representation.  

Table 8 
Taguchi orthogonal arrays.  

Taguchi orthogonal array Number of parameters 

2 3 4 5 6 7 8 

Number of Levels 2 L4 L4 L8 L8 L8 L8 L12 
3 L9 L9 L9 L18 L18 L18 L18 
4 L16 L16 L16 L16 L32 L32 L32 
5 L25 L25 L25 L25 L25 L50 L50  

Table 9 
Parameters and levels for DOE.  

Population size 
(PopSize) 

Number of crossover 
points (No. of CP) 

Random 
search(RS) 
Rate 

Mutation gene 
count(No. of Mut.) 

6 1 5 % 7 
10 2 10 % 10 
16 3 15 % 13  
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37 percent. Among the delivery rules, the savings algorithm yielded the 
best results. The substantial improvement distinctly illustrates the 
impact of integrating delivery into the problem. Specifically, concerning 
the Level1 level where none of the functions are integrated, performing 
delivery exclusively within a specific rule demonstrates a minimum 
overall performance improvement of 30 %. Table 15 presents the results 
for the four SFs in the problem. 

According to the conducted analyses, the GA demonstrated optimal 
performance in two of the four simulated SFs (SF2 and SF3). ES is the 

most effective algorithm for SF1, whereas RS yielded the best global 
solution for SF4. It should be noted that GA began to achieve superior 
results with a growing number of jobs. For instance, despite trailing 
behind the ES in SF1, which comprised 25 jobs, it improved by 0.4 % in 
SF2, housing 50 jobs. Moreover, when the job count reached 75, GA 
widened the performance gap with the nearest algorithm to 2.3 %. These 
data suggest that GA’s performance improves proportionately with 
increased job numbers. 

However, an anomaly is observed in SF4, which contained 100 jobs. 
The primary attribute of this irregularity is the large number of itera
tions required. By solving a considerable problem encompassing 100 
jobs, it is inferred that exploring the expansive solution space in only 
100 iterations diminished the efficiency of the results. To investigate this 
further, SF4 underwent 4000 iterations utilizing identical data. Table 16 
presents the results of the extended analysis. 

As evidenced by the analysis, augmenting the number of iterations 
leads to a marked enhancement in the GA performance relative to the 
other algorithms. Given that more jobs engender a more expansive so
lution space, further exploration favors a global solution. Moreover, 
alterations are implemented in the chromosomes responsible for 
rendering the optimal results obtained throughout the study, followed 
by examining the consequent effect on the results. This process allows 
for assessing the influence of rules on global performance. 

Table 17 presents an analysis of the performance of the DDA rules for 
each of the four SFs, explicitly focusing on the chromosomes that 
delivered the best performance with the GA. 

An apparent prevalence of the WSLK rule is evident across all four 

Table 10 
Results of Taguchi DOE.  

PopSize No. of CP RS rate No. of Mut. Result1 (tp) Result2 Result 3 Result 4 Result 5 

6 1  0.05 7 461,246 478,445 480,336 461,198 463,879 
6 2  0.10 10 462,006 462,010 463,236 468,583 472,510 
6 3  0.15 13 462,017 466,127 482,565 462,317 461,274 
10 1  0.10 13 484,428 487,287 493,000 479,137 473,283 
10 2  0.15 7 458,143 462,542 482,598 463,207 464,843 
10 3  0.05 10 464,062 485,606 461,948 463,934 466,986 
16 1  0.15 10 470,752 479,047 464,493 463,239 469,345 
16 2  0.05 13 472,148 468,667 463,263 495,874 486,440 
16 3  0.10 7 481,104 465,255 456,803 462,042 480,364  

Fig. 10. Taguchi signal-to-noise ratio results.  

Table 11 
Integration levels.  

Integration Level Due Date Assignment Scheduling Delivery 

Level1 RDM SIRO DIRO 
Level2 RDM SIRO Rule-based 
Level3 Rule-based Rule-based DIRO 
Level4 Rule-based Rule-based Rule-based  

Table 12 
Performance of integration levels.  

Integration Level Raw Performance GA Performance Improvement Rate 

Level1 1011714,0 tp 555319,0 tp 45 % 
Level2 655708,0 tp 463779,0 tp 29 % 
Level3 595048,2 tp 503735,0 tp 15 % 
Level4 489319,0 tp 473841,2 tp 3 %  
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SFs concerning DDA. Within all SFs, the WSLK rule demonstrated su
periority as the DDA rule for chromosomes, consistently delivering the 
best results when utilized with the GA. To illustrate this observation, the 
outcomes of SF1 are depicted in Fig. 12. 

In the case of SF1, like the other SFs, the WSLK rule emerged as the 
DDA rule that produced the most superior result, and this superiority is 

Fig. 11. Comparison of integration levels.  

Table 13 
Integration level improvements.  

Integration Level Level1 Level2 Level3 

Level2 35 %   
Level3 41 % 9 %  
Level4 52 % 24 % 18 %  

Table 14 
Performance of delivery rules for Level1.  

Integration level Delivery rule Raw 
performance 

Improvement 
rate 

SIRO-RDM 
(1011714,0) 

Nearest Neighbor 
[2] 

667260,0 tp 34,0% 

Savings Algorithm 
[3] 

638540,0 tp 36,9% 

Sweep Algorithm 
[4] 

700956,0 tp 30,7% 

Hybrid Delivery [6] 700796,0 tp 30,7% 
Priority Algorithm 1 
[7] 

701772,0 tp 30,6% 

Priority Algorithm 2 
[8] 

696108,0 tp 31,2%  

Table 15 
SF results.  

Methods SF1 SF2 SF3 SF4 

GA 62748.4 tp 462744.4 tp 1107161.0 tp 1706792.6 tp 
ES 53160.3 tp 464487.2 tp 1144144.2 tp 1715942.0 tp 
RS 54494.1 tp 470772.0 tp 1133581.0 tp 1611301.0 tp 
HS 54346.0 tp 506922.8 tp 1133581.0 tp 1642216.0 tp 
SA 54640.1 tp 504247.2 tp 1203021.8 tp 1807164.6 tp  

Table 16 
SF4 4000 iterations.  

Methods SF4 

GA 1607052.2 tp 
ES 1715942.0 tp 
RS 1611301.0 tp 
HS 1595653.0 tp 
SA 1665873.4 tp  

Table 17 
Analysis of DDA rules on the best chromosome.  

Rules SF1 SF2 SF3 SF4 

WSLK [0] 62748.4 tp 462744.4 tp 1107161.0 tp 1706792.6 tp 
WPPW [1] 331347.6 tp 961279.3 tp 1389143.7 tp 2252548.3 tp 
WNOP [2] 318997.8 tp 864993.2 tp 1302128.7 tp 2065005.3 tp 
WTWK [3] 283177.8 tp 808833.2 tp 1259172.0 tp 1986143.2 tp  

Fig. 12. Performance of DDA rules.  

Table 18 
Analysis of scheduling rules on the best chromosome.  

Rules SF1 SF2 SF3 SF4 

WSPT [0] 62256.4 tp 466706.6 tp 1107161.0 tp 1712032.8 tp 
WSOT [1] 62256.4 tp 462744.4 tp 1107161.0 tp 1706792.6 tp 
WLOT [2] 63404.4 tp 465614.6 tp 1112453.0 tp 1713536.8 tp 
WLPT [3] 63404.4 tp 462744.4 tp 1107161.0 tp 1706792.6 tp 
WATC [4] 62256.4 tp 463800.4 tp 1107161.0 tp 1706792.6 tp 
ATC [5] 64224.4 tp 463800.4 tp 1107161.0 tp 1706792.6 tp 
MS [6] 63404.4 tp 464522.6 tp 1107161.0 tp 1712032.8 tp 
WMS [7] 63404.4 tp 464522.6 tp 1107161.0 tp 1712032.8 tp 
EDD [8] 62748.4 tp 462744.4 tp 1107161.0 tp 1706792.6 tp 
WEDD [9] 63404.4 tp 462744.4 tp 1107161.0 tp 1706792.6 tp  
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quite significant. The figure shows that the global solution achieved 
using the WSLK rule outperformed the other rules by almost five, a trend 
observed across other SFs. However, it is pertinent to note an observed 
pattern that this differential ratio tends to diminish as the number of jobs 
increases. 

Table 18 presents an analysis of the scheduling rules. In the analysis 
of the scheduling rules, no rule showed significant dominance. From 
these results, it is evident that varying rules take precedence in different 
SFs. Nevertheless, WSOT emerged as the sole rule that delivered the best 
performance across all four SFs. 

Fig. 13 shows a representation of the scheduling rules based on their 
respective SFs. Considering the objective of this study, which entails 
minimizing the total penalty score, it is reasonable to infer that the rule 
positioned closest to the center point of the radar charts exhibits supe
rior performance. 

ATC in SF1, WSPT in SF2, and WLOT in SF3 and SF4 had the worst 
results. The results of the delivery rules for the best chromosomes are 
presented in Table 19. 

The savings algorithm exhibited the best performance among the 
delivery rules across each SF. Across all simulations, the savings algo
rithm consistently outperforms the single delivery rule, with results that 
are 37 % more favorable in SF1, 51 % in SF2, 45 % in SF3, and 49 % in 

SF4. These percentages highlight that adopting a batch-delivery 
approach contributes to a superior global solution to this problem. 
The single, random, and batch delivery rules are significantly under
performed in each SF. A detailed analysis of the delivery rules is pre
sented in Fig. 14. 

Across all SFs, the best performance is achieved using the savings 
algorithm, represented by the rule number [3]. These results emphasize 
how alterations in the delivery rule of a particular chromosome can 
greatly impact overall performance. Therefore, the delivery rules have a 
greater impact on the global solution compared to the scheduling rules. 
The savings algorithm improved performance by 4.4 % in SF1, 0.3 % in 
SF2, 7.3 % in SF3, and 5.9 % in SF4 when compared to the next-best rule. 

4.1. Comparative statistical analysis of algorithm performances across 
integration levels 

To ensure the reliability of our findings, we conducted a series of 
statistical tests to validate the observed differences in performance be
tween default and genetic algorithm performance. The comparison be
tween default and GA runs was conducted using an independent two- 
sample t-test, yielding a T-Statistic of 70.37 and an extremely low p- 
value of 7.30e-42. This p-value indicates a statistically significant dif
ference between the groups, suggesting that the default algorithm and 
GA exhibit distinct characteristics. 

Subsequently, Tukey’s Honest Significant Difference test was 
employed to investigate the disparities among different integration 
levels (Level1, Level2, Level3, Level4) in terms of GA performance 
further, as presented in Table 20. The results revealed significant dif
ferences between the Level1 and Level2 groups (mean diff = -22780.51, 
p-adj = 0.0002), as well as between the Level1 and Level4 groups (mean 
diff = -22511.11, p-adj = 0.0002). However, no significant difference 
was observed between the Level1 and Level3 groups (p-adj = 0.1594). 
Furthermore, no significant differences are detected between the Level2 
and Level3 groups. 

Boxplots are utilized to visually assess the distribution of perfor
mance across various integration levels for both algorithmic perfor
mances. The analysis reveals discernible variations in performance 
across different integration levels, as demonstrated in Fig. 15. This 
graphical depiction facilitates a comprehensive understanding of the 
diverse performance characteristics exhibited by the algorithms across 
the evaluated integration levels, thereby providing valuable insights 
into their comparative efficacy and behavior. 

The comparison between the default and GA solutions yielded 
compelling insights into the efficacy of different integration levels in GA 
performance. These findings offer valuable insights for researchers and 
practitioners in optimization and algorithm design. 

5. Conclusions 

In this study, utilizing various heuristic algorithms, including GA, 
SA, ES, RS, and HS, provided valuable insights into optimizing 
manufacturing and supply chain functions. In this approach, each so
lution is represented by a chromosome. The advantages of integration 
are demonstrated by examining both the SF results and outcomes of 
various levels of integration. The evaluation encompasses the perfor
mance of the SFs, the effectiveness of the solution methods, and the 
assessment of each manufacturing and supply chain function by 
analyzing various rules thoroughly examined in isolation. 

Customers requesting incoming jobs to a manufacturer are not al
ways of equal importance. Factors such as the customer’s history with 
the company, frequency of orders, and urgency of work can impact their 
priority. This study highlighted that customer importance significantly 
influences due-date assignment, scheduling, and delivery processes. 
However, in line with just-in-time production philosophy, earliness, 
tardiness, and promised due date all carry significant weight in the 
objective function. 

Fig. 13. SF-based scheduling rule performance.  

Table 19 
Analysis of delivery rules on the best chromosome.  

Rules SF1 SF2 SF3 SF4 

Single Delivery [0] 100091,1 
tp 

946355,8 
tp 

2010327,6 
tp 

3364192,0 
tp 

Batch Delivery [1] 76839,1 tp 605332,4 
tp 

1530592,0 
tp 

2268195,6 
tp 

Nearest Neighbor 
[2] 

65621,7 tp 463915,4 
tp 

1281968,8 
tp 

1814371,0 
tp 

Savings Algorithm 
[3] 

62748,4 tp 462744,4 
tp 

1107161,0 
tp 

1706792,6 
tp 

Sweep Algorithm 
[4] 

72583,2 tp 559516,4 
tp 

1279739,0 
tp 

1968475,4 
tp 

Random Delivery 
[5] 

78584,7 tp 630550,6 
tp 

1521432,0 
tp 

2089191,4 
tp 

Hybrid Delivery [6] 65639,2 tp 526400,4 
tp 

1194931,0 
tp 

1898768,8 
tp 

Priority Algorithm 
1 [7] 

67762,8 tp 509136,4 
tp 

1266283,0 
tp 

2041739,6 
tp 

Priority Algorithm 
2 [8] 

67762,8 tp 509136,4 
tp 

1257995,0 
tp 

2024923,6 
tp  
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This study encompasses four distinct SFs with varying customer 
numbers and locations. The GA performance for Level4 is 54 % better 
than the raw performance of Level1, underscoring the evident signifi
cance of integration. Furthermore, the global solution improves as the 
level of integration increases. Even at lower levels, integrating 
manufacturing and supply chain functions yields more significant ben
efits than forgoing integration. Notably, ES proved superior on SF1, GA 
yielded superior results on SF2 and SF3, and the RS algorithm demon
strated greater efficacy on SF4. 

Concerning the assignment of due dates, the WSLK rule emerged as 
the most effective among various rules. Regarding delivery rules, the 
savings algorithm consistently produced significantly superior results 
across all SFs. Regarding scheduling rules, no single rule stood out 

Fig. 14. SF-based delivery rule performance.  

Table 20 
Tukey’s Honestly Significant Difference test results.  

group1 group2 mean diff p-adj lower upper reject 

Level1 Level2  − 22780.51  0.0002  − 36181.83  − 9379.19 True 
Level1 Level3  − 10762.18  0.1594  − 24163.50  2639.14 False 
Level1 Level4  − 22511.11  0.0002  − 35912.43  − 9109.79 True 
Level2 Level3  12018.33  0.0947  − 1382.99  25419.65 False 
Level2 Level4  269.4  0.9999  − 13131.92  13670.72 False 
Level3 Level4  − 11748.93  0.1064  − 25150.25  1652.39 False  

Fig. 15. Distribution of performance across different integration levels for both a) default algorithm and b) genetic algorithm performance.  
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remarkably, although the WSOT demonstrated greater effectiveness in 
scheduling performance. 

The findings of this study unequivocally manifest the substantial 
positive impact of integrated communication across the four critical 
functions in bolstering productivity levels and elevating customer 
satisfaction within manufacturing settings. The importance of this study 
lies in its practical demonstration of the various benefits that come from 
integration all four functions into manufacturing systems. One impor
tant aspect of this study is its capability to offer valuable insights into the 
implications of including a delivery function. The findings of the study 
have important implications for manufacturing companies, highlighting 
the opportunity for significant improvements in productivity, profit
ability, and customer satisfaction. Consequently, companies can signif
icantly fortify their competitive prowess within the global market 
landscape by integrating all four functions into their production systems. 

In this study, utilizing various heuristic algorithms, including GA, 
SA, ES, RS, and HS, provided valuable insights into optimizing 
manufacturing and supply chain functions. While these approaches 
demonstrate significant benefits and are effective for finding good so
lutions to NP-hard problems within reasonable time frames, they do not 
guarantee optimality. The solutions obtained are approximate and may 
vary from the absolute best possible solutions that could be achieved 
with exhaustive search methods, which are impractical for large-scale 
problems. As the size and complexity of the problem increase, the 
computational resources and time required to achieve satisfactory so
lutions also increase. This scalability issue may limit the applicability of 
the proposed methods to extremely large or complex problem instances. 

In addition to the positive impacts highlighted throughout the study, 
it is crucial to acknowledge certain limitations that could influence the 
applicability of the results. The study’s reliance on a deterministic 
approach and the use of a single vehicle in simulations present notable 
constraints. The deterministic nature might not fully capture the vari
ability and unpredictability inherent in real-world manufacturing en
vironments, potentially limiting the robustness of the proposed solutions 
under different operational conditions. Furthermore, each 
manufacturing and supply chain function within this integrated frame
work holds potential for further exploration through various assump
tions or combinations. This study has focused on a set configuration of 
operations and routing numbers, treating them as homogeneously as 
possible to maintain consistency. 

The primary objective of this study is to demonstrate the feasibility of 
integrating four distinct manufacturing and supply chain functions to 
achieve enhanced efficiency. The research findings provide several 
pertinent suggestions for future inquiry in this field, including the 
following:  

• Expanding process planning information includes the number of jobs 
and machines on the shop floor, operations executed, and routes 
linked to each job.  

• Stochastic treatment of job arrival times  
• Dynamic variables, such as interruptions, urgent jobs, and instances 

of machine breakdown, are incorporated into the process.  
• Inclusion of concepts such as homogeneous or heterogeneous vehicle 

fleets beyond singular vehicle use for delivery purposes.  
• Separate consideration of loading and unloading times in relevant 

delivery operations.  
• Examination of due-window interval dynamics.  
• Other terms other than the due date-related costs, such as resource 

consumption cost in scheduling, transportation cost in delivery, and 
fixed and variable delivery-related costs, can be examined and 
included in the problem.  

• Energy-efficient production and delivery can be included in the 
problem. Optimized delivery can reduce the gas emission rate during 
the delivery phase.  

• Additional optimization algorithms such as differential evolution, 
particle swarm optimization, and artificial bee colony (ABC) can be 
utilized in future studies. 
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Demir, H.İ., Cakar, T., Ipek, M., Uygun, O., & Sari, M. (2015). Process Planning and Due- 
date Assignment with ATC Dispatching where Earliness, Tardiness and Due-dates are 
Punished. Journal of Industrial and Intelligent Information, 3(3), 197–204. https://doi. 
org/10.12720/jiii.3.3.197-204. 

Demir, H. I., & Erden, C. (2020). Dynamic integrated process planning, scheduling and 
due-date assignment using ant colony optimization. Computers & Industrial 
Engineering, 149, Article 106799. https://doi.org/10.1016/j.cie.2020.106799 

Demir, H. I., Kökçam, A. H., & Erden, C. (2023). In Integrated Process planning, scheduling, 
and due-date assignment. CRC Press. https://doi.org/10.1201/9781003215295.  
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Yağmur, E., & Kesen, S. E. (2023). Bi-objective coordinated production and 
transportation scheduling problem with sustainability: Formulation and solution 
approaches. International Journal of Production Research, 61(3), 774–795. https://doi. 
org/10.1080/00207543.2021.2017054 

Yang, F., Davari, M., Wei, W., Hermans, B., & Leus, R. (2022). Scheduling a single 
parallel-batching machine with non-identical job sizes and incompatible job 
families. European Journal of Operational Research, 303(2), 602–615. https://doi.org/ 
10.1016/j.ejor.2022.03.027 

Yin, Y., Li, D., Wang, D., & Cheng, T. C. E. (2021). Single-machine serial-batch delivery 
scheduling with two competing agents and due date assignment. Annals of Operations 
Research, 298(1), 497–523. https://doi.org/10.1007/s10479-018-2839-6 

Yu, M. R., Yang, B., & Chen, Y. (2018). Dynamic integration of process planning and 
scheduling using a discrete particle swarm optimization algorithm. Advances in 
Production Engineering & Management, 13(3), 279–296. 

Yu, M., Zhang, Y., Chen, K., & Zhang, D. (2015). Integration of process planning and 
scheduling using a hybrid GA/PSO algorithm. The International Journal of Advanced 
Manufacturing Technology, 78(1), 583–592. https://doi.org/10.1007/s00170-014- 
6669-7 

Yue, Q., & Zhou, S. (2021). Due-window assignment scheduling problem with stochastic 
processing times. European Journal of Operational Research, 290(2), 453–468. 
https://doi.org/10.1016/j.ejor.2020.08.029 

Zhan, Y., & Wan, G. (2018). Vehicle routing and appointment scheduling with team 
assignment for home services. Computers & Operations Research, 100, 1–11. https:// 
doi.org/10.1016/j.cor.2018.07.006 

Zhang, C., Li, Y., Cao, J., Yang, Z., & Coelho, L. C. (2022). Exact and matheuristic 
methods for the parallel machine scheduling and location problem with delivery 
time and due date. Computers & Operations Research, 147, Article 105936. https:// 
doi.org/10.1016/j.cor.2022.105936 

Zhang, L., & Wong, T. N. (2015). An object-coding genetic algorithm for integrated 
process planning and scheduling. European Journal of Operational Research, 244(2), 
434–444. https://doi.org/10.1016/j.ejor.2015.01.032 

Zhang, R., & Wu, C. (2012). A double-layered optimisation approach for the integrated 
due date assignment and scheduling problem. International Journal of Production 
Research, 50(1), 5–22. https://doi.org/10.1080/00207543.2011.571440 

Zhang, S., & Wong, T. N. (2018). Integrated process planning and scheduling: An 
enhanced ant colony optimization heuristic with parameter tuning. Journal of 
Intelligent Manufacturing, 29(3), 585–601. https://doi.org/10.1007/s10845-014- 
1023-3 

Zhao, C.-L., & Tang, H.-Y. (2014). A note on single machine scheduling and due date 
assignment with general position-dependent processing times. International Journal 
of Production Research, 52(9), 2807–2814. https://doi.org/10.1080/ 
00207543.2014.886025 

Zhao, J., Wang, T., Pedrycz, W., & Wang, W. (2021). Granular prediction and dynamic 
scheduling based on adaptive dynamic programming for the blast furnace gas 
system. IEEE Transactions on Cybernetics, 51(4), 2201–2214. https://doi.org/ 
10.1109/TCYB.2019.2901268 

O. Canpolat et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.ejor.2022.02.017
https://doi.org/10.1016/j.ejor.2022.02.017
https://doi.org/10.1016/j.compchemeng.2014.06.015
https://doi.org/10.1016/j.ins.2014.11.036
https://doi.org/10.1080/00207543.2016.1182227
https://doi.org/10.1016/j.procs.2021.01.355
https://doi.org/10.1023/A:1008952024606
https://doi.org/10.1023/A:1008952024606
https://doi.org/10.1016/j.cor.2021.105414
http://refhub.elsevier.com/S0360-8352(24)00361-9/h0370
http://refhub.elsevier.com/S0360-8352(24)00361-9/h0370
http://refhub.elsevier.com/S0360-8352(24)00361-9/h0370
https://doi.org/10.1016/j.cie.2022.108255
https://doi.org/10.1016/j.cie.2022.108255
https://doi.org/10.1016/j.ejor.2012.11.049
https://doi.org/10.1016/j.ejor.2012.11.049
https://doi.org/10.1016/j.ijpe.2010.08.017
https://doi.org/10.1016/j.ijpe.2010.08.017
https://doi.org/10.1016/j.ins.2018.11.023
https://doi.org/10.1016/j.cjche.2014.05.011
https://doi.org/10.1007/s00500-019-04420-6
https://doi.org/10.1007/s40747-020-00184-x
https://doi.org/10.1007/s40747-020-00184-x
https://doi.org/10.1016/j.cie.2021.107649
https://doi.org/10.1080/00207543.2021.2017054
https://doi.org/10.1080/00207543.2021.2017054
https://doi.org/10.1016/j.ejor.2022.03.027
https://doi.org/10.1016/j.ejor.2022.03.027
https://doi.org/10.1007/s10479-018-2839-6
http://refhub.elsevier.com/S0360-8352(24)00361-9/h0430
http://refhub.elsevier.com/S0360-8352(24)00361-9/h0430
http://refhub.elsevier.com/S0360-8352(24)00361-9/h0430
https://doi.org/10.1007/s00170-014-6669-7
https://doi.org/10.1007/s00170-014-6669-7
https://doi.org/10.1016/j.ejor.2020.08.029
https://doi.org/10.1016/j.cor.2018.07.006
https://doi.org/10.1016/j.cor.2018.07.006
https://doi.org/10.1016/j.cor.2022.105936
https://doi.org/10.1016/j.cor.2022.105936
https://doi.org/10.1016/j.ejor.2015.01.032
https://doi.org/10.1080/00207543.2011.571440
https://doi.org/10.1007/s10845-014-1023-3
https://doi.org/10.1007/s10845-014-1023-3
https://doi.org/10.1080/00207543.2014.886025
https://doi.org/10.1080/00207543.2014.886025
https://doi.org/10.1109/TCYB.2019.2901268
https://doi.org/10.1109/TCYB.2019.2901268

	Meta-heuristic algorithms for integrating manufacturing and supply chain functions
	1 Introduction
	2 Related works
	3 Materials and methods
	3.1 Problem definition
	3.2 Mixed-integer linear programming model
	3.3 Problem structure and specifications
	3.4 Performance criterion
	3.5 Meta-heuristic algorithms
	3.6 Solution representation and decoding
	3.7 Taguchi design of experiments

	4 Experimental results and discussions
	4.1 Comparative statistical analysis of algorithm performances across integration levels

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


