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A B S T R A C T   

The sit-to-stand (STS) movement is fundamental in daily activities, involving coordinated motion of the lower 
extremities and trunk, which leads to the generation of joint moments based on joint angles and limb properties. 
Traditional methods for determining joint moments often involve sensors or complex mathematical approaches, 
posing limitations in terms of movement restrictions or expertise requirements. Machine learning (ML) algo
rithms have emerged as promising tools for joint moment estimation, but the challenge lies in efficiently 
selecting relevant features from diverse datasets, especially in clinical research settings. This study aims to 
address this challenge by leveraging metaheuristic optimization algorithms to predict joint moments during STS 
using minimal input data. Motion analysis data from 20 participants with varied mass and inertia properties are 
utilized, and joint angles are computed alongside simulations of joint moments. Feature selection is performed 
using the Manta Ray Foraging Optimization (MRFO), Marine Predators Algorithm (MPA), and Equilibrium 
Optimizer (EO) algorithms. Subsequently, Decision Tree Regression (DTR), Random Forest Regression (RFR), 
Extra Tree Regression (ETR), and eXtreme Gradient Boosting Regression (XGBoost Regression) ML algorithms are 
deployed for joint moment prediction. The results reveal EO-ETR as the most effective algorithm for ankle, knee, 
and neck joint moment prediction, while MPA-ETR exhibits superior performance for hip joint prediction. This 
approach demonstrates potential for enhancing accuracy in joint moment estimation with minimal feature input, 
offering implications for biomechanical research and clinical applications.   

1. Introduction 

Sit-to-stand (STS) is one of the most fundamental activities of daily 
living (ADL). This activity, repeated frequently throughout the day, in
volves coordinated movement of the lower and upper extremities [1]. 
The muscles of the lower extremities (ankle, knee, hip) facilitate body 
mobility, while the muscles of the upper extremities contribute to trunk 
stability. Contraction of the muscles around the ankle, knee, and hip 
generates joint moments that drive the STS movement [2,3]. Joint 
moments occurring during STS are crucial for various applications, such 
as identifying movement disorders in children [4], assessing balance 
disorders in adults [5], examining the impact of weight gain on joints 
[6], designing prosthetics and orthotics [7], and planning rehabilitation 
programs [8]. 

Classical mechanics-based mathematical methods are commonly 

employed for calculating joint moments in human limbs [9]. Further
more, computer simulations aid in determining both joint moments and 
the muscle forces associated with these moments [10,11]. Specialized 
software packages like OpenSim [12] and AnyBody [13] are also utilized 
for joint moment analysis. These applications employ principles from 
classical mechanics to analyze the dynamics of joints and muscles. Given 
the complexity involved, various methods including mathematical 
techniques, computer simulations, and specialized software are neces
sary for accurately determining joint moments. 

Recently, there has been increasing interest in employing artificial 
intelligence (AI) approaches to estimate joint moments. Machine 
learning (ML) algorithms, which have demonstrated successful appli
cations across various domains [14–17], have also proven effective in 
accurately predicting joint moments and muscle forces during move
ments such as sit-to-stand (STS), walking, running, and sports exercises. 
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Several studies have explored machine learning (ML)-based estimation 
of joint moments, utilizing diverse input data or features for training 
these algorithms. Importantly, incorporating a large amount of input 
data enhances the predictive accuracy of these algorithms [18]. How
ever, setting up experiments with a substantial number of inputs is 
labor-intensive, posing a significant drawback for clinical studies across 
different disciplines. Electromyography (EMG) data is commonly used 
in training ML algorithms. For instance, Zhang et al. [19] successfully 
predicted ankle moments using an artificial neural network (ANN) 
model with four input data points derived from EMG measurements of 
three lower extremity muscles. EMG measurements involve intricate 
processes such as electrode placement, managing individual differences, 
and precise calibration [20]. Other studies, as listed in Table 1, have 
employed prediction models integrating multiple inputs including 
sensor data, motion analysis data, and ground reaction forces. Joint 
moments are of considerable interest to interdisciplinary researchers. 
Therefore, developing ML algorithms that accurately predict joint mo
ments while minimizing the number of required input variables and 
simplifying experimental setups is crucial. The primary goal is to iden
tify algorithms capable of achieving high prediction accuracy using a 
limited set of input data sources. However, a significant challenge in 
standard machine learning (ML) is the curse of dimensionality. There is a 
pressing need to develop algorithms that require simpler experimental 
setups and utilize fewer input data points for accurately estimating joint 
moments during human movements. 

In the literature, meta-heuristic optimization algorithms have proven 
to be successful in overcoming the curse of dimensionality [26–28]. 
These algorithms typically start with a set of randomly generated solu
tions and use various search agents to identify the best solution. 
Extensive research has shown that meta-heuristic algorithms can effec
tively integrate with feature selection techniques. However, it’s impor
tant to note that no single optimization algorithm can universally 
outperform all others in every optimization problem. Therefore, ongoing 
research continues to explore and improve feature selection 
methodologies. 

In this study, we selected three meta-heuristic algorithms: MRFO, 
MPA, and EO, known for their effectiveness in solving optimization 
problems. The MRFO algorithm is noted for its strong merit-seeking 
capabilities and rapid convergence [29]. EO excels in both exploration 
and exploitation of solutions, demonstrating excellent convergence 
speed even for high-dimensional problems [30]. MPA, on the other 
hand, is appreciated for its simplicity, adjustable parameters, and flex
ible implementation [26]. Given these positive attributes, we chose to 
use MRFO, MPA, and EO in this study to address the feature selection 

problem effectively. 
The aim of this study is to estimate the joint moments occurring in 

the lower extremity and neck joints during STS movement using Deci
sion Tree Regression (DTR), Random Forest Regression (RFR), Extra 
Tree Regression (ETR), and eXtreme Gradient Boosting Regression 
(XGBoost Regression) ML algorithms with high accuracy and minimum 
number of features. The original dataset based on motion analysis and 
body segment inertial parameters was examined with Manta Ray 
Foraging Optimization (MRFO), Marine Predators Algorithm (MPA), 
and Equilibrium Optimizer (EO) optimization algorithms and the 
number of input data was reduced. Thus, joint moments were estimated 
with high forecasting accuracy using a small number of input data. The 
models were evaluated in terms of Mean Absolute Error (MAE), Mean 
Square Error (MSE), Root Mean Square Error (RMSE), correlation co
efficient (R2), and Mean Absolute Percentage Error (MAPE). The con
tributions of our study to the literature can be summarized as follows: 

Table 1 
A summary of the previous ML studies on joint moment estimation. ANN; arti
ficial neural network, DL; deep learning, EMG; electromyography, FNN; feed
forward neural network, IMU; Inertial Measurement Unit, LSTM; Long Short- 
Term Memory, WNN; Wavelet neural network.  

Ref. Movement Algorithm Moment 
calculation 

Number of 
inputs/ 
features 

[18] STS LSTM Computer 
simulation 

7–19 

[21] STS ANN Computer 
simulation 

22 

[22] Treadmill walking, 
stair ascent/descent 

DL IMU sensor 102 

[19] Walking and ankle 
isokinetic dorsi/ 
plantar flexion 

ANN OpenSim, 
EMG 

4 

[23] Treadmill walking FNN Rigid body 
dynamics 

30 

[24] Treadmill running ANN, Elastic 
net regression 

OpenSim, 
EMG 

14 

[25] Walking WNN OpenSim, 
EMG 

18  

Fig. 1. Proposed architecture.  
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• Meta-heuristic optimization algorithms were employed to achieve 
highly accurate estimates of joint moments using a limited amount of 
input data. 

• The study successfully estimated the neck joint moment, which ex
hibits a distinct motion pattern compared to the ankle, knee, and hip 
joints.  

• The study achieved highly accurate estimation of joint moments for 
participants across various BMI categories. 

In the remainder of the paper, the methods section will detail the 
dataset used, feature selection utilizing meta-heuristic optimization al
gorithms, and the prediction of joint moments using machine learning 
(ML) algorithms. The results section will present the performance 
evaluation of these ML algorithms and discuss the outcomes regarding 
prediction success. In the discussion section, comparisons with previous 
studies will be made, the findings of our study will be critically evalu
ated, and potential applications will be discussed. Finally, the conclu
sion section will provide a comprehensive summary, evaluate the 
overall findings, and emphasize potential avenues for future research. 

2. Materials and methods 

The proposed system architecture for predicting joint moments using 
sit-to-stand (STS) motion and biomechanical data through feature 

selection is illustrated in Fig. 1. Initially, experimental data undergoes 
analysis and normalization. Subsequently, meta-heuristic optimization 
algorithms are employed for feature selection to identify relevant fea
tures. Finally, the selected features are inputted into regression algo
rithms. The primary objective of the proposed system is to develop an 
effective and precise feature selection method that ensures the accuracy 
of joint moment prediction. 

2.1. Preparation of data set 

The dataset utilized in this article is adapted from Cilli et al. (2021) 
[31]. It comprises motion analysis results from STS movements, calcu
lations of body segment inertial parameters, and joint moments derived 
from MATLAB Multibody simulations. 

2.1.1. Experimental setup of the STS 
To determine the angular displacement of the joints during STS 

movements, a motion analysis was conducted involving 20 participants 
(5F/15 M) categorized into four different body mass index (BMI) groups 
(underweight, normal, overweight, and obese). This approach ensured 
the dataset captured a range of physical characteristics relevant to the 
movement. During the movement analysis, passive markers were placed 
on anatomical landmarks including the head, shoulders, hips, knees, 
ankles, and feet of the subjects. Participants initiated the STS motion 

Fig. 2. The musculoskeletal model of the STS. a; A four DOF mechanical model, b; MATLAB Multibody diagram of the STS, c; Simulation views. 1; ankle, 2; knee, 3; 
hip, 4; neck; R; revolute joint, T; joint torque, [21]. 

Table 2 
A sample of dataset for ankle joint.  

Sub. No. Inputs Outputs 

Time (s) Angle (deg.) Length (cm) Mass (kg) Moment of inertia (kg⋅m2) Joint moment (Nm) 

Ixx Iyy Izz 

1 1.023 115.7 8.8 2.4553 0.045554 0.045554 0.003902 3.31876 
2 1.056 124 7.2 3.6292 0.110263 0.110263 0.008004 ¡9.81424 
2 1.089 124.3 7.2 3.6292 0.110263 0.110263 0.008004 ¡11.36865 
3 1.122 113.4 7.5 3.4142 0.059902 0.059902 0.005779 ¡23.22504 
3 1.155 112.7 7.5 3.4142 0.059902 0.059902 0.005779 ¡20.26088 
3 1.188 112 7.5 3.4142 0.059902 0.059902 0.005779 ¡17.82811 
4 1.221 121.6 8.4 3.3067 0.057939 0.057939 0.006651 11.57902 
4 1.254 121.3 8.4 3.3067 0.057939 0.057939 0.006651 12.84966 
4 1.287 120.6 8.4 3.3067 0.057939 0.057939 0.006651 13.04558 
4 1.32 119.9 8.4 3.3067 0.057939 0.057939 0.006651 12.44536  
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from a standing position, sat on a chair without back support, and then 
returned to the initial standing position. Throughout this process, digital 
camera footage (30 fps) captured the movements in the sagittal plane. 
The camera images were subsequently analyzed using Tracker [32], a 
video analysis and modeling tool software. This allowed for the calcu
lation of angular displacements for the neck, hip, knee, and ankle joints 
based on the motion of the markers. 

2.1.2. Calculation of the body inertial parameters and joint moments 
Inertial parameters of the limbs such as length, mass, moment of 

inertia (Ixx, Iyy, Izz), center of mass were determined by measurements 
and calculations according to the Yeadon protocol [33]. A link-segment 
model was constructed using MATLAB Multibody tools to calculate joint 
moments during the STS movement. This model includes segments 
representing the calf, thigh, torso, and head, along with joints for the 
neck, hip, knee, and ankle. The link-segment model is structured as an 
open chain mechanical system with a total of 4 limbs and 4 degrees of 
freedom (DOF). Given the symmetrical movement of the entire body 
during STS, the link-segment model was designed to represent half of the 
body. Fig. 2 illustrates the link-segment model and MATLAB block di
agrams used in the analysis. 

2.1.3. Structure of the data 
The dataset encompasses diverse measurements including motion 

analysis, body inertial parameters, and joint moments. Table 2 illus
trates sample measurements specifically for the ankle joint. Similar data 
formats are applied to the knee, hip, and neck joints. The dataset 
maintains consistency across subjects and time intervals. For each joint, 
the variables recorded include time, angle, and joint moment. Mean
while, parameters such as length, mass, and moment of inertia remain 
constant throughout the dataset. This structured approach ensures uni
formity and facilitates comparative analysis across different joints and 
participants. For each joint there are seven input data (time, angle, 
length, mass, Ixx, Iyy, Izz) and one output data (joint moment). Taking all 
joints into account, the complete dataset contains 25 inputs and 4 out
puts respectively. Positive or negative values assigned to the joint 
moment indicate its direction relative to the joint. 

The accuracy of the models is adversely affected by imbalance in the 
interquartile range. A crucial pre-processing step for a dataset with a 
significant interquartile range and distribution is normalization, espe
cially when utilizing different units for quantification. Among normal
ization methods, in this study, min-max normalization is used to map the 
range to [0, 1]. Accurate forecasting is made possible by min-max 
normalization, which preserves the relation between data instances. 
Min-max normalization is calculated as follows: 

xi normalized=
xi − xmin

xmax − xmin

(1)  

where xi represents the ith data instance, xmin represents the minimum- 
valued data instance and xmax represents the maximum-valued data 
instance. xi normalized is in the range of [0,1] and the normalized form of xi. 

2.2. Meta-heuristic algorithms 

2.2.1. Manta ray foraging optimization (MRFO) 
Zhao et al. developed the MRFO algorithm inspired by the behavior 

of the mantle ray [34]. The MRFO algorithm is based on the foraging 
behavior of mantas, including chain foraging, cyclone foraging and so
mersault foraging [35]. These foraging methods are used to update so
lutions during optimization. 

The following is a description of the mathematical forms of the 
processes: 

Chain foraging: The manta ray assesses the location of the plankton 
during the aquatic chain search behavior. The manta ray moves towards 
the better positioned plankton. In other words, the plankton with the 
highest density provides the best solution. Chain foraging method is 

modeled by equation (1). In Equation (2), xd
i is the position of the manta 

ray, r is a random value in the range [0, 1], α calculated with 2.r.
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|log(r)|

√
is the weight coefficient, and xd

best(t) is the highest represents 
plankton with density [30]. 

xd
i (t+ 1)=

{
xd

i (t) + r.
(
xd

best(t) − xd
i (t)

)
+ α.

(
xd

best(t) − xd
i (t)

)
i = 1

xd
i (t) + r.

(
xd

i− 1(t) − xd
i (t)

)
+ α.

(
xd

best(t) − xd
i (t)

)
i = 2,…,N

(2) 

Cyclone foraging: The manta rays create a lengthy chain during this 
phase of foraging, and each particle follows a spiral path. The best 
particle and its front particle are used to update the particle’s position. 
Cyclone foraging method is modeled by Equation (2). In Equation (3), r1 

represents a random value in the range [0, 1], β, calculated with 

2er1
T− t+1

T sin(2πr1) represents the weight coefficient, and T represents the 
maximum number of iterations [34]. 

xd
i (t+1)=

{
xd

best(t) + r.
(
xd

best(t) − xd
i (t)

)
+ β.

(
xd

best(t) − xd
i (t)

)
i = 1

xd
best(t) + r.

(
xd

i− 1(t) − xd
i (t)

)
+ β.

(
xd

best(t) − xd
i (t)

)
i = 2,…,N

(3) 

To enhance exploration, the spinning search behavior is imple
mented. As a result, a new position is given in the search space that 
influences the exploration activity. This causes a thorough global search, 
which is shown in Equation (4). In Equation (5), xd

rand gives the random 
position relative to Lbd lower bound and Ubd upper bound. 

xd
i (t+1)=

{
xd

rand(t)+ r.
(
xd

rand(t) − xd
i (t)

)
+ β.

(
xd

rand(t) − xd
i (t)

)
i= 1

xd
rand(t)+ r.

(
xd

i− 1(t) − xd
i (t)

)
+ β.

(
xd

rand(t) − xd
i (t)

)
i= 2,…,N

(4)  

xd
rand = Lbd + r.

(
Lbd − Ubd

)
(5) 

Somersault foraging: The exploitation phase is modeled by the 
somersault foraging technique. During this stage, Equation (6) is used to 
update the particle positions as the particles swim to and around the 
meal. In the equation, r2 and r3 represent random numbers in the range 
[0,1], and S represents somersault factor (equal to 2) [35,36]. 

xd
i (t+ 1)= xd

i (t)+ S.
(
r2xd

best(t) − r3xd
i (t)

)
, i= 1,….,N (6)  

2.2.2. Marine Predators Algorithm (MPA) 
MPA was conceived by Faramarzi et al., drawing inspiration from the 

dynamic interplay observed in the predator-prey social dynamics of 
marine ecosystems [37]. MPA is a heuristic optimization algorithm 
crafted around the encounter rate observed between marine predators 
and their prey [38]. The initial solution of MPA begins with a random
ized distribution across the search space. Building upon MPA, the al
gorithm’s phase transitions are governed by the speed ratio between the 
prey and the predator [39]. Marine predators undergo three phases to 
complete their step size while capturing their prey [40]. The primary 
characteristic of the initial phase of the algorithm is its notable high 
speed, whereas in subsequent phases, emphasis is placed on unity and 
weaker ratios. 

The starting solution is established through the random and uni
formly distributed search space of MPA. The number of predators is n, 
the iterations are represented by m, the optimization parameter size is d, 
and Prey signifies the initial position of the prey. Xmax and Xmin in 
Equation (7) are the maximum and minimum values, and rand is a 
random vector in the range [0,1]. 

X0 =Xmin + rand(Xmax − Xmin) (7) 

In this section, the Prey matrix, containing the initial population’s 
positions, combines with the Elite matrix showcasing the best fitness 
function. Each stage is outlined as follows. 

E. Ekinci et al.                                                                                                                                                                                                                                   



Computers in Biology and Medicine 178 (2024) 108812

5

Since Prey has high speed in Phase 1, the Predator’s movement must 
be stopped. This process is executed for only a third of the total itera
tions. Prey’s behavior is determined by Brownian motion. The matrices 
used by Prey are updated with Equation (9). P = 0.5 in Equations (8) and 
(9), R is defined as uniformly distributed random numbers between [0, 1]
and RB is defined as a vector comprising random numbers generated 
from the normal distribution resembling Brownian motion. 

stepi
̅̅→

= RB
̅→⨂

(
Elitei
̅̅→

−
(

RB
̅→ ⨂ Preyi

̅̅̅→
))

(8)  

Preyi
̅̅̅→

=Preyi
̅̅̅→

+
(

P.R→ ⨂ stepi
̅̅→

)
(9) 

During Phase 2, both Prey and Predator advance at equal speeds, 
encompassing the latter two-thirds of the algorithm. Here, they employ 
distinct movement strategies: Predator utilizes Brownian motion, while 
Prey employs Levy motion. Specifically, Prey undergoes multiplication 
by a vector constituted of random numbers generated from the normal 
distribution of Levy’s motion (RL). The movements of the initial half of 
the population are then updated in accordance with Equations (10) and 
(11). 

stepi
̅̅→

= RL
̅→⨂

(
Elitei
̅̅→

−
(

RL
̅→ ⨂Preyi

̅̅̅→
))

(10)  

Preyi
̅̅̅→

=Preyi
̅̅̅→

+
(

P.R→ ⨂ stepi
̅̅→

)
(11) 

The remaining half of the population is updated based on Equations 
(12) and (13). The Elite matrix undergoes multiplication by RB. Here, CF 
serves as an adaptive parameter regulating the step size for Predator 
movement. 

stepi
̅̅→

= RB
̅→ ⨂

((
RB
̅→ ⨂ Elitei

̅̅→))
(12)  

Preyi
̅̅̅→

= Eliti
̅̅→

+
(
P. CF ⨂ stepi

̅̅→)
(13)  

CF= [1 − (Iter./Max.Iter)](2.Iter./Max.Iter.) (14) 

During Phase 3, the Prey is presumed to move at a slower pace 
compared to the Predator, employing Levy movement exclusively for the 
remainder of the iteration. At this juncture, the Elite matrix undergoes 
multiplication by RL. The Prey matrix is updated utilizing Equation (16). 

stepi
̅̅→

= RL
̅→⨂

((
RL
̅→⨂Elitei

̅̅→)
− Preyi

̅̅̅→
)

(15)  

Preyi
̅̅̅→

=Preyi
̅̅̅→

+
(

P.CF ⨂ Preyi
̅̅̅→

)
(16)  

In MPA, following each iteration, the Elite matrix is substituted with the 
best solutions. Furthermore, the solution achieved upon reaching the 
maximum number of iterations or meeting the algorithm’s stopping 
criterion is regarded as the final solution. 

2.2.3. Equilibrium Optimizer (EO) 
It is a physics-based algorithm created by Faramarzi et al. by 

modeling the dynamic mass balance mechanism operating on the EO 
control volume [41]. According to the method, each particle represents 
the concentration in the control volume at a particular instant, and as 
time goes on, the concentration converges toward the concentration at 
equilibrium [42]. 

The mathematical forms of the processes are described below: 
Initialization: In the EO algorithm, the values of individuals in the 

optimization process search space are determined according to the 
equation given in Equation (17). Throughout the process, every particle 
updates its focus based on the best solutions, referred to as equilibrium 
candidates. Cinitial

i is the initial concentration vector value of the particle, 
Cmin and Cmax are the minimum and maximum values for the dimensions, 
n is the particle number of the population, and rand is random numbers 

in the range [0,1]. 

Cinitial
i =Cmin + randi(Cmax − Cmin) i=1,2,…, n (17) 

Equilibrium pool and candidates: The objective of the EO algo
rithm is to seek equilibrium within the system during its operation. 
Therefore, the best four particles and their concentrations are selected 
from the candidate solutions in the algorithm. The fifth equilibrium 
particle is derived by calculating the arithmetic mean of the chosen 
particles. The vectors of the balance pool are created using Equation 
(18). 

C→eq.pool =

{

C→eq(1), C→eq(2), C→eq(3), C→eq(4), C→eq(ave)

}

C→(ave) =
C→eq(1) + C→eq(2) + C→eq(3) + C→eq(4)

4

(18) 

Update candidate solutions: The EO algorithm comprises two 
phases: exploration and exploitation. During the exploration phase, the 
algorithm utilizes the top four candidate solution values. The exploita
tion phase’s effectiveness is bolstered by the average value derived from 
these four computed candidates. 

The equilibrium between these two phases, as outlined in Equation 
(19), is attained through the incorporation of an exponential factor, F. It 
is a random vector between λ and [0, 1], the t value decreases as the 
number of iterations increases. iter and maxiter depict the present itera
tion count and the maximum iteration limit, respectively, and a2 rep
resents the exploration ability constant. In this context, as the value of a2 
increases, the exploration capability becomes more pronounced, 
consequently leading to a decrease in exploitation capability. At value 
a1, a2 is the opposite of the variable’s situation. The larger the value of 
a1, the higher its impact on the exploitation phase. On the contrary, in 
the discovery phase, its effect is less. 

F = a1sign(r − 0.5)
[
e− λt − 1

]

t =
(

1 −
iter

max iter

)

(

a2
iter

max iter

)
(19) 

The impact of the production rate (G) plays a significant role in the 
exploitation stage of the EO algorithm. This rate is described by Equa
tion (20). G0 represents the initial value, r1 and r2 a number that varies 
randomly between [0,1], GCP denotes the control parameter governing 
the production rate, while GP signifies the actual production rate uti
lized in the status update. 

G = G0F

G0
̅→

= GCP̅̅̅→ (
Geq
̅→)

− λC

GCP̅̅̅→
=

{
0.5r1 r2 ≥ GP

0 r2 ≤ GP

(20) 

Finally, the conditions of the particles are described using the 
comprehensive update principle outlined in Equation (21). C and Ceq 

refer to the present particle and the equilibrium candidate solution. 

C=Ceq +
(
C − Ceq

)
F +

G
λV

(1 − F) (21)  

2.3. Classification algorithms 

2.3.1. Decision Tree Regression (DTR) 
Decision trees (DTs) are useful for understanding the relationship 

between input features and the target variable because they are simple 
to understand and visualize. They can capture complex nonlinear in
teractions between input variables and the target variable effectively. 
The data from the training set is recursively partitioned, and several 
splits are performed on the data to create a DT model [43]. The 
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algorithm starts at the root node of the tree and proceeds down the tree 
by following splitting decisions based on the input feature values until it 
reaches a leaf node to make predictions for new inputs. The prediction is 
then made using the numerical value assigned to that leaf node. 
Recursive splitting continues until a stopping criterion is met, such as 
limiting the depth of the tree, having a minimum number of data points 
at a leaf node, or reaching a certain number of nodes. When a stopping 
criterion is met, the algorithm assigns a numerical value to the leaf node 
based on the average (or another statistic like median) of the target 
variable’s data points in that node. This assigned value serves as the 
prediction for any additional data points that enter that leaf node. The 
algorithm first selects the dataset characteristic that best divides the data 
into two subsets. The splitting decision is based on minimizing the 
variance of the target variable within each subgroup. 

2.3.2. Random forest regression (RFR) 
Due to its superior performance, simplicity of use, and low 

computing cost, random forest regression (RFR) has gained a lot of 
popularity in recent years. It is a Breiman-created ensemble learning 
method that is based on the combination of several regression trees [44]. 
Every decision tree in the random forest regression (RFR) ensemble is 
trained using a different random subset of the training data, which helps 
mitigate overfitting [45]. A random sample (with replacement) is drawn 
from the training set for each tree in the ensemble, a process known as 
bootstrapping. Consequently, each tree is trained on a slightly different 
subset of the data. The training process involves a series of threshold 
tests where randomly selected features are compared against randomly 
chosen thresholds to partition the data into two branches at each node. 
This iterative splitting continues until the leaf nodes, or terminal nodes, 
of the tree contain just one or a predetermined number of data points. 
Each training data point at the leaf nodes has a corresponding output 
value, which are aggregated to determine the final value assigned to 
each leaf. Once a tree is constructed, a test data point follows a specific 
path through the tree based on the threshold tests until it reaches a leaf 
node that outputs the predicted value corresponding to that data point. 
The remaining training set, not included in the bootstrap samples for a 
given tree, can serve as a validation set. The tree’s performance on this 
validation set is evaluated using regression model metrics to determine 
its effectiveness. The training process continues until the forest reaches 
the predetermined number of regression trees specified by the user. The 
ensemble of regression values produced by the forest can then be used to 
calculate the final regression value, typically by averaging (or occa
sionally using the median) of the individual tree predictions. 

2.3.3. Extra Tree Regression (ETR) 
ETR devised by Geurts et al. [46], is an ensemble learning model 

built on extensive decision trees and originally derived from the Random 
Forest (RF). Unlike RF, in ETR, nodes of decision tree are split randomly 
into two with simpler and efficient way. Moreover, due to its high 
unpredictability, to reduce the variance and solves the issue of 
over-fitting ETR makes use of all the data points. 

ETR algorithm constructs multiple decision trees similar to Random 
Forests but introduces additional randomness. Unlike Random Forests, 
Extra Trees randomly selects a subset of features and then chooses the 
best split from those features, rather than selecting the best split for each 
node in a tree. This added randomness helps reduce the model’s 
variance. 

Similar to Random Forests, Extra Trees also utilizes bootstrap sam
pling for each tree in the ensemble. This involves randomly selecting 
subsets of the training data with replacement to train each individual 
tree. This further enhances the diversity among the trees in the 
ensemble. 

During inference, each tree in the ensemble provides a prediction. 
The final prediction for regression tasks is typically computed as the 
average of these individual tree predictions. This ensemble averaging 
technique helps mitigate overfitting and improves the model’s ability to 

generalize to new data. 

2.3.4. eXtreme gradient boosting (XGBoost) regression 
Based on the gradient boosting architecture, XGBoost generates 

weak learners, typically shallow decision trees, that focus on correcting 
the errors of prior models to build a robust predictive model [47]. This 
sequential learning process effectively produces an accurate and precise 
regression model, simultaneously reducing both bias and variance. 

XGBoost enhances its loss function by integrating regularization 
terms with a regression loss (such as mean squared error for regression 
tasks). This approach penalizes complex models while rewarding those 
that generalize well, thereby guiding the learning process effectively. 

Moreover, XGBoost provides a feature importance metric that helps 
identify the input characteristics most influential in making regression 
predictions. This metric is valuable for feature selection and gaining 
insights into how different variables impact the target variable. 

To avoid overfitting, XGBoost uses regularization terms such L1 
(Lasso) and L2 (Ridge) regularization. Using hyperparameters, regula
rization’s strength of model can be regulated. 

XGBoost is made with efficiency and speed in mind. It is appropriate 
for huge datasets because it can benefit from distributed computing and 
parallel processing. 

3. Results and discussion 

The primary goal of experimental study is to develop an efficient 
feature selection technique that accurately forecasts joint moments. 

The experiments were performed on Google Colab with the following 
system setup: a GPU Tesla K80 featuring 12 GB of GDDR5 VRAM, 
alongside an Intel Xeon Processor equipped with two 2.20-GHz cores 
and 13 GB of RAM. For the MRFO, EO, and MPA algorithms, a popu
lation size of 30 and 100 iterations were selected. Regression algorithms 
were implemented using the PyCaret1 library. 

An important factor in forecasting the final value needed to imple
ment the RFR, ETR and XGBoost regression models is the number of 
trees [48]. For the forecasting, a total of 100 trees were chosen for each 
of them. 

3.1. Performance metrics 

To see the effect of feature selection algorithms on the forecasting 
performance we use MAE, MSE, RMSE, R2, MAPE. MAE is the average of 
the difference between actual and the predicted value of joint moments. 
While MSE is the average of the square of the difference between actual 
and the predicted value of joint moments, RMSE is square root of MSE. 
R2 assesses how close the actual values of joint moments are to the fitted 
regression line. MAPE is the average of the absolute percentage errors of 
the actual and the predicted value of joint moments. 

MAE=
1
n
∑n

i=1
|yi − ŷi| (22)  

MSE=
1
n
∑n

i=1
(yi − ŷi)

2 (23)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(24)  

R2 =1 −
∑n

i=1

(yi − ŷi)
2

(yi − y)2 (25)  

1 https://pycaret.org/. 
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MAPE=
1
n
∑n

i=1
(|yi − ŷi| / yi) ∗ 100 (26) 

In the equations above, the expected value, the predicted value, and 
the mean of the joint moments are represented by yi, ŷi and y, respec
tively; n is the number of observations in the test set. R2 is anticipated to 
be high, whereas MAE, MSE, MAPE, and RMSE are anticipated to be low. 
Our findings indicate that the MAE is the most accurate means of 
determining average error magnitude. 

3.2. Evaluation of the results 

The experimental results, as depicted in Table 3 shows the minimum 
(min), mean and standard deviation (std) values obtained by applying 
metaheuristic algorithms to datasets and alongside the features selected 
based on the minimum criterion. 

The raw dataset consists of 25 features. Analysis of meta-heuristic 
algorithm outcomes, as presented in Table 3, indicates that the num
ber of selected features ranges from a minimum of 2 to a maximum of 4. 
Since joint moments vary over time, it is expected that the time feature is 
included in all algorithms. Other selected features across algorithms 
include mass, height, and moment of inertia, which vary depending on 
the specific algorithm. Upon reviewing the fitness function values, it is 

clear that the EO emerges as the most effective algorithm for predicting 
knee, hip, and neck joint moments. Conversely, the MPA stands out as 
the top performer for predicting ankle joint moments. The choice of 
selected features, in addition to the fitness function, plays a crucial role 
in predicting joint moments. For ankle, knee, and neck joint moment 
predictions, the EO algorithm is preferred due to its high prediction 
success and its potential to create a more suitable experimental setup. 
Similarly, the MPA algorithm is recommended for hip joint moment 
estimation. The convergence speed of feature selection algorithms is 
compared in Fig. 3 for each dataset. 

From Fig. 3, it can be concluded that while MPA converges much 
faster than MRFO and EO for ankle, knee and neck dataset, EO converges 
much faster than MRFO and MPA for hip dataset. 

The objective of employing feature selection methods is to achieve 
model performance comparable to using all features while using a 
reduced set of features. To illustrate this, predictions were generated 
using the original feature set and the feature sets obtained after con
ducting feature selection. The results are presented in Table 4. 

Using the evaluation metrics described in the previous section, the 
feature sets obtained with the recommended feature selection algo
rithms - MRFO, MPA, and EO - were compared against the original 
feature set. The best-performing regression models for each combination 
of algorithm and feature selection method are highlighted in Table 4. 
Across all datasets, ETR consistently outperforms DTR, RFR, and 
XGBoost Regression among the four regression models. The use of 
feature selection methods offers the advantage of achieving model 
performance comparable to using all features while employing fewer 
features. For instance, MRFO optimizes the performance of all four al
gorithms with 3 features in the ankle dataset, while MPA optimizes DTR 
and RFR with only 2 features in the knee dataset. In contrast, for the hip 
dataset, MPA optimizes all algorithms with 3 features, and for the neck 
dataset, both MPA and EO optimize performance using four features. 
Examining the findings presented in Table 4 reveals that optimizing the 
dataset with meta-heuristic algorithms enhances the accuracy of 
moment estimation across all joints. 

For a more comprehensive comparison between the original feature 
set and the selected feature sets, Fig. 4 presents the average prediction 
errors of the best models for each dataset. The results indicate that 
models constructed using selected features exhibit better data fitting 
capabilities. Overall, when considering various datasets, feature 

Table 3 
Outcomes of meta-heuristic algorithms applied to datasets.  

Dataset Algorithm Min Mean Std Selected Features 

Ankle MRFO 0.033 0.045 0.008 Time, Knee Mass, Hip Ixx 
MPA 0.025 0.043 0.008 Time, Neck Height 
EO 0.028 0.043 0.010 Time, Foot Height, Foot Iyy, 

Hip Izz 
Knee MRFO 0.015 0.027 0.005 Time, Foot Height, Hip Iyy 

MPA 0.015 0.027 0.005 Time, Neck Height 
EO 0.013 0.025 0.005 Time, Knee Height, Hip Izz 

Hip MRFO 0.019 0.034 0.008 Time, Knee Height 
MPA 0.022 0.033 0.007 Time, Foot Height, Hip Iyy 
EO 0.015 0.033 0.007 Time, Knee Height 

Neck MRFO 0.029 0.041 0.006 Time, Knee Height 
MPA 0.024 0.043 0.010 Time, Foot Height, Foot Iyy, 

Hip Ixx 
EO 0.024 0.040 0.008 Time, Foot Height, Foot Ixx, 

Hip Iyy  

Fig. 3. Convergence graph for (a) ankle dataset (b) knee dataset (c) hip dataset (d) neck dataset.  
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selection algorithms, and regression models used, 64 % of the models 
constructed with feature selection demonstrate higher success and bet
ter fit compared to those built with the original feature set. Furthermore, 
even with a reduced number of features, the remaining models do not 
show a significant increase in prediction error. 

Table 5 provides a comparison between the results obtained in this 

study and those from previous research utilizing the same dataset. While 
Serbest et al. [21] achieved notably high predictive accuracy across all 
joints, their use of 22 input features may be perceived as a drawback. In 
contrast, our study, despite employing fewer input features, demon
strates comparable levels of predictive success to the study by Mansour 
et al. [18]. According to Tables 5 and it is seen that the proposed EO-ETR 

Table 4 
Performance evaluation for different feature set and 3 outputs (ankle, knee, hip and neck) with ML algorithms. DTR; Decision Tree Regression, RFR: Random Forest 
Regression, ETR; Extra Tree Regression, XGBoost Regression; eXtreme Gradient Boosting Regression, MRFO; Manta Ray Foraging Optimization, MPA; Marine 
Predators Algorithm, EO; Equilibrium Optimizer.  

Dataset Algorithm Feature Set MAE MSE RMSE R2 MAPE 

Ankle DTR Original 0.0291 0.0029 0.0533 0.9095 0.0749 
MRFO 0.0189 0.0012 0.0338 0.9616 0.0471 
MPA 0.0197 0.0013 0.0362 0.9589 0.0489 
EO 0.0188 0.0012 0.0338 0.9636 0.0469 

RFR Original 0.0212 0.0012 0.0336 0.9640 0.0646 
MRFO 0.0167 0.0008 0.0272 0.9765 0.0462 
MPA 0.0187 0.0010 0.0310 0.9695 0.0509 
EO 0.0153 0.0006 0.0248 0.9803 0.0427 

ETR Original 0.0107 0.0004 0.0186 0.9890 0.0342 
MRFO 0.0082 0.0003 0.0159 0.9919 0.0258 
MPA 0.0279 0.0029 0.0532 0.9115 0.0781 
EO 0.0055 0.0001 0.0109 0.9961 0.0186 

XGBoost Regression Original 0.0218 0.0012 0.0338 0.9637 0.0499 
MRFO 0.0208 0.0009 0.0296 0.9719 0.0713 
MPA 0.0226 0.0011 0.0328 0.9663 0.1078 
EO 0.0194 0.0008 0.0290 0.9737 0.0748 

Knee DTR Original 0.0160 0.0009 0.0292 0.9697 0.0309 
MRFO 0.0118 0.0005 0.0218 0.9827 0.0216 
MPA 0.0121 0.0005 0.0209 0.9834 0.0218 
EO 0.0112 0.0004 0.0199 0.9848 0.0207 

RFR Original 0.0124 0.0004 0.0198 0.9866 0.0258 
MRFO 0.0089 0.0002 0.0146 0.9927 0.0154 
MPA 0.0112 0.0003 0.0181 0.9885 0.0184 
EO 0.0091 0.0002 0.0153 0.9919 0.0157 

ETR Original 0.0061 0.0001 0.0102 0.9964 0.0133 
MRFO 0.0064 0.0001 0.0118 0.9952 0.0107 
MPA 0.0183 0.0011 0.0329 0.9621 0.0296 
EO 0.0054 0.0001 0.0099 0.9965 0.0091 

XGBoost Regression Original 0.0123 0.0004 0.0188 0.9878 0.0239 
MRFO 0.0120 0.0003 0.0176 0.9894 0.0253 
MPA 0.0127 0.0003 0.0184 0.9881 0.0268 
EO 0.0123 0.0004 0.0186 0.9879 0.0304 

Hip DTR Original 0.0243 0.0019 0.0429 0.9417 0.0696 
MRFO 0.0376 0.0059 0.0767 0.8219 0.0878 
MPA 0.0206 0.0019 0.0409 0.9453 0.0570 
EO 0.0376 0.0059 0.0767 0.8219 0.0878 

RFR Original 0.0184 0.0009 0.0302 0.9722 0.0701 
MRFO 0.0358 0.0044 0.0661 0.8675 0.0992 
MPA 0.0161 0.0007 0.0259 0.9796 0.0504 
EO 0.0358 0.0044 0.0661 0.8675 0.0992 

ETR Original 0.0109 0.0003 0.0184 0.9898 0.0356 
MRFO 0.0285 0.0049 0.0692 0.8540 0.0754 
MPA 0.0052 0.0001 0.0094 0.9972 0.0193 
EO 0.0285 0.0049 0.0692 0.8540 0.0754 

XGBoost Regression Original 0.0181 0.0008 0.0274 0.9765 0.0605 
MRFO 0.0386 0.0045 0.0668 0.8641 0.1070 
MPA 0.0193 0.0008 0.0284 0.9756 0.0629 
EO 0.0386 0.0045 0.0668 0.8641 0.1070 

Neck DTR Original 0.0294 0.0038 0.0594 0.8951 0.0616 
MRFO 0.0384 0.0059 0.0756 0.8397 0.0736 
MPA 0.0206 0.0014 0.0370 0.9603 0.0445 
EO 0.0219 0.0023 0.0444 0.9384 0.0501 

RFR Original 0.0220 0.0016 0.0389 0.9560 0.0501 
MRFO 0.0343 0.0039 0.0623 0.8926 0.0830 
MPA 0.0163 0.0008 0.0274 0.9789 0.0428 
EO 0.0170 0.0008 0.0282 0.9778 0.0461 

ETR Original 0.0120 0.0005 0.0212 0.9875 0.0263 
MRFO 0.0264 0.0039 0.0619 0.8933 0.0516 
MPA 0.0048 0.0001 0.0087 0.9978 0.0111 
EO 0.0048 0.0001 0.0085 0.9979 0.0110 

XGBoost Regression Original 0.0210 0.0012 0.0346 0.9668 0.0449 
MRFO 0.0365 0.0037 0.0606 0.8976 0.0750 
MPA 0.0204 0.0009 0.0306 0.9741 0.0473 
EO 0.0208 0.0010 0.0307 0.9739 0.0503  
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Fig. 4. Prediction Errors of (a) ETR for original features of ankle dataset (b) ETR for EO selected features of ankle dataset (c) ETR for original features of knee dataset 
(d) ETR for EO selected features of knee dataset (e) ETR for original features of hip dataset (f) ETR for MPA selected features of hip dataset (g) ETR for original 
features of neck dataset (h) ETR for EO selected features of neck dataset. 
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and MPA-ETR algorithms achieve higher success with fewer features for 
four different joints (ankle, knee, hip and neck) in the same data set. For 
the ankle joint, the EO-ETR algorithm successfully predicted 0.996 R2 by 
selecting 4 features out of 25 features. The R2 success of other algorithms 
in the literature is 0.998 with 19 features for LSTM, 0.996 with 7 fea
tures, and 1.0 with 22 features for ANN. For the knee joint, the EO-ETR 
algorithm achieved an R2 of 0.996 by selecting 3 out of 25 features. In 
comparison, other algorithms in the literature have reported R2 values of 
0.999 with 19 features for LSTM and CNN, 0.997 with 7 features for 
LSTM, and 1.0 with 22 features for ANN. For the hip joint, the MPA-ETR 
algorithm achieved an R2 of 0.997 by selecting 3 out of 25 features. In 
comparison, other algorithms in the literature have reported R2 values of 
0.998 and 0.996 with 19 features and 7 features for LSTM, respectively, 
and 0.999 with 22 features for ANN. In the neck joint, the EO-ETR al
gorithm selected 4 features out of 25 and predicted them with a success 
of 0.997 R2, while the ANN algorithm showed a success of 1.0 R2 with 22 
features. 

Table 6 provides an R2 performance evaluation comparing the out
comes of various studies on joint moment estimation across different 
movements and exercises. Analysis of these results reveals a significant 
reduction in the number of features used in our study, alongside notably 
enhanced accuracy in joint moment estimation. Notably, our study 
achieved high accuracy in estimating the neck joint moment, which 
features a distinct movement pattern compared to lower extremity 
joints. These findings underscore the efficacy of the algorithms proposed 
in this study for accurately estimating joint moments during the STS 
movement, even with a limited number of features. 

Recent studies in the literature, the field of joint moment estimation 
during STS movements has seen significant advancements, driven by the 
integration of ML and meta-heuristic optimization algorithms. Tradi
tional methods, while accurate, often suffer from limitations in practical 
application due to their complexity and the need for extensive sensor 
data. Conversely, the application of ML offers a promising alternative, 
providing enhanced accuracy and efficiency. However, this shift has 
sparked debates regarding the generalizability and robustness of these 
new methods across diverse populations and movement conditions. 
Recent achievements, such as the development of the Equilibrium 
Optimizer [42] and the Marine Predators Algorithm [37], have signifi
cantly improved feature selection for joint moment prediction. Addi
tionally, advances in integrating ML with biomechanical modeling [19] 
and the establishment of novel datasets and benchmarking standards 
[31] have propelled the field forward. 

This study aims to leverage these recent innovations to enhance the 
accuracy and clinical applicability of joint moment predictions during 
STS movements, addressing the current controversies and highlighting 
the novelty of these advancements. Our conclusion is that meta-heuristic 
algorithms select a smaller number of features that best represent the 
dataset. Overall, although the proposed algorithms did not achieve the 
highest accuracy in some of the datasets, they significantly reduced the 
number of features. 

4. Conclusions 

The feature selection methods MRFO, MPA and EO algorithms are 

Table 5 
R2 value comparison of the results with other STS studies for same dataset.  

Ref. Algorithm Features R2 

Ankle Knee Hip Neck 

Our 
studya 

EO-ETR Total selected:4/25 0.996 0.996 0.997 0.997 
EO-ETR Total selected: 3/25 
MPA-ETR Total selected: 3/25 

[16] SVM Total selected: 19/22, Features: time and three joints information 0.908 0.940 0.930 N/A 
LR 0.869 0.951 0.900 N/A 
RF 0.989 0.989 0.989 N/A 
DT 0.973 0.983 0.955 N/A 
DNN 0.957 0.970 0.961 N/A 
LSTM 0.998 0.999 0.998 N/A 
CNN 0.991 0.999 0.995 N/A 

[16] SVM Total selected: 7/22, Features: time and one joints information 0.743 0.902 0.833 N/A 
LR 0.126 0.834 0.631 N/A 
RF 0.991 0.995 0.974 N/A 
DT 0.975 0.986 0.960 N/A 
DNN 0.763 0.912 0.823 N/A 
LSTM 0.996 0.997 0.996 N/A 
CNN 0.968 0.992 0.991 N/A 

[21] ANN Total selected: 22/22, Features: Subject number, time, definition number of (ankle, knee, hip, neck), degree 
(ankle, knee, hip, neck), height (ankle, knee, hip, neck), mass (ankle, knee, hip, neck), moment of inertia (ankle, 
knee, hip, neck) 

1 1 0.999 1  

a Results with the highest R2 value. 

Table 6 
R2 value comparison of the results with other studies (different movement). SVM; support vector machine, CNN; Convolutional Neural Networks.  

Ref. Movement Algorithm Features R2 

Ankle Knee Hip Neck 

[25] Walking WNN 18 0.880b N/A 
[24] Running ANN 14 0.955 0.954 0.927 N/A 
[49] Squat SVM-LSTM 99 0.864 0.828 0.921 N/A 
[23] Walking FNN 30 0.902b N/A 
Our studya STS EO-ETR 4 0.996 0.996 0.997 0.997 

EO-ETR 3 
MPA-ETR 3  

a Results with the highest R2 value. 
b Mean value for all joints. 
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powerful methods that effectively identify meaningful features while 
eliminating irrelevant ones. In this study, we aimed to improve the 
prediction performance of ML through optimized feature selection with 
metaheuristic algorithms. We investigate different meta-heuristic opti
mization algorithms (MRFO, MPA, EO) and different ML methods (DTR, 
RFR, ETR, XGBoost Regression) to predict the moments occurring in the 
neck, hip, knee, and ankle joints during STS. 

According to the experiment’s findings, with a small number of 
features (2–4) joint moments can be estimated with high accuracy. The 
comparison of the proposed algorithms with other methods and previ
ous work in feature selection demonstrates the MPA algorithm’s high 
capability in selecting the best features, thereby enhancing joint 
moment prediction. While the performance of the EO-ETR offers good 
performance for ankle, knee and neck with 0.996, 0.996 and 0.997 R2 
respectively, MPA-ETR method is achieved good performance with 
0.997 R2 for hip. It is anticipated that the results obtained from this 
study will benefit research teams consisting of experts from different 
disciplines working on clinical studies and biomechanical analyses of 
STS motion. The most important of these benefits are to perform motion 
analyses with a simpler set-up and to calculate fewer mechanical 
parameters. 

It is evident that many AI methods developed for predicting kine
matic and kinetic changes in human movements utilize a large number 
of inputs/features, complicating the data collection process during 
clinical trials. This study, aimed at reducing the number of features using 
meta-heuristic optimization algorithms, represents a pioneering effort in 
the literature. The methods introduced in this study can also be applied 
to predict kinematic and kinetic changes in human movements beyond 
STS. 

In the future work, we are planning to develop hybrid metaheuristic 
algorithm with the other machine learning algorithms to predict joint 
moments during STS. 
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