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A B S T R A C T   

In manufacturing, predicting and reducing electro-erosion wear during the electric discharge machining (EDM) 
process is critical to minimize delays, financial losses and product defects. Achieving this requires developing and 
evaluating accurate machine learning models. In our study, we focus on cryogenically treated mold steel elec-
trodes to investigate the potential of different machine learning algorithms to predict EDM wear. We considered 
five machine learning algorithms—artificial neural networks, ensemble learning, boosting algorithms, tree-based 
algorithms, and k-nearest neighbors—to evaluate their ability to predict wear patterns accurately. Each algo-
rithm was trained and tested using actual experimental data from EDM processes. Our results show that the 
machine learning models demonstrated exceptional accuracy, accurately predicting EDM wear in training and 
testing datasets with almost 99% accuracy. In addition, we identified the most influential characteristics that 
affect wear patterns, including operating current, cryogenic process parameters, and electrode composition. 
Based on these findings, manufacturers can gain valuable insight into the factors that cause EDM wear and 
optimize their EDM processes accordingly to improve productivity, reduce wear-related costs, and increase 
production quality across multiple manufacturing industries. Furthermore, this research provides insights into 
the possibilities of implementing these models in real manufacturing contexts and motivates future research on 
this topic. Ultimately, integrating advanced computing techniques and prudent decision-making strategies will 
shape the future of manufacturing operations management and promote sustainable and profitable business 
growth.   

1. Introduction 

Traditional cutting methods frequently fall short when it comes to 
handling challenging materials [1]. Moreover, when machining intri-
cate shapes of machine parts, conventional techniques often prove 
nearly impractical for shaping. Consequently, there is a pursuit of 
innovative methods to enhance the workability of hard-to-cut materials. 
Electric discharge machining (EDM) is one of the oldest and most widely 

used unconventional machining methods. It is a non-contact machining 
process that uses an electrical discharge to machine material from an 
electrically conductive workpiece [2]. This method is applicable to all 
materials that conduct electricity, regardless of their hardness, and ac-
commodates both simple and intricate profiles. EDM makes machining 
complex parts comparatively easy, a task that proves challenging and 
expensive with alternative methods. Hence, it finds preference in 
various sectors, including automotive, molding industry, space, and 
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medicine [3]. 
The EDM process imposes no restrictions on the strength or hardness 

of materials. This unconventional manufacturing technique is applicable 
to all engineering materials that conduct electricity [4]. The amount of 
material removed from the workpiece per unit of time in EDM, consid-
ered an unconventional method, is called the material removal rate 
(MRR). In contrast, the mass loss in the electrode material is referred to 
as electrode wear rate (EWR) [5–7]. Some studies also consider it as tool 
wear rate (TWR) [5,6]. An EDM method seeks improvement in terms of 
higher MRR, lower EWR, and better surface quality [3]. EWR is the most 
important factor in determining the number of electrodes required to 
achieve the correct size and dimensions of the desired form. When 
considering that electrodes are processed by wire erosion, turning, or 
milling machines, it is seen that EWR is the most significant factor 
affecting electrode costs. In addition, there is a gap between the elec-
trode and the material, which varies according to the process parame-
ters. From the size of the material to be processed, the electrode should 
be processed as small as this gap value if it is an internal part or large if it 
is an external operation. While the process parameters determine this 
gap value, they also significantly affect the EWR and MRR values. 
Therefore, studies on higher chip removal and lower electrode wear 
have gained importance in the EDM process in recent years. 

It is known that cryogenic treatment (CT) is a type of heat treatment 
applied to improve tool performance and workpiece quality in general. 
In specific research exploring the influence of cryogenic treatment on 
the EDM process, an approach is identified that seeks to decrease EWR 
[8,9], However, in other studies, the observed effect is minimal [10]. In 
the same studies, different results were obtained in terms of MRR. Nas 
and Kara [11] achieved different results in the shallow cryogenic process 
at − 80 ◦C and the deep cryogenic process at − 145 ◦C. They successfully 
performed EDM with ultrasonic-assisted cryogenic cooled tool elec-
trodes on M2 HSS workpiece material. Compared to conventional EDM, 
the ultrasonically assisted cryogenically cooled tool electrode signifi-
cantly reduced the wear of the tool electrode due to the ultrasonic 
property [12]. CT can be applied to the electrode material and the 
workpiece separately or together in the EDM process. 

In recent years, EDM has been employed in conjunction with both 
conventional and machine learning methods, including artificial neural 
networks (ANNs) and soft computing techniques such as fuzzy logic. 
This integration aims to predict output performance parameters like 
MRR and EWR, relying on optimal processing parameters such as 
discharge current, pulse duration, and voltage. Ramaswamy et al. [13], 
conducted variance analysis to assess the significance of test parameters 
in experimental results, focusing on EDM machinability. In the subse-
quent phase, researchers identified optimal process parameters and 
utilized regression analysis and ANNs to predict MRR and EWR. Simi-
larly, Sarıkaya and Yılmaz [14], developed a mathematical model based 
on ANNs that successfully predicted outputs. In another study, Balasu-
bramaniam et al. [5] used different electrode materials, such as copper, 
brass, and tungsten, for EDM of Al-SiCp metal matrix composites. Their 
study considered MRR, EWR, and circularity as output parameters. By 
leveraging artificial intelligence to optimize processing parameters like 
current, pulse duration, and flushing pressure, the research identified 
current as the most crucial parameter. Notably, among the three elec-
trodes, Cu demonstrated the most effective performance. In EDM, the 
effect of processing parameters such as peak current, pulse interval, and 
pulse duration are important for the variation in MRR and EWR. Ong 
et al. [15] developed a model based on the prediction of radial basis 
function neural networks to predict the MRR and EWR of the EDM 
process. The researchers used the moth flame optimization algorithm to 
determine the optimal processing parameters that maximize MRR and 
minimize EWR. Cakir et al. [16] investigated the capacity of adaptive 
neuro-fuzzy inference system (ANFIS), genetic expression programming, 
and ANNs in predicting EDM performance parameters using experi-
mental data. Ramasubbu and Ramabalan [6] indicate that the surface 
roughness (SR) model exhibits a strong fit, with R-squared and adjusted 

R-squared both at 80 % performance. However, for a more accurate 
estimation of MRR and EWR, additional parameters must be considered 
since the adjusted R-squared values for MRR and EWR are below 80 %, 
falling short of acceptability. A review of modeling and simulation 
techniques of the EDM process was made by Bharti and Dhami [17]. The 
research delves into the development of various models, including sta-
tistical prediction models, machine learning (ML)-based prediction 
models, mathematical models, and finite element methods, highlighting 
their significance. 

ML techniques have become increasingly popular for modeling and 
optimizing complex material processing processes. Recent studies have 
investigated the contributions of machine learning algorithms in electro- 
erosion wear. For example, Ulas et al. [18] used ML to estimate the 
surface roughness (SR) of Al7075 aluminum alloy processed with wire 
EDM (W-EDM) using different parameters, such as voltage, pulse-on- 
time, dielectric pressure, and wire feed rate. They employed ensemble 

Table 1 
Comparison of latest related works.  

Reference Workpiece 
material 

Inputs Outputs Method 

[21] Al7075 + 10 % 
Al2O3 

Voltage SR ML (ANN) 
Pulse on time MRR 
Pulse off time  
Current  
Bed speed  

[16] DIN 1.2080 
tool steel 

Discharge 
current 

MRR Genetic 
Expression 
Programming 

Pulse on time EWR ML (ANN, 
ANFIS) 

Pulse off time SR  
[2] SS630 Peak current SR ANOVA 

Stainless Steel Pulse period MRR ML (Back 
Propagated 
Neural Network)  

Source voltage   
[11] ASTM B 275 

corrosion- 
resistant 
superalloy 

Peak current SR ANOVA 
Pulse off time MRR 
Pulse on time  
Total processing 
time  

[28] HTCS 150 Discharge 
current 

SR ANOVA 

high-thermal- 
conductivity 
tool steel 

Pulse on time SW   

TW   
MRR 

[22] Aluminium 
6061 alloy 

Discharge 
current 

MER Genetic 
Algorithms 

Spark duration EWR 
Pause duration 
Concentration of 
powder Magnetic 
field  

[19] NiTi Gap current MRR ML (Random 
Forest, Decision 
Tree, Gradient 
Boosting, ANN) 

NiCu BeCu 
Alloys 

Gap voltage  

Pulse on time  
Pulse off time 

[18] Al7075 
Aluminium 
Alloy 

Voltage SR ML (ELM, 
Weighted ELM, 
SVR and Qiskit- 
SVR) 

Pulse on time 
Dielectric 
pressure Wire 
feed 

This study AISI P20 Cryogenic 
process 
conditions 

MRR ML (Weighted 
Ensemble, ANN, 
CatBoost 

Current EWR XGBoost, 
Random Forest, 
Extra Trees, 
Kneighbors) 

Pulse durations    
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learning (ELM), weighted-ELM (W-ELM), support vector regression 
(SVR), and Qiskit-SVR models to process the samples and estimate the 
SR values. Similarly, Jatti et al. [19] focused on predicting MRR through 
ML algorithms, encompassing both supervised regression and 
classification-based approaches. The study identified gap current, 
voltage, and pulse on time as the most influential parameters impacting 
MRR. The researchers concluded that the gradient-boosting regression- 
based algorithm proved most effective in predicting MRR. 

Meanwhile, Nahak and Gupta [20], reviewed the developments and 
challenges of EDM processes in 2019, emphasizing optimizing process 
parameters for effective and economical machining. Finally, Cetin et al. 
[1] experimentally investigated the effect of cryogenic treatment on the 
performance of CuCrZr alloy and Cu electrodes during EDM of AISI P20 
tool steel. They found that pulse current was the most effective param-
eter in the EDM process and using cryogenically treated electrodes 
resulted in less wear and decreased surface roughness values. Finally, by 
Arunadevi and Prakash [21] the performance analysis of the experi-
mental values with five input parameters was made using the ANN to 
increase MRR and reduce the SR. Rouniyar and Shandilya [22] used 
teacher-learning-based optimization to determine the optimal process 
parameters to maximize material erosion rate (MER) and minimize 
EWR. Świercz et al. (2022) employed multicriteria optimization utiliz-
ing Derringer’s function to minimize SR, slot width (SW), and tool wear 
(TW) while simultaneously maximizing MRR. Furthermore, a validation 
test conducted in their research verified that the maximum error be-
tween the predicted and obtained values remained below 7 %. Feng 
et al. [23] conducted a study on optimizing energy consumption in 
machining processes. The researchers designed an optimization algo-
rithm that combines genetic and ant colony algorithms to minimize the 
air-cutting toolpaths and optimize the energy model in CNC machines. 
Wang et al. [24] also proposed a ML approach to optimize the turning 
parameters in machining processes. They found that the XGBoost model 
combined with over-sampling technique for regression with Gaussian 
noise and center particle swarm optimization provides the best perfor-
mance for predicting the machining error of the turning process. Dhuria 
et al. [25] used the entropy weight-based gray relational method to 
predict MRR and TW rate during ultrasonic machining. Pourasl et al. 
[26] proposed ANN and ANFIS predictive modeling for EDM on AISI-D6 
steel, a material widely used in mold and casting manufacturing. Vishnu 
et al. [27] developed ANN models using backpropagation algorithms to 
predict the performance characteristics of MRR, SR and TW rate for EDM 
machining of Inconel-718, a nickel-based alloy. The previous studies, 
especially those involving the EDM process related to the current study, 
are given in Table 1. 

Upon reviewing various methods, the key takeaway is the effective 
application of ML and other artificial intelligence techniques for 
modeling and optimizing the electro-erosion wear process. However, no 
studies have been found on the evaluation of the performance of cryo-
genically treated and untreated Cu and CuCrZr electrodes or the use of 
ANN predictions for MRR and EWR. This study aims to evaluate the 
performances of cryogenically treated and untreated CuCrZr and Cu 
electrodes during the EDM of AISI P20 tool steel in terms of EWR and 
MRR. The study utilizes Weighted Ensemble, ANN, CatBoost, XGBoost, 
Random Forest, Extra Trees, Kneighbors from machine learning tech-
niques for regression analysis. The optimal algorithm is identified based 
on the obtained results, and comments are provided accordingly. 

The main contribution of this paper lies in its comprehensive study 
and validation of ML models for predicting EWR and MRR in EDM, with 
a focus on cryogenically treated electrodes made of mold steel (1). The 
research proposes adding to the body of literature by comparing the 
electrodes under various processing parameters and conducting cryo-
genic treatment in 10 different periods ranging from 0.25 to 24 h (2). By 
evaluating different ML algorithms and training them on real experi-
mental trial data, the study achieved a remarkable predictive accuracy 
of nearly 99 % in forecasting wear patterns (3). Additionally, the 
research identified factors affecting wear patterns, highlighting critical 

elements such as operating current, cryogenic process parameters, and 
electrode composition (4). In addition, performing performance evalu-
ations on two different models with seven different ML algorithms and 
presenting the hyperparameters that give the best results are among the 
originality of the article (5). As a result, through the study, manufac-
turers can optimize their EDM processes, enhance productivity, mitigate 
wear-related expenses, and elevate overall production quality across 
diverse industries (6). Furthermore, the study demonstrates the poten-
tial of implementing ML models in authentic manufacturing scenarios 
and catalyzes future research in this area (7). 

2. Material and methods 

This study employed tool materials in the form of CuCrZr and Cu 
electrode pieces, each measuring 10 × 30 mm in dimensions. Table 2 
provides the compositional details for CuCrZr and Cu electrodes. To 
assess the impact of Cryogenic Treatment (CT), the electrodes were 
categorized into eleven groups comprising both treated and untreated 
specimens. The cryogenically treated electrodes underwent treatment 
cycles at − 140 ◦C for durations of 15 and 30 min, as well as 0, 0.25, 0.5, 
1, 2, 4, 8, 12, 16, 20, and 24 h, followed by tempering at 175 ◦C for 1 h. 

The experimental study selected AISI P20 tool steel, a commonly 
utilized material in plastic injection mold applications, as the workpiece 
material. The dimensions of the AISI P20 material were 14x20 mm, 
matching the tool electrode specifications and 3D design representations 
depicted in Fig. 1. Additionally, Table 2 presents the chemical compo-
sition of AISI P20 tool steel. 

Table 2 
Chemical composition and properties of electrode materials (wt.%).  

Material CuCrZr Cu 

Chemical Composition Elements Cu Cr Zr Cu 
(wt.%) Balance 1.00 0.10 100  

Fig. 1. AISI P20 and Electrode.  
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EDM experiments were conducted using pulse currents of 4, 8, 12, 
and 16 A and pulse durations of 25 µs and 50 µs. The experimental setup 
employed the King ZNC K3200 model EDM machine, as depicted in 
Fig. 2. All other processing parameters remained constant throughout 
the tests when one parameter was altered. 

The dielectric fluid used during EDM tests was Petrofer dielectricum 
358, a mineral-based oil compatible with electro-erosion processes. To 
ensure precision, each combination of processing conditions underwent 
three repeated EDM experiments, and the average values were consid-
ered as the test results. One hundred seventy-six experiments were 
conducted, with each EDM process lasting 20 min. 

EWR and MRR values for Cu and CuCrZr electrodes were calculated 
based on mass losses following EDM. To determine the wear rates of the 
electrodes and the MRR of the workpieces, samples were weighed both 
before (MBT - Mass Before Testing) and after (MAT - Mass After Testing) 
EDM using a high-precision analytical balance with a maximum capacity 
of 250 g and an accuracy of 0.0001 g. The EWR and MRR were computed 
using the following equations: 

EWR =
(MBTelectrode − MATelectrode)

T
(g/min) (1)  

MRR =
(MBTworkpiece − MATworkpiece)

T
(g/min), (2)  

In Eqs. (1) and (2), T represents the EDM process time, which was 
consistently set to T = 20 min in all experiments. The results are cate-
gorized and evaluated based on EWR and MRR values as each parameter 
varied. 

2.1. Data preparation and preprocessing 

The dataset encompasses 176 experiments conducted within the 
Sakarya University of Applied Sciences laboratory. This dataset includes 

electrode material type, cryogenic process conditions, amperage, and 
pulse duration parameters. Table 3 presents the summary statistics of 
the variables in the dataset used for the regression analysis. 

When examining the dataset, we can observe a set of histogram 
graphs illustrating the distributions of variables in the dataset, as shown 
in Fig. 3. A separate histogram represents each variable. 

Fig. 4 displays wear rate relationships for different materials, cryo-
genic process conditions, and current and pulse durations. The median 
and interquartile range are presented through boxplots. 

Fig. 5 presents the Pearson and Spearman correlation matrices. a) 
Pearson Correlation Matrix measures linear relationships between var-
iables, b) Spearman Correlation Matrix evaluates relationships between 
variables based on ranking. These matrices visually describe how data 
features relate to each other, thus helping to identify important variables 
in modeling processes. 

2.2. Machine learning algorithms 

This study utilizes various machine learning algorithms offered by 
the AutoGluon Automated Machine Learning (AutoML) library by 
Amazon Web Services(AWS), which offers state-of-the-art ML algo-
rithms spanning categories such as artificial neural networks (ANNs), 
ensemble learning, boosting, tree-based algorithms, and k-nearest 
neighbors (KNN) [29]. AutoGluon was selected to automate model se-
lection, hyperparameter tuning, and feature engineering tasks, expe-
diting the identification of optimal solutions. The chosen algorithms 
were carefully evaluated, with priority given to those offering advan-
tages inherent in the AutoML approach. These advantages encompass 
efficient exploration of a vast algorithm space, hyperparameter tuning 
for optimal performance, and automatic feature engineering and selec-
tion, ensuring the identification of relevant features and their trans-
formation into a suitable format for ML models. Leveraging these 
functionalities, AutoGluon streamlines the model development process, 

Fig. 2. EDM machine and control panel.  

Table 3 
Summary statistics of variables in the dataset.   

Mean σ Min. 25 % 50 % 75 % Max. 

Cryogenic process conditions  7.98  8.34  0.00  0.50  4.00  16.00  24.00 
Current  10.00  4.48  4.00  7.00  10.00  13.00  16.00 
Pulse durations  37.50  12.54  25.00  25.00  37.50  50.00  50.00 
Electrode wear  16.47  15.24  0.04  2.51  12.68  27.84  54.10 
Workpiece wear  154.65  82.69  4.51  91.33  142.73  219.47  298.48  
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facilitating the efficient identification of optimal algorithms for the 
prediction studies. 

2.2.1. Artificial Neural Networks 
Artificial Neural Networks, often called ANNs or neural networks, 

are a class of machine learning models inspired by the structure and 
function of the human brain. ANNs consist of interconnected nodes, 
known as neurons, organized into layers [30]. These models excel at 
capturing intricate patterns and relationships in complex data, making 
them valuable tools in regression tasks. McCulloch and Pitts [31] 
initially introduced the concept of ANN, and their popularity grew in the 
1980s due to the influential work by Rumelhart et al. [32]. In the bio-
logical brain, neurons are interconnected through numerous axon 
junctions, forming a graph-like architecture. These connections can be 
rewired, facilitating adaptation, information processing, and storage 
through neuroplasticity. Artificial Neural Networks (ANN) can be visu-
alized as a network of nodes connected. The output of one node serves as 
the input for another node, and the connections between them allow for 
subsequent processing. These nodes are usually organized into layers, 

each responsible for specific transformations. ANNs can have one or 
more hidden layers besides the input and output. The nodes and edges 
within these networks possess weights that regulate signal transmission 
strength. These weights can be adjusted by iterative training. After 
training, ANNs can make predictions for test data. In our study, we have 
explored two variants of ANNs, namely “NeuralNetTorch” (Neural 
Networks by PyTorch) and “NeuralNetFastAI” (Neural Networks by 
FastAI). Both offer distinct advantages in terms of architecture and 
training efficiency. 

Fig. 6 provides a detailed visual representation of the intricate ar-
chitecture of the ANN employed in the article. The input parameters, 
including electrode material, cryogenic process conditions, current, and 
pulse durations, are integral components influencing the complex 
interplay within the network. These parameters play a pivotal role in 
predicting and comprehending the nuanced relationships inherent in the 
EDM process, particularly regarding material removal rate and electrode 
wear rate. 

Fig. 3. Distributions of Dataset a) Cryogenic Process Conditions, b) Electrode Wear, c) Workpiece Wear, d) Electrode Material, e) Current, f) Pulse Durations.  
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Fig. 4. Relationships between Variables for Electrode and Workpiece Wears a) Electrode Material b) Cryonegenic Process Conditions (t), c) Current(A) and Wear 
Type, d) Pulse Durations, e) Cryonegenic Process Conditions and Electrode Material, f) Pulse Durations. 

Fig. 5. A) pearson and b) spearman correlation matrices.  
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2.2.2. Ensemble learning 
Ensemble learning is a powerful machine learning technique that 

combines the predictions of multiple individual models to improve 
overall performance and robustness [33]. Ensemble learning is a tech-
nique that involves training multiple base learners, combining their 
results using a defined rule, and achieving the best possible output. The 
crucial steps in the ensemble learning algorithm include selecting and 
building the base learners and then integrating the outcomes of these 
multiple base learners. One of the ensemble methods we used in our 
research is called “WeightedEnsemble_L2″, which uses a weighted 
combination of base models. Ensemble methods are known for reducing 
model variance, enhancing predictive accuracy, and providing valuable 
insights into feature importance. 

2.2.3. Boosting algorithms 
Friedman [34] introduced gradient boosting as an ensemble strategy 

for classification and regression. However, it’s worth noting that GB is 
primarily employed for regression tasks. The boosting algorithm in-
volves tuning parameters, such as the number of trees (n-trees) to be 
generated and the shrinkage rate. It’s important to avoid setting n-trees 
too small, and the shrinkage factor, often referred to as the learning rate 
applied to all trees during development, should not be set too high [35]. 
Boosting algorithms are machine learning techniques that enhance the 
model’s performance by giving importance to the samples that previous 
models struggled to predict accurately. CatBoost [36], a gradient 
boosting algorithm, is one of the boosting techniques we utilize. Addi-
tionally, we employ XGBoost [37], an Extreme gradient-boosting algo-
rithm renowned for its efficiency and accuracy. XGBoost’s 
regularization techniques and handling of missing data make it a pop-
ular choice for regression tasks, particularly in machine learning 
competitions. 

2.2.4. Tree-based algorithms 
Tree-based algorithms are machine learning models that employ 

decision trees as their fundamental building blocks. The decision tree 
algorithm falls under the category of supervised learning algorithms. It 
is predominantly chosen for tackling classification problems, although it 

can be applied to classification and regression scenarios. It comprises 
inner nodes representing branch structures, the dataset reflecting the 
algorithm’s decisions, and each leaf node denoting an outcome. In this 
structure, there are two types of nodes: decision nodes, used for making 
choices and branching into various options, and leaf nodes, which serve 
as the final output without further branching. The name “Decision Tree” 
is derived from its tree-like appearance, with the root node as the 
starting point that branches out into multiple sub-trees based on answers 
to questions, typically “yes” or “no” [38]. We employed Random Forest 
Regression [39] and ExtraTrees [40], in our study. Both these methods 
are ensemble approaches that utilize decision trees. Random Forest 
Regression pools the predictions of multiple decision trees, making it 
robust and capable of capturing complex relationships in the data. 
Similarly, ExtraTrees is also an ensemble approach that delivers accu-
rate predictions while minimizing the risk of overfitting. 

2.2.5. K-Nearest Neighbors (k-NN) 
The K-NN algorithm was created by Evelyn Fix and Joseph Hodges in 

1951 to address discriminant examination challenges, particularly when 
determining probabilistic densities via parametric estimation was diffi-
cult [41]. K-NN is a simple, effective instance-based learning algorithm 
for classification and regression tasks [42]. This algorithm assesses the 
relationship between new, unseen data and existing data within a given 
dataset. Based on this assessment, it assigns the new data to a category 
that best matches it. Consequently, the K-NN algorithm is adept at 
accurately classifying fresh data. It arranges the new data point by 
considering its neighboring data points. K-NN is often called a “lazy 
learner” algorithm because it initially stores the dataset but defers the 
learning process until there is a need for classifying or predicting new 
data. Furthermore, K-NN is non-parametric, meaning it doesn’t rely on a 
predefined model or relationship between input and output [42]. Our 
study investigates k-NN in three forms: KNeighbors, KNeighborsUnif 
(uniform weighting), and KNeighborsDist (distance-based weighting). 
K-NN operates on the assumption that similar data points have the same 
outcomes, making it a useful method for regression analysis when the 
underlying data distribution displays local patterns. 

Fig. 6. Schematic Representation of ANN Architecture for Modeling and Optimizing the Electrode and Workpiece Wear in Electric Discharge Machining.  
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2.3. Performance criteria 

The developed model’s performance was assessed during the 
training and testing phases using commonly employed statistical 
criteria. These criteria include Mean Absolute Error (MAE), which 
measures the average absolute difference between predicted and actual 
values; Mean Squared Error (MSE), quantifies the average squared dif-
ference between predicted and actual values, Root Mean Square Error 
(RMSE), which is the square root of MSE and represents the typical 
magnitude of prediction errors, the coefficient of determination (R- 
squared), indicates the proportion of variation in the dependent variable 
captured by the regression model. Higher prediction accuracy is asso-
ciated with smaller values for MAE, MSE and RMSE. A higher R-squared 
value suggests that the model effectively explains the data’s variability. 
The expressions for these criteria are as follows: 

MAE =

∑N
i=1|XPi − XOi |

N
(3)  

MSE =

∑N
i=1(XOi − XPi )

2

N
(4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(XPi − XOi )

2

N

√
√
√
√
√

(5)  

R2 = 1 −
∑N

i=1(XPi − XOi )
2

∑N
i=1(XOi − XO)

2 (6) 

In these equations, XOi represents the observed data for the i-th data 
point, XPi represents the predicted data for the same data point, XO is the 
mean observed data, XP is the mean predicted data, and N represents the 
total number of observations. 

3. Results and discussions 

In this research, we harnessed the capabilities of two distinct ma-
chine learning models to address the multifaceted challenges posed by 
electrode and workpiece wear prediction. Model 1 was meticulously 

crafted to specialize in forecasting electrode wear, a critical factor in 
manufacturing processes. In contrast, Model 2 was purposefully engi-
neered to excel in predicting workpiece wear, another pivotal aspect of 
industrial operations. To unlock their predictive potential, both Model 1 
and Model 2 were empowered by AutoGluon, a state-of-the-art AutoML 
(Automated Machine Learning) package renowned for its exceptional 
efficiency and effectiveness. By leveraging AutoGluon capabilities, we 
sought to create robust and accurate models to navigate the intricacies 
of wear prediction in manufacturing scenarios with precision and reli-
ability [29]. In the data preprocessing stage, we addressed the cate-
gorical variable ’electrode material’ by applying one-hot encoding. This 
transformation simplified the representation of electrode materials such 
as Cu and CuCrZr, making them suitable for machine learning 
algorithms. 

3.1. EWR prediction model results 

Table 4 summarizes the various hyperparameters used for Model 1 
and their respective validation scores. Multiple combinations of hyper-
parameters have been tried to ensure the optimized performance of the 
model. As a result of these trials, it is aimed to determine the hyper-
parameters that provide the best performance. These validation pro-
cesses to evaluate the model’s success help us better understand how 
effective Model 1 is in predicting electrode wear. Detailed analysis of 
these hyperparameters and their respective validation scores shows that 
Model 1 has an optimized structure, and its predictive ability produces 
reliable and precise results. 

3.2. MRR prediction model results 

Similarly, the results obtained for Model 2 and the hyperparameters 
used are presented in detail in Table 5. For Model 2 to make successful 
predictions, various combinations of hyperparameters were tried, and 
optimized hyperparameters were determined as a result of these trials. 
Evaluation of Model 2′s performance demonstrates its effectiveness in 
predicting workpiece wear. A careful analysis of the relevant hyper-
parameters and validation scores shows that Model 2 has a structure that 
produces reliable and precise results. These results highlight how 
powerful and dependable the Model 2 is for predicting workpiece wear 

Table 4 
Summary of the performance scores of Model 1 and the hyperparameters.  

ML Algorithms Score Hyperparameters 

WeightedEnsemble_L2  0.98 use_orig_features: False, max_base_models: 25, 
max_base_models_per_type: 5, save_bag_folds: 
True 

NeuralNetTorch  0.97 num_epochs: 500, epochs_wo_improve: 20, 
activation: relu, embedding_size_factor: 1.0, 
embed_exponent: 0.56, max_embedding_dim: 
100, y_range: None, y_range_extend: 0.05, 
dropout… 

NeuralNetFastAI  0.96 layers: None, emb_drop: 0.1, ps: 0.1, bs: auto, lr: 
0.01, epochs: auto, early. stopping.min_delta: 
0.0001, earlier.stopping.patience: 20, 
smoothing: 0.0 

CatBoost  0.96 iterations: 10000, learning_rate: 0.05, 
random_seed: 0, allow_writing_files: False, 
eval_metric: R2 

XGBoost  0.96 n_estimators: 10000, learning_rate: 0.1, n_jobs: 
− 1, proc.max_category_levels: 100, objective: 
reg:squared error, booster: gbtree 

RandomForestMSE  0.95 n_estimators: 300, max_leaf_nodes: 15000, 
n_jobs: − 1, random_state: 0, bootstrap: True, 
criterion: squared_error 

ExtraTreesMSE  0.94 n_estimators: 300, max_leaf_nodes: 15000, 
n_jobs: − 1, random_state: 0, bootstrap: True, 
criterion: squared_error 

KNeighborsUnif  0.92 weights: uniform 
KNeighborsDist  0.91 weights: distance  

Table 5 
Summary of the performance scores of Model 2 and the hyperparameters.  

ML Algorithm Score Hyperparameters 

WeightedEnsemble_L2  0.99 use_orig_features: False, max_base_models: 25, 
max_base_models_per_type: 5, save_bag_folds: 
True 

XGBoost  0.99 n_estimators: 10000, learning_rate: 0.1, n_jobs: 
− 1, proc.max_category_levels: 100, objective: 
reg:squared error, booster: gbtree 

NeuralNetTorch  0.99 num_epochs: 500, epochs_wo_improve: 20, 
activation: relu, embedding_size_factor: 1.0, 
embed_exponent: 0.56, max_embedding_dim: 
100, y_range: None, y_range_extend: 0.05, 
dropout… 

NeuralNetFastAI  0.99 layers: None, emb_drop: 0.1, ps: 0.1, bs: auto, lr: 
0.01, epochs: auto, early. stopping.min_delta: 
0.0001, early.stopping.patience: 20, smoothing: 
0.0 

CatBoost  0.99 iterations: 10000, learning_rate: 0.05, 
random_seed: 0, allow_writing_files: False, 
eval_metric: R2 

ExtraTreesMSE  0.99 n_estimators: 300, max_leaf_nodes: 15000, 
n_jobs: − 1, random_state: 0, bootstrap: True, 
criterion: squared_error 

RandomForestMSE  0.98 n_estimators: 300, max_leaf_nodes: 15000, 
n_jobs: − 1, random_state: 0, bootstrap: True, 
criterion: squared_error 

KNeighborsUnif  0.97 weights: uniform 
KNeighborsDist  0.96 weights: distance  
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in industrial processes. 
R-squared measures how well the regression model explains the 

variance in the target variable. It ranges from 0 to 1, where higher values 
indicate a better fit. R-squared of 1 means that the model perfectly ex-
plains the variance, while 0 means the model does no better than pre-
dicting the mean of the target values. The R-squared score shows that 
both models have fairly high explanatory power; it is important to note 
that Model 2 had a better fit with a slightly higher R-squared score. MAE 
measures the average absolute difference between predicted and target 
values. It gives you an idea of how far off, on average, your predictions 
are from the true values. Lower MAE indicates better model perfor-
mance. MAE value shows that Model 1′s predictions have more insuffi-
cient mean absolute errors, while Model 2 seems to have made 
predictions with a larger mean absolute error. 

MSE is another commonly used metric that measures the average 
difference between the predicted and actual values. It is a more sensitive 
metric to large errors than MAE, as it penalizes larger errors more 
heavily. Like MAE, lower RMSE are better. The MSE value indicates that 
Model 1 made predictions with smaller errors, while Model 2 has 
slightly larger errors with a higher MSE. 

Table 6 presents three important regression evaluation metrics used 
to compare the performance of Model 1 and Model 2. In addition, the 
results obtained in the study are also presented in the table to compare 
them with the performance metrics of other studies in the literature. “-” 
symbols in the table indicates metrics not reported in the corresponding 
study. Comparing the R-squared performances across different studies, it 
is evident that the present study has achieved notably high R-squared 
values for both the Weighted Ensemble models, standing at 0.986 and 
0.990, respectively. Although Arunadevi and Prakash [21] obtained the 
highest R-squared value for the prediction of MRR, SR value was 
considerably very lower in the study. This shows that it works with low 
sensitivity in terms of surface roughness. In contrast, the prior studies 
reported comparatively lower R-squared values [2,18,19]. Specifically, 
Jatti et al. [19] found an R-squared value of 0.856, and Ulas et al. [18] 
reported an R-squared value of 0.814. The significant difference in R- 
squared values implies that the models in the present study, especially 
the Gradient Boosting and Q-SVR models, outperform those in the 
referenced studies in terms of explaining the variability in the data. It’s 
noteworthy to emphasize that in this study, MAE and MSE performances 
are calculated directly from the data without normalization, whereas in 
the other studies, normalization techniques were applied to these met-
rics. This distinction is crucial when interpreting and comparing the 
performance metrics, as it indicates a different approach to error 
calculation. Therefore, the reported MAE and MSE values in this study 
should be considered in the context of their direct derivation from the 
original data, offering a distinct perspective on model accuracy. Several 
studies, including those by Nas and Kara [11], Oniszczuk-Świercz et al. 
[28], and Rouniyar and Shandilya [22], employed the Analysis of 
Variance (ANOVA) technique for their investigations. However, as 
ANOVA does not fall under the purview of ML algorithms, its results are 
excluded from the direct comparative analysis of this study. Neverthe-
less, the R2 values obtained from these ANOVA-based studies are 
included in the table for informational purposes. The studies did not 
report MAE, MSE, and RMSE values, limiting the scope of direct com-
parison with the present study’s findings. 

The graph of the models’ prediction performance and errors are 
visualized in Fig. 7, allowing us to analyze in more detail how much the 
predictions of both models deviate from the experimental wears. As seen 
in Fig. 6, the predicted and experimental wear for both electrode and 
workpiece exhibit a high level of accuracy, indicating a strong alignment 
between the predictions and the experimental observations. Notably, 
electrode wear shows minimal error, underscoring the robustness of the 
predictive models for this variable. In contrast, a singular instance of 
relatively high error is observed in workpiece wear, albeit this error does 
not significantly impact the overall performance. Therefore, it can be 
concluded that the models perform exceptionally well, demonstrating a Ta
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strong fit with the relevant variables. Despite the isolated error in 
workpiece wear, the overall predictive performance remains high. 

The algorithms used in this study have shown strong performance on 
the training and testing datasets, demonstrating a successful imple-
mentation of machine learning. The presence of balanced learning in 
both datasets further highlights the effectiveness of the applied algo-
rithms. Notably, a high accuracy of 99 % has been achieved on both the 
training and testing datasets. Additionally, the errors and regression 
plots specific to the training datasets are illustrated in Fig. 8. As shown in 
Fig. 8, a slight variance exists between the experimental and predicted 
electrode and workpiece wears. This suggests that all the models are 
capable of making accurate and satisfactory predictions of EDM per-
formances by comprehensively understanding the intricate relationships 
between input and output parameters. 

Table 7 summarizes the significance of various features (variables) in 
the prediction models. The “importance” column indicates the contri-
bution of features to the prediction model. Additionally, the confidence 
interval of this contribution, measured by the standard deviation 
(“stddev”), the statistical significance of the feature (“p_value”), the 
number of data points used (“n”), and the 99th percentile confidence 
interval (“p99_high” and “p99_low”) are presented. 

The presented results and analyses provide valuable insights into the 
prediction models developed for electro-erosion wear of electrodes and 
workpieces in the context of different machine learning algorithms. 

Using two distinct models, Model 1 for electrode wear prediction and 
Model 2 for workpiece wear prediction, enabled a comprehensive ex-
amination of the factors influencing these wear processes. Both models 
demonstrated exceptional performance, achieving 99 % accuracy on the 
training and testing datasets. This remarkable accuracy underscores the 
effectiveness of the applied algorithms and suggests their potential 
applicability in real-world scenarios. 

Examining feature importance in both models revealed valuable in-
formation about the driving factors behind electrode and workpiece 
wear. In Model 1, the “Current” feature emerged as the most influential, 
indicating that the electric current plays a pivotal role in electrode wear. 
The “Cryonegenic Process Conditions” and “pulse durations” features 
significantly contributed to the model’s predictions. In Model 2, “Cur-
rent” retained its prominence, suggesting its importance in electrode 
and workpiece wear. “Pulse durations” and “Electrode Material” also 
exhibited noteworthy impacts on workpiece wear. 

3.3. Comparing machine learning performance 

When choosing the best machine learning model, it can be chal-
lenging to determine which is superior, especially when the difference in 
accuracy between two models is minimal. This is where statistical 
methods become crucial in ensuring the selected model is significantly 
more accurate than its counterparts. In this study, we explore using the 

Fig. 7. Comparison of Experimental and Predicted Electrode and Workpiece Wears with Errors.  
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Wilcoxon signed-rank test, a non-parametric statistical test, to compare 
machine learning models. 

The Wilcoxon signed-rank test is an excellent alternative to the 
paired Student’s t-test for comparing machine learning models. This test 
is particularly useful when dealing with small sample sizes and non- 
normally distributed data. It provides a robust approach to assess the 
model’s accuracy using a prediction error approach for comparison. The 
test generates prediction errors through validation, resulting in two 
samples, one for each model. Statistical tests such as the Wilcoxon 
signed-rank test are then used to determine if there is a significant 

difference in the performance of the two models. 
The Wilcoxon signed-rank test is a non-parametric test that does not 

assume that the data is normally distributed. Instead, it compares the 
differences between the data pairs, making it ideal for comparing two 
models. The p-value obtained from the test is critical in determining the 
significance of differences between the models. The conventional sig-
nificance threshold is set at 0.05 in statistical hypothesis testing. If the 
calculated p-value is lower than 0.05, it suggests that the observed dif-
ferences between the models are statistically significant. Therefore, the 
model with the lower prediction error is considered superior. 

Fig. 8. Comparisons of training and test performance of best method for a) EWR - train b) MRR – train c) EWR – Test d) MRR - Test.  

Table 7 
The Effect of Variables on the Prediction Model and Statistical Measures.   

Model 1 Model 2  

importance stddev p_value_ n p99_high p99_low importance stddev p_value n p99_high p99_low 

Current  2.37  0.43  0.00 5  3.26  1.47  2.30  0.36  0.00 5  3.05  1.55 
Cryogenic Process Conditions  0.05  0.02  0.00 5  0.09  0.01  − 0.00  0.00  0.53 5  0.01  − 0.01 
pulse durations  0.02  0.00  0.00 5  0.03  0.02  0.02  0.00  0.00 5  0.03  0.01 
Electrode Material  0.01  0.00  0.00 5  0.02  0.01  0.01  0.00  0.00 5  0.02  0.00  
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It is important to note that the Wilcoxon signed-rank test is just one 
of many statistical methods available for comparing machine learning 
models. However, it is a valuable tool, especially when dealing with 
small sample sizes and non-normally distributed data. We can confi-
dently choose the best machine learning model by using statistical tests 
like the Wilcoxon signed-rank test. 

According to Fig. 9, the two models have distinct distributions 
regarding the compared features. The p-value is below 0.05 in both 
cases, indicating a statistically significant difference between the 
models. This means that the null hypothesis (H0) is rejected, and there is 
a meaningful distinction between the models. 

3.4. Limitations of machine learning algorithms 

It’s worth noting that there are still uncertainties and challenges in 
machine learning despite all the considerations that go into it. The 
quality and representativeness of training data are critical factors that 
can impact the performance of machine learning models. If the training 
data is incomplete or lacks representation, the model’s ability to handle 
new data could suffer. This underscores the importance of ensuring that 
training data is comprehensive and meaningful. Models’ generalizability 
is also crucial, as some might overfit the training data, leading to sub-
optimal performance on new, unseen data. Proper algorithm selection 
and parameter tuning can mitigate these issues, but incorrect choices or 
misaligned parameters can significantly impact the model’s overall 
performance. Training and evaluating machine learning models entail 
time and resource-intensive experimental processes. Additionally, 
obtaining accurate results often requires iterative trial-and-error 
methods. Insufficient or non-representative data presents a significant 
challenge to accurately learning from data. When datasets are scarce for 
a specific topic, obtaining a sufficiently large and diverse dataset can 
hinder the model’s effectiveness. As a result, it’s crucial to address the 
limitations posed by data scarcity in machine learning applications. 

4. Conclusions and future directions 

The research findings suggest that electrodes reduce EWR values 
after CT. However, the duration of CT can impact the results obtained. It 
was observed that CuCrZr electrodes outperformed Cu electrodes, and 
an increase in current discharge caused a more significant rise in EWR 
and MRR compared to pulse duration and CT. Machine learning models, 
such as those made using AutoGluon, are powerful tools for modeling 
and comprehending the intricate relationship between electrode mate-
rial and wear. These insights could aid in making informed decisions 
regarding manufacturing processes, thereby enhancing product quality 
and equipment longevity. 

The highly accurate prediction models developed, and the insights 
gleaned from feature importance analyses offer valuable tools for un-
derstanding and potentially optimizing electro-erosion wear processes 
in various industrial applications. Future research could explore these 

models’ practical implications and potential integration into 
manufacturing processes to enhance efficiency and cost-effectiveness. 

Conducting similar analyses on different materials or electrode types 
could lead to a more comprehensive evaluation of the generalization 
capabilities of machine learning algorithms. Exploring the effects of 
various processing conditions on erosion wear, such as temperature, 
pressure, and material quality, could provide a more detailed and 
extensive understanding. Testing the applicability of these models in 
real manufacturing environments and assessing their practical usage in 
operations could be a significant step for further research. 
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