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A B S T R A C T   

In recent years, due to environmental concerns and the depletion of fossil fuels, alternative fuel use and alter-
native emission reduction methods have gained importance in the automotive industry. In addition, methanol is 
used as an alternative fuel in gasoline engines with coated piston engines. This study first presents an experi-
mental investigation of engine performance and exhaust emissions for a partially thermal barrier lined piston 
engine operating on methanol-gasoline blends. In the second phase the obtained data is then used to develop an 
Artificial Neural Network (ANN) based model to predict engine performance and exhaust emissions for 
methanol-gasoline blends. The developed ANN model was trained and validated using MATLAB. The results of 
the experimental study showed that the use of methanol-gasoline blended fuel in the engine provides better 
engine performance and reduced exhaust emissions compared to gasoline fuel. According to the results obtained, 
an increase of 3.7 % in effective power and a decrease in NOx and HC emissions by 19 % and 18 %, respectively, 
compared to the STD case when both coating and alternative fuel are used in the engine. With the established 
ANN models, engine performance parameters and exhaust emission parameters were predicted with 99 % and 
98 % accuracy respectively.   

1. Introduction 

The combustion process in internal combustion engines generate 
emissions that contribute to air pollution and climate change [1]. These 
generated emission values vary depending on the engine 
working-running conditions and fuels used [2]. Besides, these criteria 
are essential parameters that affect engine efficiency. Engines with 
higher efficiency provide better fuel economy and lower emission by 
converting a higher percentage of the fuel into energy [3]. Researchers 
have been conducting thermal coating works in engines in order to 
improve engine working-running parameters [4]. In addition, along 
with alternative fuel studies, both performance parameters and emission 
values are being improved [5]. 

Pistons coated with thermal barrier have been developed in order to 
reduce heat transfer from combustion chamber to the piston, and this 
decreases the heat load on piston and cylinder walls [6]. This effect 
reduces the amount of heat released by the engine [6,7]. Thermal barrier 
coating also increases the efficiency of the engine, and thus decreases 
the amount of fuel burnt and therefore the amount of emission released 

to the atmosphere. Coating all elements of combustion chamber in spark 
ignition engines leads to an increase in the tendency of knock in the 
engine. Therefore, partial coating methods are used in engines [8,9]. 

When studies conducted on partial coating method are examined, it 
is seen that Saravanan et al. investigated the effects of coating of the 
piston with biofuel in a gasoline engine on performance and emission. As 
a result of the study, they determined increases in effective efficiency 
values due to coating. They also found that in the case of using 10 % 
biofuel, there was a decrease in NOx emissions and increases in effective 
efficiency and HC emissions. In coated piston experiments, they deter-
mined decreases by 3.1 % and 3.6 %, respectively, in HC and CO 
emissions when 10 % biofuel blended fuel was used compared to the 
standard fuel use [10]. Sivakandhan et al. examined the effects on the 
performance and emissions in a coated engine and a diesel engine 
working with diesel fuel blended with sardine oil methyl ester. They 
coated the piston with 0.5 mm thick partially stabilized zirconium. As a 
result of the experiment carried out on the coated engine, thermal effi-
ciency, heat dissipation, and cylinder interior pressure values increased 
with biodiesel and nanoparticle added fuel with respect to the stan-
dardized fuel [11]. Bayat and Yildiz investigated the effects of coating 
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the surface of the piston with different materials in different thicknesses 
with finite elements analysis. As a result of their study, they found a 
decrease by 15 % in friction force according to pressure values in the 
coated engine [12]. Obulesa et al. experimentally investigated the ef-
fects of gasoline-methanol blends and thermal barrier coating in a 
one-cylinder and two-stroke spark ignition engine. They added meth-
anol to the fuel at volumetric amounts of 10 %, 20 %, and 30 %. In 
addition, they coated the upper surface of the piston with brass material 
of 300 μm thickness. As a result of the study, the best result was obtained 
with the fuel blend of 20 % methanol + gasoline. With 20 % blend fuel 
and coating, improvements were observed in effective efficiency, spe-
cific fuel consumption (SFC), and mechanical efficiency [13]. Cesur 
investigated the effects of partial coating of the upper surface of the 
piston and water injection with an experiment. He determined im-
provements in effective power and effective efficiency in the partial 
coating method. When he examined the emission values, he found in-
creases in NOx emissions depending on increased combustion chamber 
temperature with coating and decreases in HC emissions [14]. Abbas 
et al. experimentally investigated the effects of ceramic coating on 
performance and emissions in a single cylinder engine. As a result of the 
study, they found an increase in effective efficiency and NOx emissions 
with coating application [15]. Krishnamani et al. experimentally 
investigated the effects of coatings and alternative fuels on performance 
and emissions in an engine. As a result of the experimental study, they 
found that the effective data and NOx emissions increased with ceramic 
coating application while HC emissions decreased [16]. 

Petroleum-based fuels used in internal combustion engines lead to 
air pollution. In order to reduce the negative effects of these fuels, 
alternative fuels are used in engines [12]. In addition to the primary 
fuels of engines such as gasoline and diesel, alternative fuels such as 
methanol, ethanol, biodiesel, and hydrogen are fuels that are used in 
order to increase performance and decrease emission values [17,18]. 
Methanol is an alternative fuel recommended as a solution to decreasing 
environmental effect of vehicle emissions. Methanol has lower viscosity 
compared to gasoline. Therefore, its atomization and mixing with air is 
easier [19]. Alcohol fuels have higher oxygen content and H/C ratio 
[20]. Alcohol fuels are fuels that have high evaporation energy. There-
fore, they decrease in-cylinder heat in suction and compression strokes. 
Thanks to this cooling property of alcohols, more air can be absorbed 
into the cylinder during suction stroke, and the engine’s volumetric ef-
ficiency is improved [21]. The high flame rates of alcohols lead to earlier 
completion of combustion and increase the thermal efficiency of the 
engine [22–24]. 

When the literature is reviewed, it is seen that Nuthan Prasad et al. 
(2020) investigated the changes in performance and exhaust emissions 
when methanol blends were used as fuel in a one-cylinder four-stroke 
engine under full load conditions and varying compression ratios. As a 
result of the experimental study, they determined improvements in en-
gine performance but increases in NOx emissions [25]. Elfasakhany 
(2015) experimentally examined the effects of using alcohol-gasoline 
blends at varying ratios in a gasoline engine on performance and 
emissions. As a result of the experiments, he found decreases in CO and 
HC emissions and increases in volumetric efficiency, engine torque, and 
effective power with alcohol-gasoline blends [26]. Zhao (2011) injected 
methanol-gasoline blends in varying ratios to the engine with the help of 
an electronic control unit. As a result of the experiment, he observed that 
when methanol ratio rose up to 50 %, due to the decrease in the energy 
content of methanol-gasoline blends, the combustion performance of the 
engine worsened [27]. Agarwal et al. (2014) analyzed the effects of 10 % 
and 20 % methanol-gasoline blends in a spark ignition engine under 
partial load conditions on engine performance and exhaust emissions in 
comparison to gasoline. As a result, they determined that the use of 
methanol-gasoline blends as fuel in the engine increased the thermal 
efficiency of the engine, and it decreased NO and CO emissions [28]. 
Vancoille et al. (2013) investigated the effects of methanol-gasoline 
blends in different ratios on engine performance and exhaust emis-
sions. They determined that effective efficiency increased and NOx and 
CO2 emissions decreased [23]. Canakci et al. (2012) examined the ef-
fects of using ethanol-gasoline and methanol-gasoline blends as a fuel in 
a gasoline engine. In the experiments they conducted, they used 
different loads, revolutions, and blend ratios. As a result, they deter-
mined decreases in emission values (CO, HC, and NOx) and increases in 
SFC [29]. Qadiri investigated the effects of two different types of 
alterative fuel additives to gasoline fuel on performance and emissions. 
In the study, they used 20 % methanol-80 % gasoline and 8 % 
ethanol-2% water-90 % gasoline blended fuels. As a result of the study, 
they found a slight improvement in performance and reductions in HC 
and NOx emissions with methanol-gasoline blended fuel [30]. 

The usability of alternative fuels in different combustion variations 
in internal combustion engines requires many experiments to be con-
ducted on the determination of engine performance parameters and 
exhaust emissions. When many experiments are carried out, the costs 
increase [31]. Today, due to the fast developing artificial intelligence 
technologies, the results of experiments in different conditions can be 
estimated with existing experiment data in many fields. However, these 
estimations require speedy processing of numerous data. In this context, 

Nomenclature 

ANN Artificial Neural Network 
BFG Broyden-Fletcher-Goldfarb-Shanno 
BFG3 3-Hidden-Neuron BFG 
BP Back Propagation 
BR Bayesian Regularization 
C Carbon 
CGB Conjugate Gradient BP 
CO Carbon Monoxide 
CO2 Carbon Dioxide 
CSA Crank Shaft Angle 
H Hydrogen 
HC Hydrocarbon 
H2 Hydrogen 
LM Levenberg Marquardt 
LM3 3-Hidden-Neuron LM 
MAPE Mean Absolute Percentage Error 
MSE Mean Square Error 

M1 Model 1 of ANN 
M2 Model 2 of ANN 
M3 Model 3 of ANN 
M10 10 % Methanol+90 % Gasoline 
M20 20 % Methanol+80 % Gasoline 
NiCrAl Nickel Chromium Aluminum 
NOx Nitrogen Oxides 
OSS One-step Secant BP 
R2 Regression Coefficient 
RMSE Root Mean Square Error 
SFC Specific Fuel Consumption 
STD Standard Piston Engine 
TBL Coated Piston Engine 
Y2O3 Yttrium Oxide 

Subscripts 
At the actual value 
Ft the forecast value 
n the number of fitted points  
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powerful computer processors and software are needed. One of these 
software widely used today is MATLAB-nntool application [32]. 

The fuel [33], performance [34,35] and emission parameters [36] of 
engines running on diesel, gasoline and other fuel types [37] and their 
combinations [38,39] can be estimated with artificial intelligence 
technologies such as ANN [40], machine learning [41], etc. ANN is an 
artificial intelligence system that can bring solutions to the problems in 
which there is linear or non-linear relationship between its input and 
output and works based on relations between neurons as in human brain 
[42]. Different ANN structures have been built in order to produce better 
solutions to different problems. The structure of an ANN varies ac-
cording to the solutions it provides to the problem. However, it seems to 
be impossible to develop a model related to the ANN structure that can 
yield the best solution. Therefore, different ANN structures for a prob-
lem are tried, and it is attempted to find the best solution [43]. This 
situation requires computer solutions in ANN applications. 
MATLAB-nntool is widely used as it provides an opportunity to do trials 
by creating different network structures in a fast way and yields prac-
tical results for different inputs for the solution found [31,39,41,43]. 

Engine revolution, engine torque, fuel flow, suction manifold mean 
temperature, and cooling water entry temperature were used as input 
data in back propagation (BP) learning algorithm in ANN built in order 
to estimate the power, specific fuel consumption, exhaust gas temper-
ature, and mean effective pressure of a 4-cylinder 4-stroke methanol 
engine. The results obtained show that ANN has high precision in esti-
mating output data [44]. In experiments where 
gasoline-methanol-ethanol blends are used as fuels in a spark ignition 
engine, values such as break power, torque, specific fuel consumption 
(SFC), fuel flow rate, etc. Can be successfully estimated with an ANN in 
which engine revolution and methanol and ethanol ratios are used as 
inputs [45]. In the ANN built in order to estimate SFC value and exhaust 
emissions of a gasoline engine, different training algorithms were used 
to train BP. When the estimation results obtained were compared with 
experiment results, it was seen that ANN yielded successful results [46]. 
Estimation results in the ANN built to simultaneously estimate exhaust 
emissions of a direct injection diesel engine and trained with BP and 
Radial Basic Function validated the experiment data with very close 
values [47]. The torque of a one-cylinder engine that runs on 
gasoline-methanol blends in different blend ratios between 0 and 18 % 
can be estimated with high precision through an ANN in which brake 
power, SFC, brake thermal efficiency, exhaust gas temperature, exhaust 
emission values, engine revolution and load, and fuel blend ratio are 
used as inputs [48]. In studies conducted, it is seen that the ability of 
different inputs introduced to ANNs to estimate similar outputs one by 
one or as a whole is rather high. 

In the literature, the reduction of emissions from internal combustion 
engines and alternative fuels to petroleum-based fuels have been 
investigated in detail. In this study, two alternative research methods 
were used simultaneously and an artificial neural network method was 
also used for the prediction of experimental data. In the experimental 
study, in order to reduce the exhaust emissions from the engine to the 
environment without reducing the engine performance, firstly, the 
standard engine piston was partially coated with ceramic material with 
high heat reserve. In this way, some improvements in performance and 
emission values were found. However, in order to achieve the desired 
results, secondly, gasoline-methanol mixtures were used as alternative 
fuel in the ceramic coated engine. As a result of the study, the oppor-
tunity to release less pollutant emission to the environment was 
revealed. Furthermore, in addition to the experimental work, ANN was 
used with an alternative approach in order to estimate both engine 
performance parameters and exhaust emissions. The experiment data 
obtained were combined with similar engine data borrowed from the 
literature and used in the training of three different ANNs according to 
the output status created in MATLAB-nntool, and experiment results of 
fuel with 20 % methanol were estimated in the trained network. Finally, 
estimation results and experiment results were compared. 

2. Materials and methods 

2.1. Experimental methods 

In the experiments, a 2-cylinder, natural-suction, injection, and 
water-cooled spark ignition engine was used. The schematic view of the 
test bench where the experiment was carried out is presented in Fig. 1. 
The technical specifications of the test engine are given in Table 1. 

An electric dynamometer with a capacity of 20 kW was used in the 
experiments. In order to measure the exhaust emissions released from 
the engine, MRU Delta 1600 L brand measurement device was used 
(Table 2). The emission measurement device measures CO and CO2 
values as percentage and HC and NOx values as ppm. NiCr–Ni type 
thermocouples were used in the experiments to measure temperature 
values in certain parts of the engine. 

Electronic fuel injection system was used in order to inject methanol 
in different ratios to the engine. Electronic fuel injection system de-
termines the position of the camshaft and the revolution of the engine 
through the electronic control unit decoder, and strokes are determined 
with top dead center sensor. Alcohol injectors were positioned on the 
suction manifold in a way to inject the fuel exactly to the back of the 
engine intake valve. Alcohol was started to be injected in ratios of 10 % 
and 20 % of the fuel consumed by the engine with suction valve in open 
position and after the piston passed the top dead center 5◦ CSA. The 
methanol used in the experiments was industrial-use type and 99.9 % 
pure. In the experiments, 10 % methanol+90 % gasoline (M10) and 20 
% methanol+80 % gasoline (M20) blends were used. Technical speci-
fications of gasoline and methanol fuel are given in Table 3. 

In order to compare the results of the standard (STD), coated (TBL), 
and methanol injection (M10, M20) experiments, the engine was run 
under the same conditions (ignition advance, injection pressure, entry 
temperature, and pressure and air/fuel ratio). The experiments were 
carried out at constant ignition advance. The ignition advance of the 
engine was 10◦ crankshaft angle (CA). The experiments were carried out 
with the throttle valve in wide open position and at engine revolutions of 
1400, 1,00, 2200, 2600, 3000 and 3400 rpm. The experiments were first 
started with gasoline fuel. Engine performance parameters and exhaust 
emissions were measured under full load conditions with gasoline fuel. 
After the experiments with gasoline fuel were completed, the engine 
piston was replaced with a coated piston and the engine was operated 
under the same conditions. In the last stage of the study, 10 % methanol 
and 20 % methanol were injected into the engine with coated piston and 
gasoline fuel, respectively, and performance and emission values were 
measured. The flowchart showing the experimental steps and results of 
the experimental study is given in Fig. 2. 

The partial differentiation method was used to conduct uncertainty 
analysis during the experiments in order to distinguish between sys-
tematic and random uncertainties. Table 4 presents the outcomes of the 
analysis of uncertainty. 

2.2. ANN structure 

The inputs for the ANN application were chosen as the methanol 
ratio of the fuel, coated or uncoated piston, crank force read in the 
dynamometer and engine revolution according to the experiment data. 
According to these data, engine performance parameters (moment, en-
gine power, SFC, effective efficiency) and exhaust parameters (HC, CO, 
NOx) were estimated. 

Network structure determination and normalization were done ac-
cording to the methodology of our previous study [49]. 

In engine experiments, the data on piston-uncoated gasoline fuel, 
coated gasoline fuel, 10 % methanol added gasoline fuel, and 20 % 
methanol added gasoline fuel were used. As the data on uncoated piston 
were few, uncoated 10 % and 20 % methanol added gasoline fuel 
experiment data obtained from our previous studies were used in the 
training of the ANN [50]. Of the 36 data in total, 18 belonged to 
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piston-coated engine and 18 to piston-uncoated engine. 30 data were 
used for training the ANN. MATLAB-nntool uses 70 % of the data fed into 
it for training, 15 % for test, and 15 % for validation (Fig. 2). These rates 
can be changed when desired. However, in this study, the default set-
tings were used. The input data obtained from coated piston M20 fuel 
were fed to the network after its training was completed and the ANN 
was asked to estimate. Predictions were made on the trained network 
with data taken from the literature [20], and it was seen that the 
network worked correctly. The estimations obtained were evaluated. 

2.2.1. Creation of the network structure in MATLAB-nntool 
Considering that the factors that affect motor performance and 

exhaust emission results included in the problem outputs can be 
different from each other, input numbers were kept constant and three 
different models were established in terms of output numbers. In Model 
1 (M1), each output corresponding to input parameters was separately 
estimated (Fig. 3). In this estimation model, while evaluating training 
results, trials where regression coefficient (R2) was over 99 % in the 
training for engine performance parameters and over 96 % in the vali-
dation and test, and where it was over 98 % in the training for exhaust 
emission parameters and over 96 % in the validation and test were 
recorded, and simulation was performed. In Model 2 (M2), keeping 
input parameters constant, four motor performance parameters were 
estimated in one network, while three exhaust emission parameters 
were estimated in another network (Fig. 4). While deciding on the 
training level of the network in M2, in cases where R2 coefficient was 
over 98 % in the training for engine performance parameters and 0 ver 
97 % in the validation and test, and where it was over 97 % in the 
training for exhaust emission parameters and over 95 % in the validation 
and test, simulation was performed, and results were recorded and 
evaluated. In Model 3 (M3), where all outputs were estimated together 
(Fig. 5), in cases where R2 exceeded 93 % in the training and 90 % in the 
validation and test, the network was deemed to be good, simulation was 

Fig. 1. Test bench.  

Table 1 
Test engine features.  

Engine Type Lombardini 

Piston Diameter 72 mm 
Stroke 62 mm 
Number of Cylinders 2 
Stroke Volume 0,55 dm3 

Power, 2400 rpm 15 kW 
Compression rate 10.7/1 
Cooling liquid  

Table 2 
Exhaust gas analyzer device features.  

Measurement Measuring range Sensibility 

CO, %vol 0–15.00 ±0.06 % 
NOx, ppm 0–10000 ±5 
HC, ppm 0–2000 ±12 

The upper part of the piston was coated with Y2O3 (TBL) ceramic material of 8 
mm width and 0.5 mm thickness. In order to coat the piston, atmospheric plasma 
spray method was used. H2 % blend was used for the plasma gas. The piston 
coating consisted of a Y2O3 layer of 0.30 mm thickness over a NiCrAl bond layer 
of 0.20 mm thickness. 

Table 3 
Properties of fuels.  

Property Unit Gasoline Methanol 

Chemical formula – C7H17 CH3OH 
Carbon content % massive 85–88 37.5 
Hydrogen content % massive 12–15 12.6 
oxygen content – – 49.9 
Density (15 ◦C) kg/m3 750.8 796 
Research octane number – 95 108.7 
Lower calorific value MJ/kg 31.98 15.8 
Stoichiometric – 14.7 6.45 
Latent heat of Vaporization KJ/kg 349 1178 
Auto-ignition temperature 0C 257 464 
Boiling point 0C 45–207 64  

I. Cesur and F. Uysal                                                                                                                                                                                                                           



Energy 291 (2024) 130393

5

performed, and the results were recorded. 
In MATLAB-nntool, different networks can be established with 

different names in the same problem, trials can be made, and the results 
obtained can be saved as tables. There are 19 different types of network 
such as Cascade-forward backprop, Competitive, Elman Backprop, Feed- 
forward backprop, Hopfield, etc. Feed-forward backprop (BP) network 
type, which we thought could produce the best solution to our problem 
according to our pervious experiences and the results in the literature, 
was chosen. After the input data and target data files are introduced to 
the network, training function will have to be chosen among 14 alter-
natives such as Broyden-Fletcher-Goldfarb-Shanno (BFG), Bayesian 
Regularization (BR), Conjugate Gradient Backpropagation (CGB), One- 
step secant backpropagation (OSS), and Levenberg Marquardt (LM). 
As calculation is short and it generally yields correct results, MATLAB- 
nntool recommends LM function as default. However, by trying 
different functions, better results can be obtained. MSE, MSEREG, or SSE 

can be chosen as performance functions. In this study, the commonly 
used MSE was preferred. The number of layers was chosen as 2 for single 
hidden layer trials and as 3 for double hidden layer trials, and by 
changing neutron numbers, trials were made. Among LOGSIG, PURE-
LIN, TANSIG, as it is commonly used and yields more correct results, 
TANSIG was chosen as transfer function (Fig. 2). After necessary selec-
tions were made, the network structure was displayed, and after seeing 
that it was appropriate, the network was recorded. 

2.2.2. MATLAB-nntool network training 
As training parameters, epochs count, goal, min-grad and max-fail 

were determined. Here, the number of epochs can be increased ac-
cording to the problem. The goal is generally selected as zero in order to 
obtain the most correct result. As the probability of obtaining exactly 
correct result was low, max-fail and epochs count were determined as 
close to each other. When the results that were thought to be the best 
results were obtained, simulation data (M20 experiment data for coated 
engine) were loaded as input in the simulation window, and results were 
obtained and evaluated. By reviewing the results, the solutions that the 
network brought to the new problems were assessed. The network 
structure obtained was recorded for future use. 

2.3. Statistical evaluation of the estimations obtained from the ANN 

Different training algorithms were tried at different hidden neuron 
numbers in the BP model for M1, M2, and M3 models, and simulations 
were run in the ANN which was decided to be good. After de- 
normalizations of the results obtained from the simulation were per-
formed, R2, Mean Absolute Percentage Error (MAPE) and Root Mean 
Square Error (RMSE) values were calculated, and they were used as 

Fig. 2. Experimental flow chart.  

Table 4 
Uncertainties.  

Parameters Systematic uncertainties, ± 

Engine Load, N 0.1 
Engine Speed, rpm 1.0 
Fuel Time, s 0.1 
Temperature, 0C 1 
Fuel consumption, g 0.01 

Parameters Total Uncertainty, % 

SFC, g/kWh 1.2 
Torque, Nm 1.0 
Effective power, kW 1.3  
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decision-making tools in deciding which network was the best. 
The following formula was used in calculating MAPE value [51]: 

MAPE =
1
n
∑n

t=1

⃒
⃒
⃒
⃒
At − Fi

At

⃒
⃒
⃒
⃒ (1)  

n is the number of fitted points, At is the actual value, Ft is the forecast 
value. 

The following formula was used in order to obtain RMSE results [51]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1
(At − Ft)

2

√

(2) 

R2 was calculated with the following formula [52]: 

R2 =

⎡

⎢
⎢
⎢
⎢
⎣

n
(
∑n

t=1
AtFt

)

−

(
∑n

t=1
At

)(
∑n

t=1
Ft

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
∑n

t=1
A2

t −

(
∑n

t=1
At

)2
]√

√
√
√

[

n
∑n

t=1
F2

t −

(
∑n

t=1
Ft

)2
]

⎤

⎥
⎥
⎥
⎥
⎦

2

(3) 

MAPE, RMSE, and R2 results obtained were presented as tables, and 
they were used as the decision-making tool for determining the network 
that gave the best result. 

3. Result and discussion 

3.1. Experimental results 

In internal combustion engines, decreasing emission values released 
to the environment and increasing engine efficiency depend on 
increasing combustion efficiency. Methods of increasing combustion 

Fig. 3. Model 1 ANN structure.  

Fig. 4. Model 2 ANN structure.  
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efficiency in engines include increasing combustion chamber tempera-
ture and using alternative fuels. In the present study, upper section of the 
piston was partially coated with thermal material. The graph that shows 
the engine torque values obtained when the piston was coated with Y2O3 
material is given in Fig. 6. In the coated engine, increases were observed 
in engine torque in all revolutions compared to the standard engine data. 
Maximum increase amount in the moment was determined to be 2.5 % 
at 2200 rpm. The reasons for the increase in the torque values of the 
coated engine compared to STD are decrease in internal piston tem-
perature loss thanks to ceramic coating, getting the fuel to burn more by 
preventing flameout, and related energy increase. When we look at the 
literature, improvements in engine torque are obtained with ceramic 
coating or partial ceramic coating methods in engines. When Abbas et al. 
examined the in-cylinder pressure values with ceramic coating method 
in a diesel engine, they found that the in-cylinder pressure value of the 
coated piton engine was higher than the uncoated piston engine [15]. 

The changes in engine torque when methanol was injected to the 
coated engine in different ratios are presented in Fig. 6. When the graph 

was examined, in the case where M10 fuel was used, increases were 
observed in all engine revolutions, while in the case where M20 fuel was 
used, decreases were determined in torque values. With respect to STD 
engine data, maximum increase in engine torque was 3.7 % at 2200 rpm. 
The reason for the increase in engine torque with M10 fuel was the in-
crease in combustion efficiency depending on O content in alcohol. In 
addition, high hidden evaporation temperature of methanol decreases 
the temperature of suction air and increases volumetric efficiency. On 
the other hand, the reason for the decreases in the engine torque with 
M20 fuel was the lower minimum temperature value of methanol 
compared to that of gasoline. Hence, lower energy of M20 fuel in 
comparison to gasoline fuel leads to generation of less power and 
moment. When the studies in which methanol-gasoline blended fuels are 
used as fuel in the engine are examined, it is seen that methanol mixed 
with gasoline fuel up to certain ratios causes improvements in engine 
torque. Studies conducted by Cesur and Kumar show that methanol- 
gasoline blended fuel increases engine torque [53,54]. 

Fig. 7 presents effective power values obtained in TBL piston engine 
and when M10 and M20 fuels were used in TBL piston engine. When the 

Fig. 5. Model 3 ANN structure.  

Fig. 6. Experimental torque variation.  Fig. 7. Experimental power variation.  
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graph was examined, it was observed that there were increases in all 
revolutions (speeds) in the TBL piston engine in comparison to standard 
engine data. Dattatreya et al. investigated the effects of ceramic coating 
on piston on engine performance and as a result of the study, they found 
improvements in effective power with ceramic coating applications [55] 
When M10 fuel was used in the TBL piston engine, there were increases 
in the effective power, while in the case of M20 fuel use, decreases were 
observed. Maximum increase rate in the effective power with M10 fuel 
was 3.7 % at 2200 rpm. According to the literature, methanol-gasoline 
blended fuels cause an increase in effective power [53,54]. 

Fig. 8 shows SFC values in TBL piston engine and when M10 and M20 
fuels were used in TBL piston engine. When the figure was examined, 
decreases were observed in SFC values in all engine revolutions. 
Maximum decrease was determined to be 2.3 % at 2600 rpm. The reason 
for the decreases was the improvement in combustion and the increase 
in fuel recycle efficiency. In the literature, ceramic coating method leads 
to improvements in specific fuel consumption. Krishnamani et al. found 
decreases in specific fuel consumption with ceramic coating process 
compared to STD engine [16]. When M10 and M20 fuels were used in 
TBL engine, while there were decreases in SFC values with M10 fuel, 
there was a slight increase with M20 fuel. Minimum SFC was achieved 
with M10 fuel. Maximum decrease ratio in SFC was 2.9 % at 2200 rpm 
compared to STD engine data. The reason for the decreases in SFC values 
when M10 fuel was used was the improvement in combustion efficiency. 
However, the reason for the increases when M20 fuel was used was that 
alcohol has a less low heating value compared to gasoline fuel. More fuel 
was needed to obtain the same amount of energy. Besides, the high 
stochiometric fuel/air ratios it has led to using more fuel for the same 
output power. When the studies using methanol-gasoline blended fuels 
are examined in the literature, it is seen that when methanol is mixed 
with gasoline fuel, specific fuel consumption decreases. Balki et al. ob-
tained improvements in specific fuel consumption values with 
methanol-gasoline blends [56]. 

Effective efficiency values in TBL piston engine and TBL piston en-
gine when M10 and M20 fuels were used are presented in Fig. 9. In-
creases were observed in the effective efficiency of TBL piston engine in 
all revolutions compared to the standard engine data. Maximum in-
crease in effective efficiency was 2.38 % at 2200 rpm. Reduction in heat 
transfer as a result of thermal barrier coating increased combustion ef-
ficiency and fuel recycle efficiency. This in turn leads to increases in 
effective efficiency. In the case that M10 fuel was used in the engine, 
increases were observed in effective efficiency in TBL piston compared 
to STD engine data. The increase in volumetric efficiency increases the 
combustion efficiency of oxygen in the fuel content. Dananjayakumar 

et al. found increases in effective efficiency values compared to the 
uncoated piston engine when using ceramic coated pistons in the engine 
[57]. In M20 fuel use, on the other hand, decreases in effective efficiency 
were observed compared to TBL engine. The reason for the decreases 
was that due to less value of lower heat of methanol and high stoi-
chiometric fuel/air ratios, more energy is needed in order to obtain the 
same amount of power. In the literature, Balki et al. found increases in 
effective efficiency when methanol-gasoline blended fuels are used in 
the engine [56]. 

The graph showing the HC emission values released from the exhaust 
when the piston is coated with Y2O3 material is presented in Fig. 10. 
Decreases in HC emission values were observed in the coated engine in 
all revolutions compared to the standard engine. Maximum decrease 
ratio in HC emissions was determined to be 11 % at 1400 rpm. The 
reason for the decrease in HC emissions with the coating method was the 
increase in the combustion chamber temperatures with the heat reserve 
created by the ceramic coating on the surfaces close to the cylinder walls 
and the related speed increase in oxidation reactions. Increased reaction 
speeds reduce HC emissions. In addition, the unburned fuel-air mixture 
that remained in the narrow areas around the combustion chamber was 
burnt due to the effect of heat. Periyannan et al. found reductions in HC 
emissions with ceramic coating applications. Karthickeyan, similar to 

Fig. 8. Experimental SFC variation.  

Fig. 9. Experimental effective efficiency variation.  

Fig. 10. Experimental torque HC variation.  
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the literature, found improvements in HC emissions with ceramic 
coating methods [58,59]. When M10 and M20 fuels were used in the 
engine, decreases in HC emissions were detected compared to the STD 
condition. Maximum decrease amount was determined in M10 fuel as 
18 % at 3400 rpm. The reason for the reduction in HC emissions was the 
increase in combustion efficiency due to the different chemical and 
physical properties of alcohol from gasoline fuel. The reason for the 
increases was the high oxygen content of methanol and high combustion 
rate. High combustion rate is the combustion of H and C atoms in the 
fuel without turning into HC emissions by reacting with air in a fast way. 
Besides, high flame rate in the cylinder causes the combustion to be 
completed in a shorter time and thus decreases temperature loss on 
cylinder walls. When the literature was examined, it was seen that there 
were improvements in HC emissions with gasoline-methanol blended 
fuel [60]. 

Fig. 11 shows the graph showing NOx emission values when M10 and 
M20 fuels are used in STD engine, TBL piston engine and TBL piston 
engine. In the figure, it is seen that there are increases in NOx emissions 
released from TBL piston engine in all revolutions compared to the 
standard engine data. Maximum increase rate in NOx emissions was 7 % 
at 3400 rpm. The increases in NOx emissions resulted from the ceramic 
material coating on the upper surface of the piston, which led to in-
creases in the combustion chamber temperatures. Increased combustion 
chamber temperatures increased the formation speed of NOx emissions, 
thus causing NOx emissions released from the engine to increase. When 
the literature is examined, increases in NOx emissions have been 
detected due to increasing in-cylinder temperatures with ceramic 
coating method [58,59,61]. When M10 and M20 fuels were used in the 
coated engine, decreases in NOx emissions which were increased with 
ceramic coating were determined in all revolutions. Maximum decrease 
amount in NOx emissions was found to be 19 % at 2200 rpm. The reason 
for the decreases in NOx emissions was high hidden evaporation heat of 
methanol. Methanol’s absorbing more heat from the environment dur-
ing evaporation leads to a decrease in adiabatic flame temperature. In 
addition, methanol blend fuel injected to the suction manifold during 
suction process decreases the temperature of the suction manifold. 
Decreased temperatures result in decreased NOx emissions. When the 
studies examining NOx emission changes were examined, it was seen 
that NOx emissions decreased with methanol-gasoline blends [62,63]. 

The graph showing CO emission values when M10 and M20 fuels 
were used in TBL piston engine and TBL engine is presented in Fig. 12. 
Improvements in CO emissions were achieved in all revolutions 
compared to the standard engine data when pure gasoline was used in 
TBL piston engine and M10 and M20 fuels were used in TBL piston 

engine. The reason for the improvements in CO emissions was the in-
crease in reaction speeds as a result of the increase in combustion 
chamber temperature due to ceramic material coating. Increased com-
bustion rate increases combustion efficiency. When the literature on CO 
emissions is examined, reductions in CO emissions emitted from the 
engine were found with ceramic coating applications [57,58]. The im-
provements obtained in CO emissions with methanol blend fuel resulted 
from the improvement in combustion efficiency due to methanol blend 
fuel. Rich oxygen content of methanol and its high combustion rate in-
crease the speed and efficiency of combustion reactions. High flame rate 
in the cylinder leads to the completion of combustion in a shorter time. It 
is thought that due to high combustion rate, C particles in the fuel 
complete the combustion before they are converted into CO. 

3.2. ANN results 

As moment is a value that is easy to calculate with a mathematical 
method, estimation in ANN was started with this value. Since R2 values 
of training, test, and validation estimations obtained as a result of 3- 
neuron training were better, the simulation was carried out according 
to 3-neuron network. When the results obtained with different training 
algorithms during the estimations were evaluated, LM training algo-
rithm, which yielded better results [64,65], was chosen. R2 of the 
moment values estimated was 0.9999, MAPE value was 0.0129, and 
RMSE value was calculated as 0.0148, and the results that were best 
estimated in this system are presented in Table 1. The results obtained in 
the estimation of the moment in M2 could not catch up with the values 
in M1. Therefore, estimations were made with the number of hidden 
layers as three, four, and five, R2 values were calculated as 0.9969, 
0.9793, 0.929, MAPE values as 0.4005, 0.5864, 1.0497, and RMSE 
values as 0.1529, 0.5864, 10,497, respectively. In M2, as in M1, the 
3-neuron network yielded the best results. In the results of the simula-
tion of the estimations performed in five different network structures, R2 

was found in the range between 0.9394 and 0.9903, MAPE in the range 
between 0.5381 and 2.2835, and RMSE in the range between 0.2131 
and 0.8451. Here, the training algorithm that gave the best results was 
BFG with its 3-neuron structure. In M1 and M2, in which output values 
consisted of engine performance parameters, while network structures 
close to each other yielded good results, in M3, where exhaust emission 
data were added to output parameters, similar network structure gave 
better results with different training algorithm. 

Estimations regarding engine power that varies according to moment 
and revolution values were made similarly to moment estimations. 
Differently from the moment, the network structure that gave the best Fig. 11. Experimental NOx variation.  

Fig. 12. Experimental CO variation.  
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result in M1 was the one with 2 hidden layers, and in M2, it was the 
network with 4 hidden layers. In M3, hidden neuron number was three, 
and BFG instead of LM gave a better result as a training algorithm [43, 
66]. In power estimations, differently from the others, although MAPE 
and RMSE values were found to be better in the network with 7-hidden--
neuron LM training than the network with BFG3 training, the estima-
tions of the network with 3-hidden-neuron BFG (BFG3) training, where 
R2 was better, turned out to be better (Table 5). 

In the trials made for the estimations of SFC values that are directly 
related with engine moment and efficiency, the network structures that 
yielded the best results were similar to the network structures of the 
moment. While LM3 network yielded R2 as 0.9972&0.9971, MAPE as 
0.4021&0.2909, RMSE as 0.5547&1.0284 in M1 and M2, R2 was found 
as 0.9967, MAPE as 0.4262, and RMSE as 1.3995 in M3. It is seen that 
the differences between the models in terms of SFC estimations were not 
great [43]. 

Estimations of engine efficiency, which is directly associated with 
engine structure, quality, engine performance parameters, and exhaust 
emission parameters, displayed similarity to the network structure of 
engine power in M1, and they exhibited similarity to the moment 
network structure in M2. Statistical evaluation of estimations made in 
efficiency was better in M2 with respect to moment and power. This 
situation clearly shows that efficiency is more associated with other 
engine performance parameters [43](Table 5). 

Among the network structures built for the estimation of motor 
performance parameters in M1, LM3 network yielding R2 as 0.9999, 
MAPE as 1.0652, and RMSE as 0.5387 shows that it gave the best esti-
mations. In LM 4 and LM5 networks, R2 value stayed almost the same, 
while regarding MAPE value, the ranking of LM4, LM3, and LM5 was 
seen, and regarding RMSE value, the ranking of LM3, LM4, and LM5 was 
observed. This situation shows that in determining which network 
would give better results, R2, MAPE, RMSE, and other values are not 
sufficient on their own, and that three of them should be evaluated 
together [46]. 

In M1 networks established in order to estimate exhaust emission 
values, the best results were obtained for HC with OSS3, for CO with 
OSS5, and for NOx with BFG5. R2 was found as 0.9828 for HC, as 0.9495 
for CO, as 0.9103 for NOx; MAPE value was determined as 1.9652 for 
HC, as 2.5427 for CO, and as 4.9249 for NOx; and, RMSE value was 
found as 5.2237 for HC, as 0.0374 for CO and as 43.3627 for NOx. R2 

being in the range between 0 and 1 leads to its change in small intervals, 
while the reason for the changes in MAPE and RMSE values with great 
intervals was that statistical evaluation was made after de-normalization 
process [66]. Therefore, as the error increases, MAPE and RMSE values 
increase as well. This situation facilitates decision-making process. If 
MAPE and RMSE values had been calculated before de-normalization, 
the situation would have to be evaluated with smaller numbers. 

While the results obtained with OSS and BFG training algorithms in 
M1, where exhaust emission values were estimated separately, were 
good, estimations made with LM training algorithm in M2, where 
exhaust emissions were estimated as a whole, turned out to be better. 
The best network in M2 was LM7, which yielded R2 as 0.9669, MAPE as 
4.8888, and RMSE as 11.33. For CO, LM7 network yielded R2 as 0.9544, 
MAPE as 4.6678, and RMSE as 0.057, while LM3 network gave R2 as 
0.9163, MAPE as 3.05, and RMSE as 0.0448. Here, although R2 value 
was higher in LM7 network, as MAPE and RMSE values were lower, LM3 
results were considered. Estimation results for NOx values in M2 were 
similar to CO in terms of network structure. Although R2 value of LM7 
network was better, LM3 network was more advantageous in terms of 
MAPE and RMSE values. In M2, where all three exhaust emission value 
estimations were evaluated together, for LM3 and LM7 networks, R2 

value was found as 0.9977 and 0.9983, MAPE values as 4.2817 and 
4.8060, and RMSE as 54.1213 and 55.5568, respectively. In M2 LM7 
network, while the relationship between experiment data and estima-
tions increased for CO and NOx according to R2 value, the difference 
between the values increased according to MAPE and RMSE values. 

Therefore, LM3 was taken as the best network in the estimation of CO 
and NOx estimations in M2. 

In M3, where engine performance parameters and exhaust emissions 
were estimated together with the same inputs, interesting results for 
exhaust emissions were found. BFG3 network, which gave the best re-
sults in HC estimation, yielded R2 as 0.9376, MAPE as 4.8746, and RMSE 
as 9.4932. Accordingly, as the model number increased, despite the 
decrease in R2, improvements in MAPE and RMSE values were observed 
in M3 with respect to M2. In CO estimation in M3, on the other hand, R2 

value was close to M1 and higher compared to M2, but there were in-
creases in MAPE and RMSE values. In NOx estimation, R2 took a very 
weak value as 0.5424, while MAPE and RMSE came out to be more 
advantageous compared to M2 with the values of 9.8744 and 199.8031, 
respectively. Although R2 value for NOx in LM7 network in M3 took a 
value of 0.6231, which was higher compared to BFG3, as MAPE and 
RMSE values were also found to be high, it was graphically observed that 
the estimations of this network were poorer. Although general R2 value 
of the network in M3 varied between 0.96 and 0.98, MAPE value be-
tween 3.93 and 15, and RMSE value between 75 and 188, when the 
results were analyzed separately for each output, it was observed that 
R2, MAPE, and RMSE yielded quite different results. This situation 
shows that statistical evaluation of the results separately in the estima-
tion of sensitive data is important in terms of reliability. 

The curve that appeared on the engine moment graph is a typical 
convex curve. The moment estimations are also expected to look similar 
to this curve. M20 experimental data were estimated with M1 with er-
rors under 0.1 %. While 0.0108 % error was formed in the best esti-
mation, it was determined to be 0.068 % in the worst estimation. These 
results show that the engine’s moment value was estimated as very close 
to the experimental data by the ANN. In M2 model, the best estimation 
was made with 0.078 % error at 3400 rpm, while the worst estimation 
was made with 0.65 % error at 1800 rpm. When Model 3 results are 
examined, it is seen that the best estimation was made with 0.11 % error 
at 3400 rpm, while the worst estimation was made with 1.3 % error at 
1400 rpm. In general, it is seen that as revolution increased, the esti-
mations of the three models improved, while the estimations got poorer 
at low revolutions (Fig. 13). 

The graph of power value calculated mathematically according to 
moment and revolution values increases as much as the revolution 
depending on the revolution, and it decreases after the maximum rev-
olution. The lowest error in M1 was 0.068 % at 2600 rpm, while the 
highest error was 1.32 % at 3000 rpm (Fig. 14). While error rates in the 
estimation of power values in M2 varied between 0.14 and 2.6 %, the 
error rate went up to 10.21 % in M3. Accordingly, addition of exhaust 
emission values to the estimation model made power estimation diffi-
cult. The estimation of power calculated according to the moment value 
having a lower accuracy shows that ANN system works differently from 
mathematical models. 

Error rates of estimations made with the three models are below 0.7 
%. It is obvious that SFC curve, which has a concave curve, can be easily 
drawn [40] with the data estimated by the three models (Fig. 15). While 
the best estimation was made in M2 with 0.0839 % error at 3400 rpm, 
the worst estimation was made in M2 with 0.707 % error at 2200 rpm. 
All estimations having an error rate below 1 % shows that the ANN can 
excellently estimate SFC. 

Estimations of the efficiency curve which is directly related with SFC 
overlap with SFC. The best efficiency estimation was made in M3 with 
0.03 % error at 1800 rpm, while the worst estimation was made in M1 
with 0.905 % at the same rpm. While M1 was the best model in terms of 
moment, power, and SFC, it is seen that all three models yielded very 
close results in efficiency estimation (Fig. 16). This situation shows that 
efficiency is directly related with both engine performance parameters 
and exhaust emission values. Estimation errors being lower than 1 % in 
all three models shows that efficiency can be directly estimated with 
input parameters. 

Although NOx graph has a partially convex curve, data changes 
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Table 5 
Statistical evaluation of estimations of engine performance and exhaust emission values according to the models and network structures.  

MODEL 
NUMBER 

Network 
structure 

Learning 
Algorithm 

Md P SFC Efficiency HC CO NOx 

R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE 

MODEL 1 4-2-1 LM    0.9993 0.5958 0.0666    0.9945 0.3657 0.1353 0.8978 9.6694 28.6271       
4-3-1 LM 0.9999 0.0129 0.0148 0.9808 2.0239 0.1280 0.9972 0.4021 0.5547 0.9657 0.8407 0.2918 0.9078 6.8314 16.3580       
4-5-1 LM    0.9148 6.199 0.7037    0.9782 0.7305 0.2826 0.5978 10.685 30.8196       
4-3-5-1 SCG             0.9471 7.3072 19.4978       
4-3-1 OSS             0.9828 1.9652 5.2237 0.8921 3.7703 0.0221    
4-4-1 OSS                0.9354 2.7499 0.0407    
4-5-1 OSS                0.9495 2.5427 0.0374    
4-5-1 BFG                   0.9103 4.9246 43.3627 

MODEL 2 4-3-4 or 3 LM R2 : 0.9999 MAPE: 1.0652 RMSE: 0.5387 R2 : 0.9977 MAPE: 4.2817 RMSE: 54.1213 
0.9969 0.4005 0.1529 0.9956 3.2866 0.2631 0.9971 0.2909 1.0284 0.9965 0.2827 0.1019 0.9532 5.1010 16.4996 0.9163 3.0500 0.0448 0.9603 20.927 226.0325 

4-4-4 or 3 LM R2: 0.9999 MAPE: 0.8791 RMSE: 1.2066 R2 : 0.9680 MAPE: 13.3161 RMSE: 254.6819 
0.9793 0.5864 0.2220 0.9992 1.6474 0.2220 0.9944 0.6457 2.3862 0.9933 0.6366 0.2469 0.8850 10.429 26.8327 0.7182 8.2941 0.1112 0.5092 29.669 1078.523 

4-5-4 or3 LM R2 : 0.9997 MAPE: 2.1619 RMSE: 2.5481 R2 : 0.9776 MAPE: 15.6193 RMSE: 207.6903 
0.9290 1.0497 0.4056 0.9915 4.5514 0.3724 0.9644 1.5300 5.0411 0.9613 1.5167 0.5053 0.8818 17.094 51.8978 0.7469 11.47 0.1461 0.5412 26.223 871.9371 

4-6-3 LM  R2 : 0.9741 MAPE: 8.3334 RMSE: 129.0713             
0.5574 8.4655 24.5299 0.8078 6.1981 0.0839 0.4250 26.775 544.2967 

4-7-3 LM  R2 : 0.9983 MAPE: 4.8060 RMSE: 55.5568             
0.9669 4.8888 11.3300 0.9544 4.6678 0.0570 0.9653 21.300 234.0682 

MODEL 3 4-5-7 LM R2 : 0.9682 MAPE: 11.7377 RMSE: 187.2169 
0.9525 2.1302 0.7941 0.9626 5.5889 0.5639 0.9886 1.1582 3.9366 0.9862 1.2207 0.4199 0.9050 30.734 48.5604 0.1036 18.396 0.2109 0.1989 22.936 492.9263 

4-6-7 LM R2 : 0.9726 MAPE: 9.9470 RMSE: 180.4781 
0.9898 0.8827 0.2938 0.7978 15.347 1.6503 0.9812 1.2950 4.9529 0.9828 1.1785 0.4174 0.8794 21.869 32.0117 0.7576 6.2633 0.0867 0.4676 22.793 476.3970 

4-7-7 LM R2 : 0.9835 MAPE: 7.3955 RMSE: 142.3715 
0.9913 1.1731 0.4007 0.9858 4.3179 0.4062 0.9918 0.8164 3.0469 0.9903 0.7922 0.2741 0.8928 20.149 40.1841 0.9107 6.7179 0.0849 0.6231 17.802 374.5171 

4-8-7 LM R2 : 0.9667 MAPE: 15.0045 RMSE: 164.6900 
0.9394 2.2835 0.8451 0.8922 9.9778 0.9118 0.9726 3.6338 11.541 0.9285 1.6693 0.6419 0.7421 51.425 52.6891 0.8671 17.143 0.1995 0.1755 18.898 432.3751 

4-3-7 BFG R2 : 0.9843 MAPE: 3.9372 RMSE: 75.6059 
0.9903 0.5381 0.2131 0.9955 7.1497 0.5298 0.9967 0.4262 1.3995 0.9959 0.4382 0.1495 0.9376 4.8746 9.4932 0.9494 4.2592 0.0566 0.5424 9.8744 199.8031  
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between revolution transitions are very high. Therefore, sharp corners 
are seen on the curve. It is seen in Fig. 17 that M2 estimated NOx values 
the best with ANN. Revolution-related errors in M2 estimations were 
2.868–0.618–3.939-1.284–6.775–12.685 %. It is seen that as revolution 
increased, errors increased as well. The high rate of errors in M1 shows 
that estimation is difficult [64] in the model where NOx is evaluated as 
an output by itself. This situation indicates the weak relationship of NOx 
with the inputs in this model. Error rates reaching up to 25 % in M3 
shows that estimation got worser with the engine performance param-
eters included in the model. 

The breaking point [13,22] at 2200–2600 rpm makes the estimation 
of HC values with ANN difficult [49]. Therefore, more trials were made 
for the estimation of HC and CO values compared to the other values. 
The best estimation in M1 was made with 0.25 % error at 1400 rpm, 
while the worst estimation was made with 4.4 % error at 1800 rpm; the 
best estimation in M2 was made with 3.29 % error at 3000 rpm, while 
the worst estimation was made 14.16 % error at 1400 rpm; and, the best 
estimation in M3 was made with 0.005 % error at 3000 rpm, while the 
worst estimation was made 8.347 % error at 2600 rpm. The breaking 
point in HC curve was estimated only in BP network trained with OSS in 
M1 [66,67]. Other estimations displayed inclining-declining curves 
(Fig. 18). 

The break in CO curve, which is similar to HC curve, occurred be-
tween 1800–2200 rpm. This breaking point was spotted in M1 by OSS5 

Fig. 13. Torque.  

Fig. 14. Power.  

Fig. 15. Specific fuel consumption.  

Fig. 16. Efficiency.  

Fig. 17. NOx emissions.  
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network. This situation shows that OSS-trained BP networks can spot 
breaking points [13,25]. However, although the number of inputs and 
outputs is the same, the number of hidden neurons may vary. Another 
interesting point in CO estimation is that the experimental data given as 
0.83 at 3400 rpm in M2 was estimated with zero error. While the esti-
mations of M1 model, where only CO was estimated, yielded good re-
sults, the estimations made by M2 are at a useable level with 7.23 % 
error rate. It can be stated that with the 8.83 % error rate, the use of 
engine performance parameters in the estimation of CO in M3 worsened 
the results (Fig. 19). Still, the estimation results were at a useable level. 

4. Conclusions 

In the first phase of the study, the changes in engine performance and 
exhaust emissions as a result of coating the upper surface of the piston 
with ceramic material were examined. In the second phase, changes in 
performance and emission values when the gasoline was blended with 
10 % and 20 % methanol were analyzed. In the final phase of the study, 
the effect of M20 fuel on the changes in both performance and exhaust 
emission values were estimated with ANN in MATLAB-nntool. The re-
sults of the experimental study and prediction with ANN are summa-
rized below. 

- Engine performance parameters and HC emissions showed im-
provements with the application of ceramic coating.  

- However, NOx emissions increased as a result of the coating.  
- The combination of ceramic coating and M10/M20 fuels resulted in 

overall improvements in engine performance parameters and 
exhaust emissions.  

- The partial coating method led to an increase in effective power, 
effective efficiency, and NOx emissions, while HC emissions 
decreased.  

- The use of M10 and M20 fuels in the engine contributed to a 
reduction in NOx emissions without adversely affecting engine per-
formance parameters.  

- The comprehensive approach of both engine coating and alternative 
fuel usage resulted in a 3.7 % increase in effective power compared 
to the standard situation.  

- Notably, there were decreases of 19 % and 18 % in NOx and HC 
emissions, respectively, showcasing the potential for achieving a 
balance between enhanced engine performance and reduced 
emissions. 

- Engine performance parameters were estimated with over 99 % ac-
curacy using ANN with three different structures.  

- ANN trained with LM yielded good results in cases where the 
mathematical relationship between predicted values and engine 
performance was high.  

- ANN trained with BFG performed better in situations where this 
relationship was reduced, particularly in predicting exhaust emission 
values.  

- Input values such as speed, load, coating type, and fuel type had a 
direct impact on engine performance values, allowing for easy pre-
dictions with LM.  

- However, these input values were not directly correlated with 
exhaust emission values, revealing the difficulty in predicting emis-
sions accurately.  

- In ANNs with multiple outputs, a step-by-step statistical evaluation 
of criteria used to determine prediction results in sensitive data 
increased the reliability of predictions.  

- The study suggests that utilizing different models for predicting and 
evaluating systems with multiple outputs may offer a more accurate 
approach. 
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