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Abstract This paper investigates the vibration characteristics of a sandwich nanosensor plate composed of
piezoelectric materials, specifically barium and cobalt, in the upper and lower layers, and a core material
consisting of either ceramic (silicon nitride) or metal (stainless steel) foams reinforced with graphene (GPRL).
The study utilized the novel sinosoidal higher-order deformation theory and nonlocal strain gradient elasticity
theory. The equations of motion for nanosensor sandwich graphene were derived using Hamilton’s principle,
considering the thermal, electroelastic, andmagnetostrictive characteristics of the piezomagnetic surface plates.
These equations were then solved using the Navier method. The core element of the sandwich nanosensor
plate can be represented using three distinct foam variants: a uniform foam model, as well as two symmetric
foammodels. The investigation focused on analyzing the dimensionless fundamental natural frequencies of the
sandwich nanosensor plate. This analysis considered the influence of three distinct foam types, the volumetric
graphene ratio, temperature variation, nonlocal parameters, porosity ratio, electric and magnetic potential, as
well as spring and shear viscoelastic support. Furthermore, an analysis was conducted on the impact of the
metal and ceramic composition of the central section of the sandwich nanosensor plate on its dimensionless
fundamental natural frequencies. In this context, the use of ceramic as the central material results in a mean
enhancement of 33% in the fundamental natural frequencies. In contrast, the incorporation of graphene into
the core material results in an average enhancement of 27%. The thermomechanical vibration behavior of the
nanosensor plate reveals that the presence of graphene-supported foam and a viscoelastic support structure in
the core layer leads to an increase in thermal resistance. This increase is dependent on factors such as the ratio
of graphene, porosity ratio of the foam, and parameters of the viscoelastic support.Metal foam or ceramic foam
has been found to enhance thermal resistance when compared to solid metal or ceramic core materials. The
analysis results showed that it is important to take into account the temperature-dependent thermal properties
of barium and cobalt, which are piezo-electromagnetic materials, and the core layer materials ceramics and
metal, as well as the graphene used to strengthen the core. The research is anticipated to generate valuable
findings regarding the advancement and utilization of nanosensors, transducers, and nano-electromechanical
systems engineered for operation in high-temperature environments.
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1 Introduction

Magneto–electroelastic smart plates are a type of composite material that exhibit magneto–electric coupling
behavior, meaning they can respond to both magnetic and electric fields. These plates are composed of lay-
ers of different materials, such as ferromagnetic and ferroelectric materials, which allow for the coupling of
electric and magnetic fields [1]. Research has been conducted on various aspects of magneto–electroelastic
plates. Bhangale and Ganesan studied the static analysis of simply supported functionally graded and layered
magneto–electroelastic plates. They used a semi-analytical finite element method to analyze the behavior of
these plates. They also investigated the free vibration of non-homogeneous transversely isotropic magneto—
electroelastic plates [1]. The finite element method is a technique employed for achieving great computational
accuracy and analyzing static measurement data [2, 3]. Hong et al. developed a magneto–electroelastic func-
tionally graded Timoshenko microbeam model. The extended modified couple stress theory was employed to
account for the influence of microstructure. The model allowed for the analysis of the bending and vibration
behavior of functionally graded magneto–electroelastic microbeams [4]. Surface effects on magneto–electroe-
lastic structures have also been investigated. The investigation conducted byWu et al. focused on examining the
influence of surface factors on the propagation of anti-plane shear waves in magneto–electroelastic nanoplates.
They developed a surface magneto–electroelasticity theory to describe the motion of the material surface. The
study showed that the material surface can have a significant effect on the mechanical behavior of magneto—
electroelastic structures at the nanoscale [5].

In addition to the above studies, there have been investigations into the wave propagation, surface wave
speed, and magneto–electric coupling properties of magneto–electroelastic materials [6]. To analyze FG-MEE
plates and shells statically and dynamically, Zhang et al. [7] created a FE model containing magneto–electroe-
lastic fields. These studies have contributed to a better understanding of the behavior and potential applications
of magneto–electroelastic smart plates. Overall, research on magneto–electroelastic smart plates has focused
on various aspects such as static analysis, free vibration, surface effects, and wave propagation. These studies
have provided valuable insights into the behavior and potential applications of these composite materials.

Foam core sandwich plates are composite structures consisting of two face sheets bonded to a lightweight
foam core. These plates have been extensively studied in various fields, including blast loading, impact resis-
tance, vibration analysis, and energy absorption. Radford et al. conducted experiments to measure the dynamic
response of clamped circular monolithic and sandwich plates with metallic foam cores to simulated blast load-
ing. The sandwich plates consisted of AISI 304 stainless steel face sheets and aluminum alloy metal foam
cores. The study quantified the resistance to shock loading and evaluated the permanent transverse deformation
of the plates [8]. The study conducted by Mcshane et al. focused on examining the reaction of clamped sand-
wich plates containing lattice cores when subjected to shock loading. The sandwich plates were constructed
with face sheets made of AISI 304 stainless steel, accompanied by either pyramidal cores made of AL-6XN
stainless steel or lattice cores made of AISI steel. The study measured the dynamic response of the plates
when loaded at mid-span with metal foam projectiles [9]. Al-Waily et al. studied the free vibration analysis of
sandwich plates with reinforced foam cores using micro-aluminum powder. The study evaluated the stiffness
characteristics of the foam–aluminum core and found that the use of microspherical powder foam in the vacant
spherical gaps of the foam core improved the free vibration and static behavior of the sandwich plates [10].
The study conducted by Civalek et al. investigated the impact of deformable border and porosity on the free
vibration parameters of metal foam functionally graded restricted Rayleigh microbeams [11]. The study con-
ducted by Babaei et al. focused on investigating the characteristics of small and large amplitude free vibrations
in a composite beam composed of functionally graded carbon nanotube-reinforced composite (FG-CNTRC)
[12]. The study conducted by Borojeni et al. examined the impact of temperature and magnetoelastic stress
on the free vibration characteristics of an elastomer sandwich beam inside a high temperature [13]. Zhao
et al. conducted experimental and numerical investigations on the anti-penetration performance of metallic
sandwich plates with aluminum foam cores for marine applications. The study evaluated the ballistic limit of
the sandwich plates and analyzed the effects of impact velocity, facesheet thickness, and foam core density on
the anti-penetration performance [14]. The study conducted by Ren et al. included an analysis of the dynamic
failure behavior shown by sandwich constructions composed of carbon fiber-reinforced plastics with polyvinyl
chloride (PVC) foam cores when exposed to impact stress. The study investigated the influence of core density
and thickness on the impact resistance of the composite sandwich plates [15]. The objective of Sun et al.’s study
was to enhance the structural integrity of foam core sandwich structures through the incorporation of carbon
fiber/epoxy stitched reinforcements, which were carefully selected based on their fiber volume fraction [16].
The function of low-density structural polymeric foams filling the interstices of the cores of metal sandwich
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plates was investigated by Vaziri et al. The research investigated the structural properties of square honeycomb
and folded plate steel cores that were filled with two different densities of structural foams. The objective was
to determine the extent to which these cores could be reinforced and how they may improve the performance of
the plates when subjected to crushing and impulsive loads [17]. The sandwich panel developed by Boztoprak
et al. exhibits characteristics of sound absorption and low sound transmission [18]. Bakir et al. investigated
the impact energy absorption of aromatic thermosetting copolyester (ATSP) foam core and aluminum foam
face three-layer sandwich composites. The study concluded that the interfacial bonding between the ATSP
foam core and high-performance aluminum and titanium alloys, stainless steel, and high-temperature polymer
composite laminate enhanced the impact energy absorption of the sandwich composite structure [19]. Mocian
et al. assessed the energy absorption of foam core sandwich panels under low-velocity impact. The study
examined the response to low-velocity impact and the damage processes of foam core sandwich panels. Dif-
ferent foam core materials, such as polyurethane and polystyrene, were used in combination with aluminum
facesheets [20]. The study conducted by Kaboglu et al. aimed to examine the impact of core density on the
quasi-static flexural and ballistic characteristics of fiber–composite skin/foam core sandwich constructions.
The studymanufactured various sandwich structures using glass-fiber-reinforced polymer skins and polymeric
foam cores. The core density was varied to analyze its influence on the flexural and ballistic performance of
the sandwich structures [21]. These studies provide valuable insights into the behavior and performance of
foam core sandwich plates in different loading conditions, including blast loading, impact resistance, vibration
analysis, and energy absorption. The findings contribute to the understanding and design of lightweight and
high-performance composite structures for various applications.

Micromechanics and nonlocality of nanoplates have been extensively studied in the literature. Several
research papers have investigated various aspects of the behavior and properties of nanoplates, including
buckling analysis, vibration analysis, and the effects of different factors on their mechanical response. The
buckling analysis of nanoscale magneto–electroelastic plates was accomplished by Park and Han, using the
nonlocal elasticity theory. The study focused on the higher-order shear deformation theory and investigated the
buckling behavior of nonlocal magneto–electroelastic nanoplates. The in-plane magnetic and electric fields
were considered negligible for these plates [22]. The buckling study of nanocomposite sandwich plates with
piezoelectric face sheets was conducted by Amir et al., using the principles of flexoelectricity and the first-
order shear deformation theory. The study examined the effects of flexoelectricity on the critical buckling
load of the sandwich plates and discussed the implications for the design and control of similar systems [23].
Monaco et al. investigated the critical temperatures associated with vibrations and buckling in magneto—
electroelastic nonlocal strain gradient plates. The research focused on the vibrations and buckling behavior
of magneto–electroelastic plates at the nanoscale, considering the effects of hygro-thermal loads. The study
provided insights into the critical temperatures for vibrations and buckling of these plates [24]. Boyina et al.
[25] proposed a nonlocal strain gradient model to analyze the buckling of functionally graded Euler–Bernoulli
beams subjected to thermomechanical stresses. Woo et al. [26] presented an analytical method to investigate
the post-buckling behavior of plates and shallow cylindrical shells composed of functionally graded materials
subjected to edge pressure loads and temperature variations. Quan et al. [27] presented analytical solutions
for analyzing the static buckling and vibration phenomena in nanocomposite multilayer perovskite solar cells.
The study conducted by Arefi et al. focused on the examination of free vibrations in a three-layered nano-
/microplate with piezomagnetic face sheets. The plate was graded exponentially in terms of its size and was
supported by Pasternak’s foundation. The researchers used the modified couple stress theory for their analysis.
The study employed the Mindlin’s plate theory and the modified couple stress theory to analyze the static
bending and forced vibration of the nano-/microplate. The effects of size dependency and the foundation on
the vibration behavior were considered [28]. Yan et al. [29] utilized nonlocal continuum mechanics in order to
obtain precise and asymptotic expressions for infinite higher-order governing differential equations pertaining
to nanobeam and nanoplate models. Naghinejad and Ovesy studied the free vibration characteristics of non-
local viscoelastic nanoscaled plates with rectangular cutouts and surface effects. The research focused on the
nonlocal effects on the mechanical properties of small-sized plates and investigated the influence of surface
effects on the free vibration behavior of the plates [30]. The vibration characteristics of orthotropic circular and
elliptical nanoplates, which are immersed in an elastic mediums, were examined by Anjomshoa and Tahani.
This analysis was conducted by using the nonlocal Mindlin plate theory and utilizing the Galerkin technique.
The study investigated the vibration behavior of nanoplates with different geometries and materials, consider-
ing the nonlocal effects and the interaction with the surrounding elastic medium [31]. The study conducted by
Wu et al. focused on examining the influence of surface factors on the propagation of anti-plane shear waves in
magneto–electroelastic nanoplates. The study developed a surfacemagneto–electroelasticity theory to describe
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the motion of the material surface of magneto–electroelastic structures at the nanoscale. The effects of the
material surface on the mechanical behavior of these structures were analyzed [5]. Wang et al. [32] measured
the inherent vibrations of nonlinear vehicle platoons that oscillate due to external influences. Zhang et al. [33]
explored sandwich microshell dynamics. In a microscale size-dependent framework, Hamilton’s principle
derives basic governing equations. Bai et al. [34] used strain energy theory to simulate cracks and examined
how crack lengths affected operation. Some studies have studied the development of vibration isolation and
energy harvesting [35, 36]. Additionally, some studies [37–41] applying carbon-coated porous aluminum,
directed energy deposition-arc, infrared detectors cooling, welding residual stress measurement, and static
homotopy response analysis are interesting.

1.1 The novelty of this paper

The nonlocal elasticity theory only considers the inter-atomic long-range force. Similar to classical elasticity
theory, nonlocal elasticity theory treats particles asmass pointswithout consideringmicrostructure deformation
[42]. The growing prevalence of nanotechnology has resulted in the extensive utilization of nanosensors and
comparable nano-electromechanical systems in high-temperature applications. Hence, there is a must for novel
designs or arrangements, such as the sandwich structure, to guarantee precise measurement and functioning
of these systems. There is a lack of literature on this subject, so it is necessary to include unique contributions
through the present study. This work aims to analyze the thermomechanical vibration behavior of sandwich
nanosensor plates in order to meet the previously specified criteria. The plates consisted of a top layer that was
enhanced with metal or ceramic graphene and a core layer made of solid or foam material. The work seeks to
provide a valuable contribution to the development and examination of nanosensor plates specifically designed
for use in high-temperature situations. These plates are designed to conduct gas, temperature, and acceleration
measurements under such conditions. Furthermore, it can be employed for the transportation of nanomaterials
in high-temperature settings, as well as for sampling and analysis reasons, medical surgical procedures, the
delivery of nanomedicine, and the collection of nanofragrances. Moreover, this substance exhibits promising
potential for use as a nanotransducer/actuator in nanorobotic systems and as a radar-absorbent surface coating
for vehicles in the defense and aviation industries. These investigations offer vital insights into the intricate
physics and nonlocal behavior of nanoscale plates. Their contribution is in enhancing the comprehension of the
behavior and characteristics of nanosensor plates when subjected to diverse loading situations, encompassing
buckling, vibration, and the influence of elements such as flexoelectricity, surface effects, and material size
dependency.

2 Mathematical modeling of the sandwich nanosensor plate

The mathematical model in this study is based on Hamilton’s technique to create the equations of motion for
magneto–electroelastic face plates with functionally graded nanosensor plates. This lets the nanosensor plate’s
dynamic behavior and responsiveness to thermal stresses, magneto–electroelastic coupling, external electric
and magnetic fields, nonlocal features, porosity volume fraction, and thickness porosity variation be examined.
The model takes into consideration the nanosensor plate’s component materials’ many properties and their
thermomechanical effects.

2.1 General acceptances

It is assumed that the layers of sandwich plates are perfectly bonded to each other. It is accepted that the middle
geometric surface and neutral surface of the sandwich plate coincide in all models. The materials of the layers
are modeled with their variable properties depending on temperature, and the necessary formulas or references
related to material mixtures are explained where necessary.

2.2 Effective material properties of nanosensor plate

The figure illustrates a three-layer rectangular plate positioned on a Cartesian coordinate system (x, y, z). The
plate has dimensions a and b in the x and y directions, respectively (refer to Fig. 1). The total thickness of
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Fig. 1 Configuration of sandwich nanosensor plate with top and bottom layers of piezo material and core layer of graphene-
reinforced metal/ceramic

the plate, denoted as H t, is determined by the sum of the core layer (h) and twice the thickness of the surface
layers (hs), expressed as Ht � h + 2hs. Ω represents the central plane of the plate in its original, undeformed
state. The tensor Ω x represents the boundary of the plate’s entire domain, which is situated between the lower
surface (z � −hs − h/2) and the upper surface (z � hs + h/2), as well as the edge �. The curved surface Γ is
described by the tensor �x(−hs − h/2, h/2 + hs). It possesses an outward normal n̂, which can be expressed
as n̂ � nx êx + nyêy , where nx and ny represent the direction cosines of the unit normal.

For uniform graphene distribution by using Halpin–Tsai micromechanics model [43, 44], the elastic mod-
ulus of non-porous graphene platelets (GPLs)-reinforced metal matrix can be determined:

E1 � 3

8

(

ξLηLVGPL
1 − ηLVGPL

)

Em +
5

8

(

1 + ξWηWVGPL
1 − ηWVGPL

)

Em (1a)

where

ξL � 2lGPL
tGPL

ξW � 2WGPL

tGPL
ηL �

EGPL
/

Em
− 1

EGPL
/

Em
+ ξL

, ηW �
EGPL

/

Em
− 1

EGPL
/

Em
+ ξW

(1b)

The dimensions of GPLs are represented byWGPL, lGPL, and tGPL, which correspond to width, length, and
thickness, respectively. Em and EGPL represent the Young’s modulus of the metal matrix and the graphene
platelets (GPLs), respectively. The rule of mixture [44, 45] provides expressions for the Poisson’s ratio and
mass density of non-porous GPLs-reinforced metal matrix.

ν1 � νGPLVGPL + νmVm, ρ1 � ρGPLVGPL+ρ1Vm (1c)

The equation above utilizes subscript symbols GPL and m to represent GPLs and metal, respectively.
Additionally, Vm is defined as (1 − VGPL).

Figure 1a, b depicts the geometric configuration of the sandwich beam investigated in this study. The beam
consists of a functionally graded metal/ceramic foam core. The dimensions of the plate along the x, y, and z
axes are represented by a, b, and h, respectively. The Young’s modulus E and density ρ of the metal foam core
at any height z can be found in references [43, 46–48]. Type I foam, as shown in Fig. 2a.

E(z) � E1[1 − κ0cos(π z/hc)] (2a)

ρ(z) � ρ1[1 − κdcos(π z/hc)] (2b)

Type II foam (Fig. 2b):

E(z) � E1
[

1 − κ∗
0 {1 − cos(π z/hc)}] (3)

ρ(z) � ρ1
[

1 − κ∗
d {1 − cos(π z/hc)}] (4)
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Fig. 2 Three models of foam distributions a Type I; edge-focused pattern b Type II; core-focused pattern c Type III; uniform-
focused pattern

Table 1 The coefficient of foam for various foam distributions

Ko
* 0.1 0.2 0.3 0.4 0.5 0.6

Ko 0.1738 0.3442 0.5103 0.6708 0.8231 0.9612
ψ 0.9361 0.8716 0.8064 0.7404 0.6733 0.6047

Type III foam (Fig. 3c):

E(z) � E1ψ
ρ(z) � ρ1ψ

∗ (5)

E1 and ρ1 represent the Young’s modulus and density of metal foam, respectively. The foam coefficients (κo,
κo

*,ψ) and (κd, κd
∗,ψ*) represent the Young’s modulus and density for Type I, II, and III foams, respectively.

The coefficients are typically represented as the ratio of foam density to the density of the solid material
comprising the foam. The factor denoted as E1 within the bracket corresponds to the porosity of foam [49].
Reference [49] established a correlation between density and Young’s modulus for open-cell metal foams.

E(z)

E1
�
(

ρ(z)

ρ1

)2

(6)

The equations below demonstrate the correlation between the coefficients of mass density and Young’s
modulus (Table 1).

1 − κd cos(π z/hc) � √
1 − κ0cos(π z/hc) For Type − I Foam

1 − κ∗
d [1 − cos(π z/hc)] � √

1 − κ∗
0 [1 − cos(π z/hc)] For Type − II Foam

ψ∗ � √
ψ For Type − III Foam

(7)

To facilitate comparison, we assume that the masses of all three types of foams remain constant. The values
for κo

* and ψ can be determined by the following relationship, given a specific value of κo [47]:
∫ hc/2

0

√

1 − κ0cos(π z/hc)dz �
∫ hc/2

0

√

1 − κ∗
0 [1 − cos(π z/hc)]dz �

∫ hc/2

0

√

ψdz (8)
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Table 2 Temperature-dependent coefficients for the properties of CoFe2O4 and BaTiO3

Material Property P−1 P0 P1 P2 P3

CoFe2O4 C11 (Pa) 0 298.87e9 −1.552e − 4 6.125e − 9 −9.0e − 11
C55 (Pa) 0 47.33e9 −1.552e − 4 6.125e − 9 −9.0e − 11
υ 0 0.3 0 0 0
α
(

1K−1
)

0 7.5e − 6 −3.01e − 4 4.02e − 6 −1.01e − 09

κ (W/mK) 0 4.7030 −0.0011 1.6612e − 06 −9.9670e − 10
ρ (kg/m3) 0 5300 0 0 0

BaTiO3 C11(Pa) 0 174e9 −1.552e − 4 6.125e − 9 −9.0e − 11
C55 (Pa) 0 44.93e9 −1.552e − 4 6.125e − 9 −9.0e − 11
υ 0 0.30 0 0 0
α
(

1K−1
)

0 10e − 6 −3.0e − 4 4.0e − 6 −1.0e − 09

κ (W/mK) 0 3.7624 −8.50521e − 4 1.32894e − 06 −7.97363e − 10
ρ (kg/m3) 0 5800 0 0 0

Chen et al. [50] and Wang and Zhao [47] proposed κo values∈ [0, 0.6] using Eq. (8). Table 2 lists foam
coefficients.

Temperature impacts are considered necessary for accurate prediction of structural behavior. The
temperature-dependent characteristics of the material include the elastic modulus Eef, effective Poisson’s
ratio νef, conductivity coefficients ψef, thermal expansion κef, and Eef. These properties can be described by
a nonlinear function of temperature [51].

P � P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3) (9)

In this context, the variable P is used to denote a temperature-dependent ingredient, while P0 represents
the corresponding material. Table 2 displays the P−1, P1, P2, andP3 values corresponding to temperature T,
with orders ranging from − 1 to 3. The mass density ρ(z) primarily depends on z and is moderately influenced
by variations in temperature, as indicated by the effective material properties.

2.3 The nonlinear temperature change

This section presents the equations for uniform temperature rise (UTR), linear temperature rise (LTR), and
nonlinear temperature rise (NLTR) across the thickness of the nanosensor plate. The nanoplate’s entire body,
initially at a temperature of T0 � 300 K, is uniformly heated to its final temperature T. This process occurs
under stress-free conditions and involves a uniform temperature rise (UTR), as described by the following
equation.

�T � T − T0 (10)

The temperature distribution in a plane along the z-direction can be determined using the equation. This
equation considers the temperatures of the top and bottom surfaces, T t and Tb, respectively. It assumes a linear
temperature rise from Tb to T t across the thickness of the plane [52]:

T (z) � Tb + (Tt − Tb)

(

h + 2z

2h

)

(11)

For nonlinear temperature rises (NLTR) across the thickness of a nanoplate, the determination of the top
surface temperature (T t) and bottom surface temperature (Tb) can be achieved by solving the steady-state
one-dimensional heat transfer equation. This equation incorporates known temperature boundary conditions
[53].

− d

dz

(

κ(z)
dT

dz

)

� 0, T

(

h

2

)

� Tt , T

(

−h

2

)

� Tb (12a)

Thus, the temperature at any given zwithin the thickness can be determined based on the specified boundary
condition.

T (z) � Tb +
(Tt − Tb)

∫
h
2

− h
2

1
ψ(z)d(z)

∫ z

− h
2

ψ(z)dz (12b)
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2.4 Introduction of the nonlocal strain gradient theory (NSGT) for the magneto–electroelastic smart material

Eringen’s study [54] assumes that the stress at a specific point in a continuum body is dependent on the stresses
at all other locations. This hypothesis proposes that the stiffness of the structure is influenced by the intensity
of nonlocal and material scale effects. The structure exhibits smoother behavior compared to classical forms,
depending on the magnitude of the nonlocal influence. The strain gradient hypothesis solely accounts for the
material scale effect by enhancing the stiffness of the structure. The nonlocal elasticity theory and Eringen’s
strain gradient theory differentiate between distinct physical phenomena. The NSGT considers both factors
simultaneously to incorporate nonlocality [55, 56]. The σ and σ (h) stress tensors in NSGT are represented by
the following equations [55].

σ �
∫

V
α0(x′, x, e0a)C : ε′(x′)dV ′ (13a)

σ (h) � l2m

∫

V
α1(x′, x, e1a)C : ∇ε′(x′)dV ′ (13b)

The impact of surface bulk has been simulated in the literature through the use of non-classical continuum
mechanics [57]. The classical kernel and higher-order nonlocal functions α0 and α1 are located in different
positions. The Laplacian operator (∇ � ∂/∂x + ∂/∂y) and the fourth-ordermaterial coefficient are represented
by the symbols ∇ and C, respectively. The terms ∇ε and ε refer to the classical strain tensors and the strain
gradient. In addition, the nonlocality constants e0a and e1a are associated with the material coefficients e1 and
e0, while a represents the geometric characteristics of atomic bonds. The lm parameter represents the size of
the material, while the colon symbol ":" denotes the double-dot product of the tensor. The stress tensor derived
from the NSGT can be represented as [55, 58, 59].

σ t � σ − ∇2σ (1) (14)

Assuming that the notions of α1(x′, x, e1a) and α0(x′, x, e0a) are compatible with the Ref. [60] and that
e0 � e1� e0a, we can use the linear differentiation operator on Eq. (4) to obtain the following result.

[

1 − (e0a)
2∇2]σ � C : ε (15a)

[

1 − (e0a)
2∇2]σ (1) � l2mC : ∇ε (15b)

Equations (4–6) can be utilized to calculate the total stress as follows:
[

1 − (e0a)
2∇2]σ � C : ε − l2m∇C : ∇ε (15c)

The stress–strain relations of the plate are determined by references [55, 56]:
[

1 − (e0a)
2∇2]σxx � [

1 − l2m∇2]E(z)εxx
[

1 − (e0a)
2∇2]σyy � [

1 − l2m∇2]E(z)εyy
[

1 − (e0a)
2∇2]σzz � [

1 − l2m∇2]E(z)εzz
[

1 − (e0a)
2∇2]σxz � [

1 − l2m∇2]G(z)γxz
[

1 − (e0a)
2∇2]σyz � [

1 − l2m∇2]G(z)γyz . (16)

The symbols σxx , σyy , εxx , and εyy represent the conventional stresses and strains in the x and y directions,
respectively. Furthermore, the shear stresses and strains in the xz and yz planes can be denoted as σxz , σyz ,
and γxz , γyz . E(z) and G(z) represent the elasticity and shear modulus, respectively. When the values of the
lm and e0a in Eq. (11) are both set to zero, the stress–strain relations of the classical continuum theory can be
determined [60]. The constitutive equations of the NGST microplate under thermal loads can be established
by considering the magneto–electroelastic characteristics. The structure of these equations is as follows.

σ (x , y, z)
(

1 − e0a
2∇2) � (

1 − l2m∇2)[Q(z)ε − ẽ(z)E − q̃(z)H
] − Q(z)α(z)�T

DE (x , y, z)
(

1 − e0a
2∇2) � (

1 − l2m∇2)
[

ẽT(z)ε − ξ̃(z)E + ζ̃ (z)H
]

− p(z)�T

BM (x , y, z)
(

1 − e0a
2∇2) � (

1 − l2m∇2)
[

q̃T(z)ε + ζ̃ (z)E + χ̃(z)H
]

− λ(z)�T (17)
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2.5 Displacement fields and strains

The SHSDT is a sinusoidal higher-order shear deformation theory used for analyzing three-layer rectangular
plates. It is based on the following assumptions [61]:

1. The displacements in relation to the plate’s thickness are negligible, resulting in infinitesimally small
stresses.

2. The plane displacements u and v consist of the components u0 for extension, ws for shear, and w0 for
bending.

3. The transverse displacement w is modified to account for the bending w0, shear ws, and stretching wst
components of the transverse stresses (σ xz, σ yz, σ zz) and strains (εxz, εyz, εzz).

4. The inclusion of shear components (ws in u, v in-plane and w transverse displacements) leads to an increase
in the trigonometric variation of shear stresses (σ xz, σ yz) and strains (εxz, εyz) across the thickness of the
plate. Consequently, the top and bottom faces of the plate experience no shear stresses (σ xz, σ yz).

Based on the aforementioned assumptions regarding the full form of the SHSDT, the displacement field of
the nanoplate can be expressed as follows:

u(x , y, z, t) � u0(x , y, t) − z
∂w0(x , y, t)

∂x
− f (z)

∂ws(x , y, t)

∂x
(18a)

v(x , y, z, t) � v0(x , y, t) − z
∂w0(x , y, t)

∂y
− f (z)

∂ws(x , y, t)

∂y
(18b)

w(x , y, z, t) � w0(x , y, t) + ws(x , y, t) + wst (x , y, z, t) (18c)

Let us define the functions f (z), wst and g(z) as follows:

f (z) � z − Ht

π
sin

(

π z

Ht

)

(19)

wst(x , y, z, t) � g(z)∅(x , y, t) (20)

g(z) � cos

(

π z

Ht

)

(21)

The variables u, v, andw in the displacement equations represent the overall displacements of a point within
an unaltered body. The symbols u0, v0, and w0 represent the in-plane and transverse displacements of a point
on the undeformed plate’s midplane (x, y, 0) at time t. The plate’s u and v displacements are associated with its
extensional deformation, while the w displacement represents its bending deflection. The strain–displacement
interactions related to the displacement field in Eq. (13) can be expressed in the following general form.
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εzz � g′(z)ε(0)zz (22c)

The strain components are as follows:
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ε(0)zz � ∅ (23c)

2.6 Constitutive equations

The study examines a nanoplate with a linear elastic behavior. The nanoplate consists of an isotropic core (n)
that is surrounded by top and bottom surface layers (l). Functional grading of barium–titanate and cobalt–ferrite
elements was employed for the organization of the nanoplate’s core, while the surface layers were created using
pure or homogeneous mixes of these materials. The constitutive relations of the isotropic core plate can be
defined using the differential version of Eringen’s constitutive relations Eq. (13).

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

L(σ c
xx

)

L
(

σ c
yy

)

L(σ c
zz

)

L
(

σ c
yz

)

L
(

σ c
xz

)

L
(

σ c
xy

)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

�

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Cc
11 Cc

12 Cc
13 0 0 0

Cc
12 Cc

22 Cc
23 0 0 0

Cc
13 Cc

23 Cc
33 0 0 0

0 0 0 Cc
44 0 0

0 0 0 0 Cc
55 0

0 0 0 0 0 Cc
66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

εxx

εyy

εzz

2εyz

2εxz

2εxy

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

−

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
e15
0

0
0
0
e24
0
0

e31
e32
e33
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎨

⎩

Ex
Ey
Ez

⎫

⎬

⎭

−

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
q15
0

0
0
0
q24
0
0

q31
q32
q33
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎨

⎩

Hx
Hy
Hz

⎫

⎬

⎭

(24)

The stiffness coefficients, denoted as Cn
i j , represent the coefficients that determine the stiffness of a given

system.

Cc
11 � 1 − v

v
λ(z) (25a)

Cc
12 � λ(z) (25b)

Cc
66 � μ(z) (25c)

Cc
11 � Cc

22 � Cc
33 (25d)

Cc
12 � Cc

13 � Cc
23 (25e)

Cc
44 � Cc

55 � Cc
66 (25f)

The stiffness coefficientsλ(z) andμ(z) represent the Lamé constants in the context of elasticity. Specifically,

λ(z) is calculated as
(

λ(z) � vE(z)
(1+v)(1−2v)

)

, while μ(z) is determined by μ(z) � E(z)
2(1+v) . Furthermore, it is

assumed that the Poisson’s ratio remains constant, while the Young’s modulus varies across the thickness (h)
of the core plate within the range of (−h/2 ≤ z ≤ h/2), following a power-law relationship as defined in [62].
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The constitutive relations of the surface layers are described using the nonlocal and strain gradient differ-
ential operators [63]. The expressions L(∗) and �(∗) can be defined as follows: L(∗) ≡ 1 − (e0a)

2∇2 and �

(∗) ≡ 1 − (lm)
2∇2.
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The establishment of electric �
ϕ and magnetic potentials

�

ψ allows for the complete definition of constitutive
relations. The electric field components Ei and magnetic field components H i can be represented using three-
dimensional potentials.

Ei �
{

−�
ϕ,i

}

, Hi �
{

−�

ψ ,i

}

, i � x , y, z (28)
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The potential distributions for a nanoplate activated with initial external electric potential ϕ0 and magnetic
potential ψ0 can be described using a combination of linear and cosine functions, as stated in [64, 65] based
on Maxwell’s equations.
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The functions ϕ(x, y, t) and ψ(x, y, t) correspond to the time-varying electric and magnetic potential
distributions in a two-dimensional plane. The ẑ variable represents the thickness of the surface layers, denoted
as (̂z � z ± h/2 ± hs/2). The top layer of the plate is defined by the equation ẑ ≡ z1 � z− h/2− hs/2, while
the bottom layer is defined by ẑ ≡ z2 � z +h/2+hs/2. Please note that the variable z is only applicable within
the range of (h/2 ≤ z ≤ h/2 + hs/2) and (−h/2 − hs/2 ≤ z ≤ −h/2).

2.7 Motion equations

The virtual displacements can be employed to modify Hamilton’s principle for the motion equations of a
three-layered rectangular nanosensor plate [66]:

∫ T

0
(δU − δE − δM − δK + δV)dt � 0 (30)

δU , δK, and δV represent the virtual counterparts of strain energy, kinetic energy, and work performed by
external forces, respectively. δE and δM represent the virtual contributions of the electric and magnetic fields.
The virtual strain energy, denoted as δU , is defined as follows.
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Moreover, the contributions of the electric δE and magnetic δM fields can be expressed as:

(32)

δE �
∫

�

[∫ −h/2

−h/2−hs

(

DxδEx + DyδEy+DzδEz
)

dz + +
∫ h/2

−h/2

(

DxδEx + DyδEy+DzδEz
)

dz

+
∫ h/2+hs

h/2

(

DxδEx + DyδEy+DzδEz
)

dz

]

dxdy

(33)

δM �
∫

�

[∫ −h/2

−h/2−hs

(

BxδHx + ByδHy+BzδHz
)

dz +
∫ h/2

−h/2

(

BxδHx + ByδHy+BzδHz
)

dz

+
∫ h/2+hs

h/2

(

BxδHx + ByδHy+BzδHz
)

dz

]

dxdy

The contribution of kinetic energy can be summarized as follows:

(34)

δK �
∫

�

[∫ −h/2

−h/2−hs
ρ f (u̇δu̇ + v̇δv̇ + ẇδẇ) dz +

∫ h/2

−h/2
ρc (z) (u̇δu̇ + v̇δv̇ + ẇδẇ) dz

+
∫ h/2+hs

h/2
ρ f (u̇δu̇ + v̇δv̇ + ẇδẇ)

]

dxdy
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The symbols ρp(z) and ρn(z) represent the mass densities of the surface layers and core of the nanosensor
plate, respectively. These densities are defined by a power-law equation.

ρc(z) � (

ρc
t − ρc

b

)

(

z

h
+
1

2

)p

+ ρc
b (35)

The values ρc
t and ρc

b represent the mass densities of the superior and inferior core surfaces, respectively.
Furthermore, the time derivative of a variable is denoted by a dot superscript, as seen in the equation u̇ � ∂u/∂t .
In-plane external pressures significantly impact the virtual work.

δV � −
∫

�

[

(Nxx0 + NxxE + NxxM)
∂w0

∂x

∂δw0

∂x
+
(

Nyy0+NyyE + NxxM
)∂w0

∂y

∂δw0

∂y
+

]

dxdy (36)

The subscripts 0, E , andM denote the in-plane compressive mechanical, electrical, and magnetic forces.
The equations Nxx0 � Px0 and Nyy0 � Py0 represent compressive mechanical forces. Similarly, NxxM � Pq31
and NyyM � Pq32 denote magnetic forces originating from magnetic potential. Additionally, NxxE � Pe31
and NyyE � Pe32 represent electric forces resulting from external electric voltage. The virtual work equation
in this study focuses solely on the free vibration and buckling responses of MEE nanoplates, thus disregarding
the mechanical forces exerted on the top and lower surfaces. Assume the plate exhibits cylindrical bending
behavior upon the application of an external force along its midplane. In this case, only the bending component
(w0) of the deflection is influenced by the externally applied axial forces. Furthermore, the plate’s behavior
is affected by its shear deflection (ws) and stretch deflection (wst). The forces and moments associated with
thickness can be expressed as follows:

⎧

⎨

⎩

Nxx Nyy Nxy

M (b)
xx M (b)

yy M (b)
xy

M (s)
xx M (s)

yy M (s)
xy

⎫

⎬

⎭

�
∫ −h/2

−h/2−hs

(

σ s
xx , σ

s
yy , σ

s
xy

)

⎧

⎨

⎩

1
z

f (z)

⎫

⎬

⎭

dz

+
∫ h/2

−h/2

(

σ c
xx , σ

c
yy , σ

c
xy

)

⎧

⎨

⎩

1
z

f (z)

⎫

⎬

⎭

dz +
∫ h/2+hs

h/2

(

σ s
xx , σ

s
yy , σ

s
xy

)

⎧

⎨

⎩

1
z

f (z)

⎫

⎬

⎭

dz (37a)

Nzz �
∫ h/2

−h/2−hs
σ s
zzg

′(z)dz +
∫ h/2

−h/2
σ c
zzg

′(z)dz +
∫ h/2+hs

h/2
σ

f
zzg

′(z)dz (37b)

{

Sxz , Syz
} �

∫ −h/2

−h/2−hs

{

σ s
xz , σ

s
yz

}

g(z)dz +
∫ h/2

−h/2

{

σ c
xz , σ

c
yz

}

g(z)dz +
∫ h/2+hs

h/2

{

σ s
xz , σ

s
yz

}

g(z)dz (37c)

The virtual strain energy can be expressed as follows:

δU �
∫

�

(

Nxxδε
(0)
xx + Nyyδε

(0)
yy + Nzzδε

(0)
zz + Nxyδε

(0)
xy

+ Nxzδε
(0)
xz + Nyzδε

(0)
yz + Mxxδε

(b)
xx + Myyδε

(b)
yy

+Mxyδε
(b)
xy + Mxxδε

(b)
xx + Myyδε

(b)
yy + Mxyδε

(b)
xy

)

dxdy (38)

The electric Di (i � x , y, z) and magnetic Bi (i � x , y, z)) coefficients related to thickness are provided.

{

Dx , Dy , Dz
} �

∫ −h/2

−h/2−hs

(

Dx , Dy , Dz
)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cos
(

π z2
hs

)

cos
(

π z2
hs

)

π
hs
sin

(

π z2
hs

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

dz +
∫ h

2

−h/2

(

Dx , Dy , Dz
)

⎧

⎨

⎩

cos
(

π z2
h

)

cos
(

π z2
h

)

π
h sin

(

π z2
h

)

⎫

⎬

⎭

dz +
∫ h/2+hs

h/2

(

Dx , Dy , Dz
)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cos
(

π z1
hs

)

cos
(

π z1
hs

)

π
hs
sin

(

π z1
hs

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

dz (39a)
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{

Bx , By , Bz
} �

∫ −h/2

−h/2−hs

(

Bx , By , Bz
)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cos
(

π z2
hs

)

cos
(

π z2
hs

)

π
hs
sin

(

π z2
hs

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

dz +
∫ h/2

−h/2

(

Bx , By , Bz
)

⎧

⎨

⎩

cos
(

π z2
h

)

cos
(

π z2
h

)

π
h sin

(

π z2
h

)

⎫

⎬

⎭

dz +
∫ h/2+hs

h/2

(

Bx , By , Bz
)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cos
(

π z1
hs

)

cos
(

π z1
hs

)

π
hs
sin

(

π z1
hs

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

dz (39b)

The virtual contribution of the electric and magnetic fields can be simplified.

δE �
∫

�

(

Dx
∂δϕ

∂x
+ Dy

∂δϕ

∂y
− Dzδϕ

)

dxdy (40)

δM �
∫

�

(

Bx
∂δψ

∂x
+ By

∂δψ

∂y
− Bzδψ

)

dxdy (41)

The variation of kinetic energy, which is determined by the mass inertias (mi), can be expressed as:

δK �
∫

�

[m0(u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0 + ẇ0δẇs + ẇsδẇ0 + ẇsδẇs)

−m1

(

u̇0
∂δẇ0

dx
+

∂ẇ0

dx
δu̇0 + v̇0

∂δẇ0

dy
+

∂ẇ0

dy
δv̇0

)(

∂ẇ0

dx

∂ ˙δw0

dx
+

∂ẇ0

dy

∂ ˙δw0

dy

)

−m3

(

u̇0
∂δẇ0

dx
+

∂ẇ0

dx
δu̇0 + v̇0

∂δẇ0

dy
+

∂ẇ0

dy
δv̇0

)

+m4

(

∂ẇ0

dx

∂ ˙δw0

dx
+

∂ẇ0

dx

∂ ˙δw0

dx
+

∂ẇ0

dy

∂ ˙δw0

dy
+

∂ẇ0

dy

∂ ˙δw0

dy

)

m5

(

∂ẇs

dx

∂ ˙δws

dx
+

∂ẇs

dy

∂ ˙δws

dy

)

+m6
(

ẇ0δφ̇ + ẇsδφ̇ + φ̇δẇ0 + φ̇δẇs
)

+ m7φ̇δφ̇
]

dxdy (42)

The differentiation of variables with respect to time is denoted by the dot superscript. The mass inertias,
denoted as mi (where i � 0, 1, 2), are defined as.

mi �
∫ −h/2

−h/2−hs
ρs zidz +

∫ h/2

−h/2
pc(z)zidz +

∫ h/2+hs

h/2
ρs zidz (43a)

mi+3 �
∫ −h/2

−h/2−hs
ρs f (z)zidz +

∫ h/2

−h/2
pc(z) f (z)zidz +

∫ h/2+hs

h/2
ρs f (z)zidz (43b)

m6 �
∫ −h/2

−h/2−hs
ρsg(z)dz +

∫ h/2

−h/2
pc(z)g(z)dz +

∫ h/2+hs

h/2
ρsg(z)dz (43c)

m7 �
∫ −h/2

−h/2−hs
ρsg2(z)dz +

∫ h/2

−h/2
pc(z)g2(z)dz +

∫ h/2+hs

h/2
ρsg2(z)dz (43d)

The latest form of virtual work resulting from in-plane external forces is expressed as:

δV �
∫

�

[

(

px0 + pe31 + pq31
)∂w0

∂x

∂δw0

∂x
+
(

py0
)

+ pe32 + pq32)
∂w0

∂x

∂δw0

∂x

]

dxdy (44)

The analyses assume that the in-plane mechanical compression forces are equal to px0 � N0 and py0 �
γN0, where γ represents the ratio of px0 to py0. The in-plane electric forces, denoted as pe3i , and magnetic
forces, denoted as pq3i (where i � 1, 2), are characterized.

pe3i � −
[∫ −h/2

−h/2−hs
e3i

(

2V0
hs

)

dz +
∫ h/2

−h/2
e3i (z)

(

2V0
h

)

dz +
∫ h/2+hs

h/2
e3i

2V0
hs

dz

]

(45a)

pq3i � −
[∫ −h/2

−h/2−hs
q3i

(

2H0

hs

)

dz +
∫ h/2

−h/2
q3i (z)

(

2H0

h

)

dz +
∫ h/2+hs

h/2
q3i

(

2H0

hs

)

dz

]

(45b)
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The external force exerted on the nanoplate can be effectively described by incorporating the Pasternak
foundation [67].

q − kww0 + kp

(

∂2w

∂x2
+

∂2w

∂y2

)

(45c)

The variable q represents the external load distributed over a unit area. kw and kp denote the spring and
shear foundation, correspondingly.

The final seven motion Eqs. (38a–g) for a macro-rectangular plate, based on the sinusoidal higher-order
shear deformation theory, can be derived by substituting the energy variation equations δU , δE , δM, δK, and
δV from Eqs. (30) and (32)–(34) and (36) into Eq. (22). Partial integration is then performed to obtain the
complete differentiations of generalized virtual translations with respect to x, y, and t.

δu0 :
∂Nxx

∂x
+

∂Nxy

∂x
� m0ü0 − m1

∂ẅ0

∂x
− m1

∂ẅs

∂x
(46a)

δv0 :
∂Nyy

∂y
+

∂Nxy

∂x
� m0v̈0 − m1

∂ẅ0

∂y
− m3

∂ẅs

∂y
(46b)

δw0 :
∂2M (b)

xx

∂x2
+2

∂2M (b)
xy

dxdy
+

∂2M (b)
yy

dy2
−
(

px0+ pe31+ pq31+kp+N
T
x

) ∂2w0

∂x2
−
(

py0+ pe31+ pq31+kp+N
T
y

) ∂2w0

∂y2

+ q − kww0 � m0 (ẅ0 + ẅs) +m1

(

∂ ü0
∂x

+
∂v̈0

∂y

)

−m2

(

∂ẅ0

∂x2
+

∂ẅ0

∂y2

)

−m4

(

∂2ẅs

dx2
+

∂2ẅs

dy2

)

+m6φ̈

(46c)

(46d)

δws :
∂2M (s)

xx

∂x2
+ 2

∂2M (s)
xy

dxdy
+

∂2M (s)
yy

dy2
+

∂Sxz
∂x

+
∂Syz
∂y

� m0 (ẅ0 + ẅs) + m3

(

∂ ü0
∂x

+
∂v̈0

∂y

)

− m4

(

∂2ẅ0

dx2
+

∂2ẅ0

dy2

)

− m5

(

∂2ẅs

dx2
+

∂2ẅs

dy2

)

+ m6φ̈

δφ :
∂Sxz
∂x

+
∂Syz
∂y

− Nzz � m6(ẅ0 + ẅs) + m7φ̈ (46e)

δϕ :
∂Dx

∂x
+

∂DY Z

∂y
+ Dz � 0 (46f)

δψ :
∂Bx

∂x
+

∂Byz

∂y
+ Bz � 0 (46g)

The boundary conditions of the nanosensor plate are expressed in the following format:

δu0 : 0 � Nxxnx + Nxyny − m1ẅ0nx − m3ẅsnx (47a)

δv0 : 0 � Nyyny + Nxynx − m1ẅ0ny − m3ẅsny (47b)

(47c)

δw0 : 0 �
[

∂M (b)
xx

∂x
+

∂M (b)
xy

∂y
−
(

px0 + pe31 + pq31 + kp+N
T
x

) ∂w0

∂x

]

nx

+

[

∂M (b)
yy

∂y
+

∂M (b)
xy

∂x

∂M (b)
xy

∂y
−
(

py0 + pe32 + pq32 + kp+N
T
y

) ∂w0

∂y

]

ny

+

(

m1ü0 − m2
∂ẅ0

∂x
− m4

∂ẅs

∂x

)

nx +

(

m1v̈0 − m2
∂ẅ0

∂y
− m4

∂ẅs

∂y

)

ny

δ
∂w0

∂n
: 0 � M (b)

nn (47d)

δ
∂ws

∂n
: 0 � M (s)

nn (47e)
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δφ : 0 � Sxznx + Syzny (47f)

δϕ : 0 � Dxnx + Dyny (47g)

δψ : 0 � Bxnx + Byny (47h)

M (b)
nn � M (b)

xx n
2
x + 2M (b)

xy nxny + M (b)
yy n

2
y ,M

(s)
nn � M (s)

xx n
2
x + 2M (s)

xynxny + M (s)
yy n

2
x (47i)

The thermal load is presented here.

NT �
{

NT
x , N

T
y , 0

}t
, MbT �

{

MbT
x , MbT

y , 0
}t
, MsT �

{

MsT
x , MsT

y , 0
}t

The moments and stresses resulting from thermal loading can be characterized by the equations MbT
x �

MbT
y , MsT

x � MsT
y , and NT

x � NT
y .

⎧

⎨

⎩

NT
x

MbT
x

MsT
x

⎫

⎬

⎭

�
3
∑

n�1

∫ hn

hn−1

E(Z)(n)

1 − v
α(n)(Z )�T

⎧

⎨

⎩

1
z
f (z)

⎫

⎬

⎭

dz (48)

The variables E(Z)(n) and α(n)(Z ) denote the effective modulus of elasticity and thermal expansion
coefficient, respectively, for each layer (n) of the sandwich nanosensor plate.

The nonlocal and strain gradient differential operators can be defined as L(∗) ≡ 1 − (e0a)
2∇2 and �

(∗) ≡ 1− (lm)
2∇2. By substituting Eqs. (13), (17)–(19), (22), (29), and (31) into Eq. (38), we can derive a set

of equilibrium equations (Eq. 40a–g) that describe the displacements and magneto–electroelastic coefficients
of a rectangular nanosensor plate. These equations can be expressed as follows:

�

[

A(0)
11

∂2u0
∂x2

− A(1)
11

∂3w0

∂x3
− A−(0)

11
∂3ws

∂x3
+
(

A(0)
12 + A(0)

66

) ∂v0

∂x∂y
−
(

A(1)
12 + 2A(1)

66

) ∂3ws

∂x∂y2

−
(

A−(0)
12 + 2A−(0)

66

) ∂3ws

∂x∂y2
+ A(0)

66
∂2u0
∂y2

+ ˜A(0)
13

∂φ

∂x
+ B

(0)
e31

∂ϕ

∂x
+ B

(0)
q31

∂ψ

∂x

]

� L
[

m0ü0 − m1
∂ẅ0

∂x
−m3

∂ẅs

∂x

]

(48a)

�

[

A(0)
22

∂2v0

∂y2
− A(1)

22
∂3w0

∂y3
− A−(0)

22
∂3ws

∂y3
+
(

A(0)
12 + A(0)

66

) ∂u0
∂x∂y

−
(

A(1)
12 + 2A(1)

66

) ∂3w0

∂x2∂y

−
(

A−(0)
12 + 2A−(0)

66

) ∂3ws

∂x2∂y
+ A(0)

66
∂2v0

∂x2
+ ˜A(0)

13
∂φ

∂y
+ B

(0)
e32

∂ϕ

∂y
+ B

(0)
e32

∂ψ

∂y

]

� L
[

m0v̈0 − m1
∂ẅ0

∂y
−m3

∂ẅs

∂y

]

(48b)

�

[

A(1)
11

∂3u0
∂x3

− A(2)
22

∂4w0

∂y4
− A−(1)

11
∂4ws

∂y4
+
(

A(1)
12 + 2A(1)

66

)

(

∂3u0
∂x∂y2

+
∂3v0

∂x2∂y

)

− 2
(

A(2)
12 + 2A(2)

66

) ∂4w0

∂x2∂y2

−2
(

A−(1)
12 + 2A−(1)

66

) ∂4ws

∂x2∂y4
+ A(1)

22
∂3v0

∂x3
− A(2)

22
∂4w0

∂y4
− A

(1)
22

∂4ws

∂y4
+ ˜A(1)

13
∂2φ

∂x2
+ A(1)

23
∂2φ

∂y2

+B
(1)
e31

∂2ϕ

∂x2
+ B

(1)
e32

∂2ϕ

∂y2
+ B

(1)
q31

∂2ψ

∂x2
+ B

(1)
q32

∂2ψ

∂y2

]

� L
[

(

Px0 + Pe31 + Pq31 + kp+N
T
x

)∂2w0

∂x2
+
(

Py0 + Pe32 + Pq32 + kp+N
T
y

)∂2w0

∂y2
+ kww0 + m0(ẅ0 + ẅs)

+m1

(

∂ ü0
∂x

+
∂ ü0
∂y

)

−m2

(

∂2ẅ0

∂x2
+

∂2ẅ0

∂y2

)

− m4

(

∂2ẅ0

∂x2
+

∂2ẅ0

∂y2

)

+ m6φ̈

]

(48c)
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�

[

A
(0)
11

∂3u0
∂x3

− A
(1)
11

∂4w0

∂x4
− A

( f )
11

∂4ws

∂x4
+
(

A
(0)
12 + 2A

(0)
66

)

(

∂3u0
∂x∂y2

+
∂3v0

∂x2∂y

)

−2
(

A
(1)
12 + 2A

(1)
66

) ∂4w0

∂x2∂y2
− 2

(

A
( f )
12 + 2A

( f )
66

) ∂4ws

∂x2∂y2
+ A

(0)
22

∂3v0

∂y3
− A

(1)
22

∂4w0

∂y4
− A

( f )
22

∂4ws

∂y4

+̂A(0)
44

∂2ws

∂y2
+ ̂A(0)

55
∂2ws
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The definitions of the magneto–electroelastic coefficients are given in Appendix A1–A3.
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The remaining variables, u, v,w0,ws, φ, ϕ, andψ represent the maximum values of displacement, electric
potential, and magnetic potential, respectively. Here, it represents the natural frequency. These seven variables
can be represented as vectors for convenience.

2.8 Solution method

The research successfully obtained precise analytical solutions for a simply supported (SS) three-layered
rectangular nanoplate by employing Navier’s solution approach. The double trigonometric series expansion is
employed to determine the values of the seven unknowns in the following manner.

{�} � [

u v w0 ws φ ϕ ψ
]T

(50)

The governing equations are expressed in the following formusing the stiffness [K] and inertia [M]matrices,
as well as the load vector {F}.

{

[K ] − ω2
mn[M]

}{�} � {F} (51)

The load vector, which is negligible in free vibration and buckling analysis, is as follows:

{F} �
[

0 0 0 0 −
(

B(g)
e33 + B(g)

q33

)

−
(

P (g)
g33 + P (g)

e33

)

−
(

P (g)
g33 + P (g)

e33

) ]

(52)

For free vibration analysis, the governing equation system of the nanoplate under in-plane static forces is
defined as follows.

{

[K ] − ω2
mn[M]

}{�} � {0} (53)

For the buckling analysis of nanoplates, the governing equations are:

[K ]{�} � {0} (54)

The Appendix A4–A5 section provides the elements of the symmetric stiffness matrix [K] (where Kij �
Kij) and the symmetric inertia matrix (whereMij � Mij).

2.9 Validation

Tables 3 and 4 present a comparison between the dimensionless maximum deflections obtained from three
nonlocal plate theories and the results of the current investigation. The comparison is based on different
nonlocal parameter and thickness values for square and rectangular plates subjected to uniformly distributed
and point loads. The assessments showed that the present research findings were similar to studies using first-
and third-order theories. Moreover, the nonlocal theory yielded better predictions for larger displacements.
Furthermore, the first and third-order theories produced similar results across all nonlocal effect values. Tables 5
and 6 compare the computed natural frequencies of third-order nonlocal plate theories, considering different
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Table 3 The magnetic, piezo, electro, and thermal properties of CoFe2O4 and BaTiO3

CoFe2O4 BaTiO3

C11 (GPa) 286 166
C22 286 166
C33 269.5 162
C12 173 77
C13 170.5 78
C23 170.5 78
C44 45.3 43
C55 45.3 43
C66 56.5 44.5
e31 (C/m2) 0 −4.4
e32 0 −4.4
e33 0 18.6
q31 (N/A m) 580.3 0
q32 580.3 0
q33 699.7 0
ξ11 (10−9C2/N m2) 0.08 11.2
ξ22 0.08 11.2
ξ33 0.093 12.6
ζ11 � ζ22 � ζ 33 (s/m) 0 0
χ11 (10–6 N s2/C) −590 5
χ22 −590 5
χ33 157 10
p11 � p22 (10−7C/m2 K) 0 0
p33 0 −11.4
λ11 � λ22 (10−5 Wb/m2 K) 0 0
λ33 −36.2 0
α1 � α2 (10−6 K−1) 10 15.8
ρ (kg/m3) 5800 5300

Table 4 Temperature dependent coefficients for the properties of Si3N4, Ti6Al4V [51, 68]

Material Property P−1 P0 P1 P2 P3 P(T � 300 K)

Si3N4 E (Pa) 0 348.43e + 9 −3.070e−4 2.160e−7 −8.946e−11 3.2227e + 11
υ 0 0.24 0 0 0 0.24
α (1 K−1) 0 5.8723e−6 9.095e−4 0 0 7.4746e−06
κ (W/mK) −1123.6 −14.087 −6.227e−3 0 0 –
ρ (kg/m3) 0 2370 0 0 0 2370

Ti6Al4V E (Pa) 0 122.56e + 9 −4.586e−4 0 0 207.7877e + 9
υ 0 0.2884 1.121e−4 0 0 0.3177
α (1 K−1) 0 7.5788e−6 6.638e−4 −3.147e−6 0 15.32e−6
κ (W/mK) 0 1 1.704e−2 0 0 –
ρ (kg/m3) 0 4512 0 0 0 4512

nonlocal parameters and aspect ratio values. The equations employed for comparing the maximum non-
dimensional deflection and natural frequencies are as follows:

w � −w

(

Eh2

q0a4

)

102 w � −w

(

Eh2

Q0a4

)

102ω � ωh

√

ρ

G
(55)

Q0 and q0 represent the sizes of the point and uniform loads, while a, E, v, and represent the length, elastic
modulus, Poisson’s ratio, and density of the plate, respectively.

Table 6 presents a comparison of the deflections computed for an isotropic plate with a support, where the
parameters used are a � 10, v � 0.3 for the Poisson ratio, and E � 300×106 for the elastic modulus. These
deflections are determined by applying a single load of q0 � 1N. Table 6 presents the deflections of a supported,
isotropic plate with specific parameters. The plate has a length-to-thickness ratio of 10, a Poisson ratio of 0.3,
and an elastic modulus of 300×106. These deflections are computed under the influence of a uniform load
of Q0 � 1 N/m, using a 100 term series. Table 7 presents a comparison between different investigations that
have utilized various theories from the literature. The focus of this comparison is on the non-dimensional first
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Table 5 Comparing non-dimensional maximum center deflection w in uniformly loaded simply supported plate q0 (q0 � 1, a �
10, v � 0.3 and E � 300×106)

a/b a/h μ First-order [69] Third-order [69] Third-order [70] Present (high-order)

1 10 0 4.1853 4.1853 4.1854 4.1845
0.5 4.5608 4.5607 4.5607 4.5611
1 4.9363 4.9362 4.9362 4.9352
1.5 5.3118 5.3116 5.3116 5.3119
2 5.6873 5.6871 5.6879 5.6886
2.5 6.0628 6.0625 6.0630 6.0626
3 6.4383 6.438 6.4387 6.4379

50 0 4.0154 4.0154 4.0153 4.0144
0.5 4.3779 4.3779 4.3781 4.3777
1 4.7404 4.7404 4.7410 4.7419
1.5 5.1029 5.1029 5.1033 5.1026
2 5.4654 5.4654 5.4650 5.4644
2.5 5.8279 5.8279 5.8280 5.8273
3 6.1904 6.1904 6.1901 6.1909

100 0 4.01 4.01 4.0122 4.0117
0.5 4.3721 4.3721 4.3725 4.3732
1 4.7342 4.7342 4.7340 4.7333
1.5 5.0963 5.0963 5.0960 5.0968
2 5.4584 5.4584 5.4588 5.4584
2.5 5.8205 5.8205 5.8208 5.8201
3 6.1826 6.1826 6.1830 6.1838

2 10 0 0.717 0.7169 0.7180 0.7188
0.5 0.8768 0.8767 0.8760 0.8749
1 1.0366 1.0364 1.0361 1.0351
1.5 1.1965 1.1961 1.1970 1.1959
2 1.3563 1.3558 1.3560 1.3549
2.5 1.5161 1.5155 1.5165 1.5151
3 1.6759 1.6752 1.6766 1.6769

50 0 0.6511 0.6511 0.6508 0.6519
0.5 0.7978 0.7978 0.7985 0.7977
1 0.9446 0.9446 0.9440 0.9429
1.5 1.0914 1.0914 1.0917 1.0908
2 1.2381 1.2381 1.2384 1.2372
2.5 1.3849 1.3849 1.3846 1.3829
3 1.5316 1.5316 1.5314 1.5328

100 0 0.649 0.649 0.6485 0.6466
0.5 0.7954 0.7954 0.7950 0.7941
1 0.9417 0.9417 0.9415 0.9435
1.5 1.0881 1.0881 1.0883 1.0862
2 1.2344 1.2344 1.2340 1.2332
2.5 1.3808 1.3808 1.3805 1.3820
3 1.5271 1.5271 1.5265 1.5230

mode frequency ω11 of an isotropic plate that is supported. The plate has specific parameters, namely a �
10, Poisson ratio v � 0.3, and modulus of elasticity E � 300×106. Table 8 presents a comparison between
different investigations that have utilized various theories from the literature. The focus of the comparison is
on the computed non-dimensional higher-order frequencies (represented as ω) of a simply supported isotropic
plate. The plate has specific dimensions, with a value of 10 for parameter a, a ratio of 1 for a/b, a ratio of 100
for a/h, a Poisson ratio of 0.3, and a modulus of elasticity of 300×106.

Here, due to the nanosize, the external electric andmagnetic potentialsVm andHm are non-dimensionalized
using the following relations;

vs � E IV0
10e − 9

Hs � E I H0

10e − 10
(56)

The non-dimensional foundations parameters K1, K2 are also defined by:

K1 � E Ia4

kw

K2 � E Ia2

π2kp
(57)
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Table 6 Central Q0 point load comparison of the supporting plate’s non-dimensional maximum center deflection w load (Q0 �
1, a � 10, E � 30×106, v � 0.3, 100 term series)

a/b a/h μ First-order [69] Third-order [69] Third-order [70] Present (high-order)

1 10 0 0.5147 0.5137 0.5180 0.5151
0.5 0.821 0.8072 0.8222 0.8217
1 1.1274 1.1008 1.1270 1.1262
1.5 1.4337 1.3944 1.4340 1.4321
2 1.7401 1.688 1.7505 1.7509
2.5 2.0465 1.9816 2.0484 2.0477
3 2.3528 2.2751 2.3553 2.3544

50 0 0.463 0.463 0.4640 0.4629
0.5 0.585 0.585 0.5865 0.5855
1 0.707 0.7069 0.7092 0.7077
1.5 0.8289 0.8288 0.8285 0.8274
2 0.9509 0.9508 0.9510 0.9526
2.5 1.0728 1.0727 1.0725 1.0706
3 1.1948 1.1947 1.1950 1.1948

100 0 0.4614 0.4614 0.4611 0.4626
0.5 0.5776 0.5776 0.5778 0.5744
1 0.6938 0.6938 0.6935 0.6953
1.5 0.81 0.81 0.8150 0.8141
2 0.9262 0.9262 0.9260 0.9244
2.5 1.0424 1.0424 1.0420 1.0411
3 1.1586 1.1586 1.1589 1.1571

2 10 0 0.2183 0.2165 0.2188 0.2159
0.5 0.7092 0.6528 0.7090 0.7075
1 1.2002 1.089 1.2008 1.2065
1.5 1.6911 1.5253 1.6907 1.6902
2 2.182 1.9616 2.1835 2.1865
2.5 2.6729 2.3979 2.6724 2.6756
3 3.1638 2.8341 3.1630 3.1611

50 0 0.1705 0.1705 0.1700 0.1723
0.5 0.2927 0.2926 0.2930 0.2954
1 0.4148 0.4146 0.4152 0.4185
1.5 0.537 0.5367 0.5394 0.5374
2 0.6592 0.6587 0.6590 0.6546
2.5 0.7813 0.7808 0.7816 0.7845
3 0.9035 0.9029 0.9030 0.9026

100 0 0.169 0.169 0.1685 0.1656
0.5 0.2796 0.2796 0.2791 0.2774
1 0.3903 0.3903 0.3901 0.3922
1.5 0.5009 0.5009 0.5010 0.5056
2 0.6116 0.6115 0.6111 0.6125
2.5 0.7222 0.7222 0.7225 0.7245
3 0.8328 0.8328 0.8330 0.8375

The non-dimensional frequency parameters λmn are defined by:

λmn � ωmna2

H

√

ρm

Em
(58)

Here, ρm � 4512 kg/m3 and Em � 105.7GPa are the mass density and elasticity modulus of metal
(Ti6Al4V) in room temperature.

3 Numerical results

In this study, the sandwich nanosensor plate is composed of barium and cobalt materials in the upper and lower
layers, which are known to be piezo-compatible materials. As seen in Fig. 1, the core of the nanosensor plate
is made of either metal or ceramic and can potentially be strengthened with graphene. Furthermore, the central
component is represented by three distinct foam types: one uniform and two symmetrical variants. Figure 3
presents an investigation of sandwich nanosensor plates composed of PMGFP and PCGFP. In this context, the
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Table 7 Comparison of simply supported plate’s non-dimensional first mode frequency ω11 (a � 10, E � 30×106, v � 0.3)

a/b a/h μ Classical First-order [69] Third-order [69] Third-order [70] Present (high-order)

1 10 0 0.0963 0.093 0.0935 0.0935 0.0911
1 0.088 0.085 0.0854 0.0851 0.0841
2 0.0816 0.0788 0.0791 0.0781 0.0777
3 0.0763 0.0737 0.0741 0.0732 0.0745
4 0.072 0.0696 0.0699 0.0699 0.0678
5 0.0683 0.066 0.0663 0.0665 0.0645

20 0 0.0241 0.0239 0.0239 0.0240 0.0212
1 0.022 0.0218 0.0218 0.0215 0.0241
2 0.0204 0.0202 0.0202 0.0207 0.0226
3 0.0191 0.0189 0.0189 0.0190 0.0175
4 0.018 0.0178 0.0179 0.0175 0.0149
5 0.0171 0.0169 0.017 0.0161 0.0148

2 10 0 0.0602 0.0589 0.0591 0.0590 0.0577
1 0.0568 0.0556 0.0557 0.0551 0.0536
2 0.0539 0.0527 0.0529 0.0524 0.0519
3 0.0514 0.0503 0.0505 0.0501 0.0541
4 0.0493 0.0482 0.0483 0.0488 0.0477
5 0.0473 0.0463 0.0464 0.0464 0.0449

20 0 0.015 0.015 0.015 0.0152 0.0136
1 0.0142 0.0141 0.0141 0.0140 0.0118
2 0.0135 0.0134 0.0134 0.0135 0.0111
3 0.0129 0.0128 0.0128 0.0130 0.0178
4 0.0123 0.0123 0.0123 0.0120 0.0126
5 0.0118 0.0118 0.0118 0.0116 0.0134

Table 8 Comparing non-dimensional higher-order frequencies (ω) of supporting plate (a � 10, a/b � 1, a/h � 100, E � 30×
106, v � 0.3)

Frequencies μ Classical First-order [69] Third-order [69] Third-order [70] Present (high-order)

ω11 0 0.0963 0.093 0.0935 0.0932 0.0952
1 0.088 0.085 0.0854 0.0851 0.0836
2 0.0816 0.0788 0.0791 0.0785 0.0771
3 0.0763 0.0737 0.0741 0.0739 0.0752
4 0.072 0.0696 0.0699 0.0699 0.0674
5 0.0683 0.066 0.0663 0.0667 0.0646

ω22 0 0.3853 0.3414 0.3458 0.3410 0.3429
1 0.288 0.2552 0.2585 0.2555 0.2549
2 0.2399 0.2126 0.2153 0.2129 0.2113
3 0.2099 0.186 0.1884 0.1862 0.1845
4 0.1889 0.1674 0.1696 0.1677 0.1659
5 0.1732 0.1535 0.1555 0.1531 0.1515

ω33 0 0.8669 0.6889 0.702 0.6890 0.6874
1 0.5202 0.4134 0.4213 0.4132 0.4156
2 0.4063 0.3228 0.329 0.3230 0.3214
3 0.3446 0.2738 0.279 0.2735 0.2729
4 0.3045 0.242 0.2466 0.2422 0.2459
5 0.2757 0.2191 0.2233 0.2194 0.2170

following abbreviations are used: P for piezo, M for metal, C for ceramic, G for graphene, and F for foam.
For instance, in Fig. 3a, the sandwich nanosensor plate comprises piezoelectric layer material in its upper
and lower sections, with the core section consisting of metal material reinforced with graphene. The metallic
material employed in this context is Ti6Al4V, while the ceramic material utilized is Si3N4. In this paper, the
figures illustrate a sandwich nanosensor plate characterized by an upper thickness of hp � 0.1 h and a lower
thickness of hp � 0.8 h. The nanosensor plate’s core is characterized by a thickness of hc, which is equal to
0.8 times the height h.
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Fig. 3 Variation of the dimensionless frequenciesλ(1, 1) depending on the temperature difference�T and four volumetric graphene
ratio VG � 0, 0.05, 0.15, 0.25 for α � 0 and α � 0.4 a PMGP b PMGFP c PCGP d PCGFP

3.1 Effect of volumetric graphene ratio

Figure 3 examines the impact of the volumetric graphene ratio on the fundamental natural frequencies of
the sandwich nanosensor plate. The graph presents a comprehensive analysis of the temperature difference
across four distinct volumetric graphene ratios, denoted as VG � 0, 0.05, 0.15, and 0.25. The temperature
range considered in this analysis spans from �T � 0 to 2500 K. Upon examining Fig. 3a, it can be observed
that the dimensionless natural frequency of the sandwich nanosensor plate with a metal core decreases as the
temperature difference increases. Conversely, the natural frequencies increase due to the reinforced provided
by graphene. In the case where the temperature difference is �T � 0, the natural frequency of the sandwich
nanosensor plate is λ � 2.03 for VG � 0, and λ � 2.92 when VG � 0.25.

With the augmentation of graphene content, the natural frequency exhibited a rise of approximately 43.8%.
Furthermore, it is evident that the fundamental natural frequency of the nanosensor plate composed of a
sandwich structure exhibits buckling behavior, reaching aminimumvalue of zerowhen the volumetric graphene
ratio is subjected to a temperature difference �T � 1900. Upon closer examination, it becomes evident that
the metal nanosensor plate, which incorporates graphene reinforced within its core, exhibits early buckling.
Figure 3b presents an analysis of a foam material that has a uniform distribution and has a porosity ratio
of α � 0.4. The core of this material is reinforced with graphene and metal. In the given graph, buckling
is observed as the temperature rises proportionally and reaches a value of �T � 1920. Simultaneously, the
fundamental natural frequency of the sandwich nanosensor plate experiences a reduction of approximately
16.25%, resulting in a value of λ � 1.7 at VG � 0 and a temperature difference of �T � 0 due to the presence
of uniform foam. Concisely, the foam effect caused a decrease in natural frequencies, whereas the buckling
temperature experienced a slight increase. Figure 3c presents the natural frequency graph of the nanosensor
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plate with a silicon nitride core, illustrating the variations in temperature difference and graphene ratio. The
dimensionless natural frequency value at �T � 0 increased by approximately 40.6% when comparing the
ceramic core to the metal core. This increase resulted in a value of λ � 2.84 for VG � 0. Furthermore, it can be
observed that with an increase in temperature, there is a significant decrease in the natural frequency, leading
to the occurrence of buckling at a critical temperature difference of �T � 2350. Essentially, when the central
component is made of ceramic material, there is a significant increase in the buckling temperature. Regarding
Fig. 3d, the central component comprises ceramic and uniform foam material. The graph illustrates a decrease
in both the natural frequency and buckling temperature as a result of the foam effect. In the graph depicting the
composition of metal and foam in the core region, there was an observed increase in the buckling temperature.
However, in the current graph, it is evident that there has been a partial decrease in the buckling temperature.
Another distinction lies in the relationship between the graphene ratio and the buckling temperature of the
sandwich nanosensor plate, which features a ceramic core. As the graphene ratio increases, so does the buckling
temperature.

Figure 4 depicts the variation in the fundamental natural frequency of the sandwich nanosensor plate,
comprising a metal core reinforced with graphene, as a function of the volumetric graphene ratio (VG) ranging
from 0 to 0.25. Additionally, two distinct porosity ratios (α) are considered: α � 0 and α � 0.4. In this study,
we consider the use of uniform foam, specifically the foam III model. Furthermore, the study considered
four distinct temperature differences, denoted as �T � 0, 300, 600, and 1000. It was observed that as the
temperature difference increases, the fundamental natural frequencies decrease. Conversely, an increase in the
volumetric graphene ratio leads to an increase in the fundamental natural frequencies. In the given scenario,
as depicted in Fig. 4a, when the temperature difference (�T ) is zero and the VG is also zero, the value of
λ is measured to be 2.03. However, when VG is increased to 0.25, the fundamental natural frequency of the
sandwich nanosensor plate (λ) is found to be 2.92. In addition, when the change in temperature (�T ) is equal
to 1000 and the VG is equal to 0, the natural frequency (λ) is equal to 1.54. As the volumetric ratio of graphene
increased, the dimensionless fundamental natural frequency exhibited a 43.8% increase, whereas an increase
in temperature difference resulted in a decrease of 24.1%. In Fig. 4b, the consideration of the porosity ratio
α � 0.4 is applied to foam III type. The natural frequency was fundamentally decreased by increasing the
porosity ratio. In Fig. 4c, it is observed that when the temperature difference is �T � 600, the λ is 1.77 at α �
0 and VG � 0, whereas λ is 1.48 at α � 0.4 and VG � 0. In this particular scenario, it can be observed that an
increase in the porosity ratio resulted in a corresponding decrease in the natural frequency value, specifically
by 16.4%. The study investigates the impact of the volumetric ratio of graphene and temperature difference on
the fundamental natural frequencies of a sandwich nanosensor plate. The nanosensor plate’s core is composed
of ceramic material. This analysis is presented in Fig. 5. The graph yields comparable findings, albeit with a
notable discrepancy in the natural frequency values, which are approximately 40% greater as a result of the
ceramic composition of the core component.

3.2 Effect of foam distributions

The study investigated three distinct foam types, including one uniform foam and two symmetrical foams,
for the core component of the sandwich nanosensor plate, as depicted in Fig. 2. The analysis in Figs. 6 and 7
considered four distinct temperature differences, denoted as �T � 0, 300, 600, and 1000, along with a range
of α values from 0 to 0.6. Furthermore, the influence of graphene was disregarded, and the central region of the
nanosensor plate was assumed to be composed of either metal or ceramic materials. Upon examining Fig. 6,
it can be observed that the dimensionless natural frequency of the sandwich nanosensor plate experiences
a decrease as the porosity ratio increases for foam I and foam III. Conversely, for foam II, an increase in
the porosity ratio leads to an increase in the dimensionless natural frequency. Moreover, augmenting the
temperature disparity diminishes the natural frequencies for every foam type. In Fig. 6a, the dimensionless
natural frequency was observed to be λ � 2.03 at �T � 0. However, it exhibited a decrease of 23% to λ �
1.54 when �T � 1000. In a similar vein, Fig. 6c demonstrates a correlation between the decrease in natural
frequencies and the increase in temperature difference for foam III. Meanwhile, Fig. 6b indicates a decrease of
approximately 9% in natural frequencies for foam II. Furthermore, in contrast to the remaining graphs depicted
in Fig. 6b, the natural frequency of the sandwich nanosensor plate exhibits an upward trend with increasing
porosity ratio. Figure 6d depicts the alterations in the inherent frequencies of the sandwich nanosensor plate
in relation to the porosity ratio, while considering a temperature difference �T � 600 across three distinct
foam varieties. As depicted in the graph, the natural frequencies exhibit an upward trend with the increase in
porosity ratio for foam II, whereas they demonstrate a downward trend for foam I and foam III.
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Fig. 4 Variation of the dimensionless frequencies λ(1, 1) depending on the volumetric graphene ratio VG and four distinct tem-
perature difference �T forα � 0 − 0.4, hp � 0.1 h, hc � 0.8 h and Br � 0.5, Co � 0.5 a PMGFP, α � 0 b PMGFP, α � 0.4
c PMGFP, �T � 0

Figure 7 presents the relationship between the fundamental natural frequency of the sandwich nanosensor
plate, composed of a silicon nitride core, and the porosity ratio. This relationship is examined under four distinct
temperature differences. Based on the graphical representations, it can be observed that the natural frequency of
the sandwich nanosensor plate decreases with an increase in both the porosity ratio and temperature difference
for foam I and foam III. In Fig. 7a, it is observed that the dimensionless fundamental natural frequency (λ) of
the sandwich nanosensor plate is 2.84 when the porosity ratio (α) is 0 and the temperature difference (�T )
is 0. Conversely, when α is 0.6, λ is found to be 2.36. In this instance, with an increase in the porosity ratio,
there was an observed decrease in the natural frequency by approximately 17%. Furthermore, in the case
where the porosity ratio is α � 0 and the temperature difference is �T � 1000, it can be observed that the
natural frequency decreases to λ � 2.59. Here, it is acknowledged that augmenting the temperature gradient in
sandwich nanosensor plates featuring a ceramic core leads to a reduction in the fundamental natural frequency
by approximately 8.8%. In the previous graph, the analysis involving a metal core exhibited a reduction in
the natural frequency of approximately 23%. Consequently, it is comprehended that metals are significantly
influenced by variations in temperature.

3.3 Effect of electric and magnetic fields

Figures 8 and 9 present the variations in the fundamental natural frequency of the sandwich nanosensor plate,
taking into account four distinct factors: electric potential, magnetic field, and temperature difference. The
graphics depict a sandwich nanosensor plate with an upper thickness of hp � 0.4 h and a lower thickness of
hp � 0.4 h. The core part of the nanosensor plate has a thickness of hc � 0.2 h. Moreover, in the context
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Fig. 5 Variation of the dimensionless frequencies λ(1, 1) depending on the volumetric graphene ratio VG and four distinct tem-
perature difference �T for α � 0 − 0.4, hp � 0.1 h, hc � 0.8 h and Br � 0.5, Co � 0.5 a PCGFP, α � 0 b PCGFP, α � 0.4
c PCGFP, �T � 0

of electric potential effect, both the upper and lower layers are composed entirely of barium. Conversely, in
the context of magnetic field effect, the composition solely comprises cobalt. Upon examination of Fig. 8, it
is observed that the natural frequency of the sandwich nanosensor plate exhibits a decrease with an increase
in the electric potential effect, as well as a decrease with an increase in the temperature difference. In the
given scenario depicted in Fig. 8a, where the core component consists solely of metal without any graphene
contribution, the natural frequency value is denoted as λ � 4.56 when Vm � 0 and �T � 0. However, this
value decreases to λ � 3.94 when Vm � 2. In Fig. 8b, when the core material of the sandwich nanosensor
plate is ceramic, the natural frequency of the nanosensor plate is λ � 3.45 for Vm � 0 and �T � 0. Given
the composition of ceramic as the primary constituent in this scenario, a reduction of 24.3% in the frequency
value was observed. In Fig. 8c, for a sandwich nanosensor plate with a metal core and a volumetric graphene
ratio of VG � 0.2, the natural frequency is λ � 4.62 when Vm � 0 and �T � 0. To clarify, when the core
component is composed of metal, augmenting the volume of graphene results in a just 1.3% increment in the
natural frequency of the nanosensor plate sandwich structure. In a similar vein, when the central component
comprises of graphene ceramic that has been reinforced, there is a partial increase in the natural frequency.
Furthermore, with an increase in temperature, the fundamental natural frequency of the sandwich nanosensor
plate decreases to zero, leading to the occurrence of buckling. Figure 8 demonstrates a negative correlation
between the electric potential effect and the critical temperature difference for buckling.

Figure 9 presents the variations in the natural frequency of the sandwich nanosensor plate, considering the
influence of four distinct magnetic field phenomena Hm and temperature gradients �T. Upon examination
of these graphs, similar to the previous graph, it can be observed that the natural frequencies exhibit a rapid
decrease as the temperature difference increases. Nevertheless, with an increase in the magnetic field, there is
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Fig. 6 Variation of the dimensionless frequencies λ(1, 1) depending on the porosity ratio α and three foam distribution type for
α � 0 and α � 0.4. a PMFP, Foam I b PMFP, Foam II c PMFP, Foam III d PMFP, �T � 600

a corresponding increase in the natural frequencies and buckling temperature. In Fig. 9a, the magnetic field
effect is observed at Hm values of 0, 0.2, 0.4, and 0.6, resulting in temperature changes of �T � 2017, 2132,
2237, and 2332 K, respectively.

3.4 Effect of nonlocal elasticity and material size factor

The study in Fig. 10 investigates the impact of altering the temperature difference on the fundamental nat-
ural frequency of the sandwich nanosensor plate. This is accomplished by analyzing four distinct nonlocal
parameters, denoted as e0a � 0, 1, 2, and 4. Based on the graphical representations, it can be observed that
an increase in the nonlocal parameter and temperature difference leads to a decrease in the natural frequency.
Furthermore, it is noteworthy that even at a temperature difference of �T � 1920, buckling is observed in
the sandwich nanosensor plate with a metal core. In Fig. 10b, the temperature difference (�T ) is 1905 K for
the metal nanosensor plate with a graphene-reinforced core, 2350 K for the ceramic nanosensor plate, and
2368 K for the graphene-reinforced nanosensor plate. Put simply, if the core material is ceramic, the temper-
ature threshold for buckling is raised. Moreover, the incorporation of graphene as a reinforced material leads
to a reduction in the buckling temperature of the metal core, while simultaneously causing an increase in the
buckling temperature of the ceramic core. Upon examination of Fig. 10a, it is observed that as the nonlocal
parameter for �T � 0 is increased from e0a � 0 to e0a � 4 nm2, there is a decrease in the natural frequency
by 8.87% from λ � 2.03 to λ � 1.85. In Fig. 10b, considering a graphene-reinforced metal core, the natural
frequency (λ) of the sandwich nanosensor plate is found to be 2.72, with a nonlocal parameter (e0a) of 0 and
a temperature difference (�T ) of 0. In similar instances, in Fig. 10c, d, the fundamental natural frequency of



2442 M. Eroğlu et al.

Fig. 7 Variation of the dimensionless frequencies λ(1, 1) depending on the porosity ratio α and three foam distribution type for
α � 0 and α � 0.4. a PCFP, Foam I b PCFP, Foam II c PCFP, Foam III d PCFP, �T � 600

the sandwich nanosensor plate is denoted as λ � 2.84 and λ � 3.43, correspondingly. It can be inferred that
the utilization of ceramic as the core material leads to an average increase of 33% in the fundamental natural
frequencies. Conversely, when the core material is reinforced with graphene, the average increase amounts to
27%.

The alteration in the fundamental natural frequencies of the sandwich nanosensor plate, as depicted in
Fig. 11, is determined by considering four distinct material size factors (lm � 0, 1, 2, and 4) and the temperature
difference. Upon examination of the figures, it becomes evident that the material size factor exerts a significant
influence on the natural frequencies. In the given illustration, denoted as Fig. 11a, the sandwich nanosensor
plate featuring a metal core exhibits distinct natural frequency values. Specifically, when the parameters lm �
0 and �T � 0, the natural frequency is determined to be λ � 2.03. However, when lm is altered to 4 nm2,
the natural frequency increases to λ � 7.92. Notably, as the material size factor is progressively enhanced,
the natural frequency value experiences an almost fourfold amplification. In a similar manner, the natural
frequencies of the sandwich nanosensor plate with a ceramic core are observed to increase when the material
size factor is increased, as depicted in Fig. 11c, d. It is important to observe that the buckling formation
temperature increases with an increase in the material size factor when the core part is composed of metal.
Conversely, when the core part is made of ceramic, the buckling temperature decreases. The fundamental
natural frequency values of the sandwich nanosensor plate exhibit an increase when graphene reinforced is
applied, as depicted in the provided graphs.
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Fig. 8 Variation of the dimensionless frequencies λ(1, 1) depending on the temperature difference �T and four electric potential
Vm for α � 0, VG � 0− 0.2, hp � 0.4 h, hc � 0.2 h and Br � 1, Co � 0 a PMGP, VG � 0 b PCGP, VG � 0 c PMGP, VG � 0.2
d PCGP, VG � 0.2

3.5 Effect of viscoelastic foundation

Figures 12 and 13 investigate the effects of spring and shear foundation considering the temperature differential.
Figure 12 illustrates the inverse relationship between the temperature difference and the natural frequencies
of the sandwich nanosensor plate. As the temperature difference increases, the natural frequencies decrease,
leading to buckling phenomena. As the spring foundation’s magnitude increases, the buckling temperature
also increases. In the provided figure (Fig. 12a), it is evident that buckling takes place as the value of K1
varies from 0 to 20. The buckling phenomenon is observed as the parameter λ decreases to 0 at specific values
of �T, namely 1920, 2056, 2182, and 2412, corresponding to K1 values of 0, 5, 10, and 20, respectively.
In Fig. 12b, buckling is observed at four distinct points: �T � 2350, 2388, 2424, and 2492. Hence, when
the core component comprises ceramic material and the spring foundation exhibits coefficient values such
as K1 � 0.5, there is a notable augmentation in the temperature at which buckling occurs. Furthermore, it is
observed that the incorporation of a ceramic core enhances the inherent frequencies of the nanosensor plate
sandwich structure. Figure 13 investigates the impact of four distinct shear foundationK2 � 0, 0.02, 0.04, 0.08
coefficients on the alteration of the natural frequency. The graph exhibits analogous characteristics to those
observed in the spring foundation.
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Fig. 9 Variation of the dimensionless frequencies λ(1, 1) depending on the temperature difference�T and four magnetic potential
Hm for α � 0, VG � 0− 0.2, hp � 0.4 h, hc � 0.2 h and Br � 1, Co � 0 a PMGP, VG � 0 b PCGP, VG � 0 c PMGP, VG � 0.2
d PCGP, VG � 0.2

4 Result and discussion

In this study, volumetric ratio, temperature difference, foam type, porosity ratio, electric and magnetic fields,
nonlocal andmaterial size parameters, and foundationwere examined to see how they affect graphene qualities.
Graphene exhibited a significant 43.8% increase in its natural frequency as a result of volume augmentation.
Moreover, the nanosensor plate, which is constructed in a sandwich configuration, exhibits buckling phenom-
ena when subjected to its inherent frequency. This behavior occurs when the graphene volume ratio reaches a
temperature difference of�T � 1900, resulting in aminimum value of zero. The natural frequency of the sand-
wich nanosensor plate decreases as the porosity ratio increases for foam I and foam III. In foam II, increasing
porosity increases the natural frequency. The sandwich nanosensor plate’s natural frequency decreases with
higher porosity ratio and temperature difference for foam I and foam III. In a sandwich nanosensor plate with
a metal core and a graphene ratio of VG � 0.2, the natural frequency is λ � 4.62 when Vm � 0 and �T � 0.
Increasing the amount of graphene in the metal core component only results in a 1.3% increase in the natural
frequency of the nanosensor plate sandwich configuration. Increasing the nonlocal parameter and temperature
difference decreases the natural frequency. Additionally, buckling occurs in the sandwich nanosensor plate
with a metal core even at a temperature difference of �T � 1920 K. In Fig. 8b, the temperature differences
(�T ) are as follows: 1905 K for the metal nanosensor plate with a graphene-reinforced core, 2350 K for
the ceramic nanosensor plate, and 2368 K for the graphene-reinforced nanosensor plate. The material size
factor affects the natural frequencies. Figure 9a shows a sandwich nanosensor plate with a metal core and
noticeable natural frequency values. When lm � 0 and �T � 0, the natural frequency is λ � 2.03. When lm
is changed to 4 nm2, the natural frequency increases to λ � 7.92. As the volume of graphene increased, the
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Fig. 10 Variation of the dimensionless frequencies λ(1, 1) depending on the temperature difference �T and four nonlocal param-
eters e0a for α � 0, lm � 0, hp � 0.1 h, hc � 0.8 h and Br � 0.5, Co � 0.5 a PMGP, VG � 0 b PMGP, VG � 0.2 c PCGP, VG �
0 d PCGP, VG � 0.2

natural frequency increased by 43.8%. However, a higher temperature difference caused a decrease of 24.1%.
When exploring foundation parameters, we can observe that changes in temperature difference may have an
impact on natural frequencies. Specifically, an increase in temperature difference seems to be associated with
a decrease in natural frequencies. This decrease in natural frequencies, in turn, may potentially lead to the
occurrence of buckling phenomena.

5 Conclusion

This study aims to examine the buckling properties of a sandwich nanosensor plate consisting of piezoelectric
materials on its top and bottom surfaces, with a metal or ceramic core that might potentially be strengthened
by integrating graphene. Moreover, an inquiry was carried out about the modeling of the central component
in three separate structures, specifically Foam I, Foam II, and Foam III. The thermal buckling properties
of sandwich nanosensor plates are calculated by employing trigonometric functions to solve the sinusoidal
higher-order shear deformation theory.
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Fig. 11 Variation of the dimensionless frequencies λ(1, 1) depending on the temperature difference �T and four material size
factors lm for α � 0,e0a � 0, hp � 0.1 h, hc � 0.8 h and Br � 0.5, Co � 0.5 a PMGP, VG � 0 b PMGP, VG � 0.2 c PCGP, VG� 0 d PCGP, VG � 0.2

Fig. 12 Variation of the dimensionless frequencies λ(1, 1) depending on the temperature difference �T and four distinct spring
foundation K1 for α � 0, lm � 0, hp � 0.1 h, hc � 0.8 h and Br � 0.5, Co � 0.5 a PMP b PCP
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Fig. 13 Variation of the dimensionless frequencies λ(1, 1) depending on the temperature difference �T and four distinct spring
foundation K2 for α � 0, lm � 0, hp � 0.1 h, hc � 0.8 h and Br � 0.5, Co � 0.5 a PMP b PCP
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[

π

hs
sin

(

π z2
hs

)]2

,

[

cos

(

π z2
hs

)]2
}

dz

]

, n � 1, s2, c2

P (n)
μi j

� −
[

∫ −h/2

−h/2−hs
μi j

{

(

2ϕ0

hs

)[

π

hs
sin

(

π z1
hs

)]

,

[

π

hs
sin

(

π z1
hs

)]2

,

[

cos

(

π z1
hs

)]2
}

dz +
∫ h/2

−h/2
μi j

{(

2ϕ0

h

)

[π

h
sin

(π z

h

)]

,
[π

h
sin

(π z

h

)]2
,

[

cos
(π z

h

)]2
}

dz +
∫ h/2+hs

h/2
μi j

{(

2ϕ0

hs

)[

π

hs
sin

(

π z2
hs

)]

,

[

π

hs
sin

(

π z2
hs

)]2

,

[

cos

(

π z2
hs

)]2
}

dz

]

, n � 1, s2, c2

K11 � −c2
(

α2A(0)
11 + β2A(0)

66

)

K12 � −c2αβ
(

A(0)
12 + A(0)

66

)

K13 � c2
(

α3A(1)
11 + αβ2

(

A(1)
12 + 2A(1)

66

))

K14 � c2
(

α3A
(0)
11 + αβ2

(

A
(0)
12 + 2A

(0)
66

))

K15 � c2α˜A
(0)
13

K16 � c2αB
(0)
e31

K17 � c2αB
(0)
q31

K22 � −c2
((

β2A(0)
22 + α2A(0)

66

))

K23 � −c2
(

β3A(1)
22 + βα2

(

A(1)
12 + 2A(1)

66

))

K24 � c2
(

β3A
(0)
22 + βα2

(

A
(0)
12 + 2A

(0)
66

))

K25 � c2β˜A
(0)
23

K26 � c2βB
(0)
e32

K27 � c2βB
(0)
q32

K33 � α2[1 + B(α2 + β2)]
(

N0 + pe31 + pq31 + kp+N
T
x

)

+ β2[1 + B(α2 + β2)]

(

γ N0 + pe32 + pq32 + kp+N
T
y

)

+ kw − c2
(

α4A(2)
11 − β4A(2)

22 − 2α2β2
(

A(2)
12 + 2A(2)

66

))

K34 � −c2
(

α4A
(1)
11 +β4A

(1)
22 + 2α2β2

(

A
(1)
12 + 2A

(1)
66

))

K35 � −c2
(

α2
˜A(1)
13 +β2A(1)

23

)

K36 � −c2
(

α2B
(1)
e31+β2B

(1)
e32

)

K37 � −c2
(

α2B
(1)
q31+β2B

(1)
q32

)

K44 � −c2
(

α2
̂A(0)
55 +β2

̂A(0)
44 +α4A

( f )
11 +β4A

( f )
22 + 2α2β2

(

A
( f )
12 + 2A

( f )
66

))

K45 � −c2
(

α2
(

˜A( f )
13 + ̂A(0)

55

)

+β2
(

˜A( f )
23 + ̂A(0)

44

))

K46 � c2
(

α2
(

B(g)
e15 − B

( f )
e31

)

+β2
(

B(g)
e24 − B

( f )
e32

))

K47 � c2
(

α2
(

B(g)
q15 − B

( f )
q31

)

+β2
(

B(g)
q24 − B

( f )
q32

))
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K55 � −c2
(

˜A(g)
33 + α

2
̂A(0)
55 + β2

̂A(0)
44

)

K56 � c2
(

α2B(g)
e15+β2B(g)

e24 − B
(g)
e33

)

K57 � c2
(

α2B(g)
q15+β2B(g)

q24 − B
(g)
q33

)

K66 � c2
(

α2 p(c2)ε11 +β2 p(c2)ε22 + p(s2)ε33

)

K66 � c2
(

α2 p(c2)g11+β2 p(c2)g22 + p(s2)g33

)

K77 � c2
(

α2 p(c2)μ11+β2 p(c2)μ22 + p(s2)μ33

)

c2 � (1 + lm(α
2+β2) (A4)

M11 � −[

1 + B(α2+β2)]m0

M13 � α
[

1 + B(α2+β2)]m1

M14 � α
[

1 + B(α2+β2)]m3

M12 � M15 � M16 � M17 � 0

M22 � −[

1 + B(α2+β2)]m0

M23 � β
[

1 + B(α2+β2)]m1

M24 � β
[

1 + B(α2+β2)]m3

M25 � M26 � M27 � 0

M33 � −[

1 + B(α2+β2)]m0 − (

α2+β2)[1 + B(α2+β2)]m2

M34 � −[

1 + B(α2+β2)]m0 − (

α2+β2)[1 + B(α2+β2)]m4

M35 � −[

1 + B(α2+β2)]m6

M36 � M37 � 0

M44 � −[

1 + B(α2+β2)]m0 − (

α2+β2)[1 + B(α2+β2)]m5

M45 � −[

1 + B(α2+β2)]m6

M46 � M47 � 0

M55 � −[

1 + B(α2+β2)]m7

M56 � M57 � M66 � M67 � M77 � 0 (A5)
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