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Abstract
In this study, four different 3D five-term chaotic flows are unified and a novel six-term 3D unified chaotic system with three

nonlinearities is introduced. Firstly, the theoretical system via an electronic circuit is realized, and then the basic dynamical

properties of the proposed unified chaotic system are numerically and analytically analyzed, i.e., sensitivity to initial

conditions, equilibrium points, eigenvalues, Kaplan–Yorke dimensions, dissipativity, Lyapunov exponents and bifurcation

diagrams. Investigation results clearly present that this is a new unified chaotic system and earns further detailed

disquisition.

Keywords Sprott B chaotic flow � Sprott C chaotic flow � van der Schrier–Mass chaotic system � Munmuangsaen–

Srisuchinwong chaotic system � Unified chaotic system

1 Introduction

Chaos theory is used to explain the apparently complex

behaviors of simple, linear and well-behaved mathemati-

cally defined nonlinear systems. The essential characteris-

tics of chaotic systems are sensitive dependence on initial

values and have infinite number of different periodic

responses (Miladi et al. 2015). Nonlinear dynamical sys-

tems including simple mathematical equations can exhibit

chaos that has rich signal trajectories. Because of extreme

sensitivity to initial conditions, the chaotic behaviors occur

over long-term unpredictability (Stollenwerk et al. 2015).

Therefore, chaos is defined as the sufficient conditions of

unstable behavior in deterministic dynamical systems.

The researchers have discovered many chaotic systems

after the first chaotic attractor was presented by Lorenz

(1963). The differential equations of the Lorenz system

come from a simplified model of atmospheric convection,

and it shows two-scroll graphics. A simple continuous-time

three-dimensional chaotic system, which constitutes

chemical reaction, was pointed out by Rössler (1976) and a

four-dimensional hyperchaotic system by Rössler (1979).

A double-scroll attractor was determined from an elec-

tronic circuit named Chua’s circuit by Matsumoto (1984).

Sprott (1994) explored 19 simpler third-order chaotic

flows, which have either two nonlinearities with five terms

(Sprott A–E) or one nonlinearity with six terms (Sprott F–

S). Chen and Ueta (1999) proposed a novel three-dimen-

sional chaotic attractor, which is called as Chen chaotic

system. Lü et al. (2002a) developed a continuous-time

chaotic attractor that likes the Lorenz and Chen systems as

a new chaotic system. Some new five-term chaotic systems

are also discovered (Sprott 1997a, b; Van der Schrier and

Maas 2000; Munmuangsaen and Srisuchinwong 2009;

Chang and Kim 2013; Huang 2013; Yu et al. 2013; Maaita

et al. 2015; Pham et al. 2019; Wang et al. 2019). The trend

of searching for novel chaotic attractors still continues

(Gotthans et al. 2016; Jafari et al. 2016; Pham et al. 2016;

Kengne et al. 2017; Pham et al. 2017; Wang et al. 2017;

Mobayen et al. 2018; Xiong et al. 2018; Huynh et al. 2019;
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Singh and Roy 2019), and many more will be found

because of their potential applications especially in secure

communication (Durdu et al. 2015; Nwachioma et al.

2019) and encryption (Ullah et al. 2018; Mobayen et al.

2019).

Lately, the researchers are busy with a new investigation

that combining some chaotic attractors. For instance, the

generalization form of the Lorenz, Chen and Lü systems

was given by Lü et al. (2002b) as a novel chaotic system. It

is the first unified chaotic system. Then, a new chaotic

system was proposed with combining the unified system

with the Rössler system (Gao et al. 2006). Another unified

chaotic system was introduced according to Vanecek and

Celikovsky criterion, and its linear and adaptive feedback

synchronizations were applied by Pan et al. (2010a). A

novel three-scroll unified chaotic system, which contains

Lorenz-like and Chen-like subsystems as two extremes of

its parameter spectrum, was introduced by Pan et al.

(2010b). The dynamical behaviors of a novel unified

chaotic system that denotes a two-family chaotic system

containing the Lorenz and Chua systems with a new con-

structed joint function were presented (Elhadj and Sprott

2010). Besides, a sixth-order unified hyperchaotic thermal

convection loop in both pure fluid layers and fluid-satu-

rated porous media was designed by Sheu et al. (2009).

Furthermore, a novel hyperchaotic system was introduced

by adding a nonlinear controller as a new state into the

three-dimensional unified chaotic system and its control

was investigated by using two different control methods

(Wang and Zhao 2010). Nowadays, the fractional-order of

the first unified chaotic system was analyzed, its circuit

diagram was designed, and its control and synchronization

were applied with the active control method (Li et al.

2019).

Due to their simplicity, five-term chaotic flows have

significant importance. Therefore, their dynamics, control,

synchronization and secure communication application

were investigated in some papers. Generalized Sprott B

(Feng and Wei 2015), Sprott C (Wei and Yang 2012) and

Sprott E (Oliveira and Valls 2016) chaotic systems were

presented, and their dynamical properties were analyzed.

The control of generalized Sprott B chaotic flow was

implemented with delayed feedback control method by

Feng and Wei (2015), and the control of Sprott E chaotic

flow was used with distributed delay feedback control

method by Xu and Wu (2015). Synchronization of chaos

between Sprott B and Sprott C systems was applied via

linear coupling (Liu and Fei 2006). Adaptive control

method was applied for the projective synchronization of

the five-term 3D chaotic system with a nonlinear quadratic

exponential term (Huang 2013), and an adaptive control

scheme was designed for the projective synchronization

between different chaotic systems (Hamri and Ouahabi

2017). Electronic circuits were constructed for the secure

communication application of Sprott A (Nose–Hoover)

chaotic flow by using Pecora–Carroll synchronization

method (Uyaroglu and Pehlivan 2010). Secure communi-

cation of Munmuangsaen–Srisuchinwong five-term chaotic

system was implemented with electronic circuit design and

passivity based synchronization by Kocamaz et al. (2018).

Also, Cicek et al. (2019) implemented the secure com-

munication of five-term jerk chaotic system with electronic

circuit design and sliding mode synchronization.

In this study, we have investigated whether there is a

chaotic system, which can simply unify some of the five-

term 3D chaotic flows and can yield the continued transi-

tion from one to another. This paper claims that four

especially simple chaotic systems can be combined in this

way. In other words, the principal motivation of this work

is to develop and analyze a new unified chaotic system,

which includes specifically Sprott B, Sprott C, van der

Schrier–Mass, and Munmuangsaen–Srisuchinwong auton-

omous systems. Unified chaotic systems include various

chaotic regions. They also have the opportunity to switch

one chaotic signal characteristic to another by arranging the

values of parameters. Therefore, this simple unified chaotic

system has substantially complex behaviors and it is more

appropriate for engineering applications.

The rest of this paper is constructed as follows: In the

next section, the proposed continuous-time three-dimen-

sional unified system is given. In Sect. 3, the electronic

circuit design is demonstrated. Some basic properties such

as sensitivity to initial conditions, dissipativity, Lyapunov

and Kaplan–Yorke dimensions, bifurcation diagrams,

equilibria, and eigenvalues are given in Sect. 4. In the last

section, the concluding remarks are presented.

2 Description of Unified Chaotic System

Sprott (1994) explored 19 three-dimensional chaotic flows.

The Sprott B chaotic flow is defined as:

_x ¼ yz;
_y ¼ x� y;
_z ¼ 1� xy;

8
<

:
ð1Þ

where x, y, z are state variables and the ‘‘�’’ denotes the

differentiation with respect to t.

The Sprott C chaotic flow is topologically equivalent to

Sprott B chaotic flow, but they have distinct structures. It is

given in the following differential equations (Sprott 1994):

_x ¼ yz;
_y ¼ x� y;
_z ¼ 1� x2:

8
<

:
ð2Þ
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Van der Schrier and Maas (2000) introduced a reduced

form of Lorenz chaotic system. This system has only five

terms, and it is expressed as a set of three first-order,

autonomous, ordinary differential equations as follows:

_x ¼ �y� x;
_y ¼ �xz;
_z ¼ xyþ R;

8
<

:
ð3Þ

Table 1 Comparison of the new six-term 3D unified chaotic system

Eq. No Type of chaotic flow Transformation parameters into a known form of this work Number of terms

a b c Total Nonlinear

(1) Sprott B 1 1 1 5 2

(2) Sprott C 1 1 0 5 2

(3) Van der Schrier–Mass 1 0\ b B 1 1 5 2

(5) Munmuangsaen–Srisuchinwong 5 90 1 5 2

(8) This work Switching possibility between 4 known chaotic flows 6 3

Fig. 1 3D state space plots of unified chaotic system for a a = 1, b = 1, c = 1 (Sprott B), b a = 1, b = 1, c = 0 (Sprott C), c a = 1, b = 0.5, c = 1

(van der Schrier–Mass), d a = 5, b = 90, c = 1 (Munmuangsaen–Srisuchinwong), e a = 3, b = 25, c = 0.5
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where 0\R B 1. When x state is translated to y and y state

is translated to - x, it is still topologically equivalent and

results in the following 3D system:

_x ¼ yz;
_y ¼ x� y;
_z ¼ R� xy:

8
<

:
ð4Þ

Munmuangsaen and Srisuchinwong (2009) presented a

chaotic system with only five terms that consists of two

quadratic nonlinearities in three simple differential equa-

tions as follows:

_x ¼ aðy� xÞ;
_y ¼ �xz;
_z ¼ �bþ xy;

8
<

:
ð5Þ

where a = 5, b = 90. When x state is translated to y, y state

is translated to x, and z state is translated to –z, it is still

topologically equivalent and results in the following 3D

system:

_x ¼ yz;
_y ¼ a x� yð Þ;
_z ¼ b� xy:

8
<

:
ð6Þ

In this study, a novel unified chaotic system is proposed,

which is the unity of Sprott B, Sprott C, van der Schrier–

Mass, and Munmuangsaen–Srisuchinwong chaotic flows.

The differential equations of the unified chaotic system are:

_x ¼ yz;
_y ¼ a x� yð Þ;
_z ¼ b� cxy� dx2:

8
<

:
ð7Þ

where a, b, c and d are system parameters. However, some

of the chosen parameters are not independent. One of them

is an amplitude parameter as can be seen by making the

transformation x ¼ kx; y ¼ ky: If k ¼ 1=
p
c, the third

equation reduces to _z ¼ b� xy� ðd=cÞx2; and if k ¼ 1=
p
d

the third equation reduces to _z ¼ b� c=dð Þxy� x2 without

any change in the dynamics including the Lyapunov

exponents. A rescaling of x in by a factor of
p
d should

completely remove the dependence on d, and a rescaling of

x in by a factor of
p
c should completely remove the

dependence on c. Thus, it is unnecessary to treat them as

independent parameters. The usual way to study the tran-

sition between two such parameters and systems would

have been to take d =1 - c and write the third equation as

_z ¼ b� cxy� ð1� cÞx2 so that the transition occurs over

the range of 0\ c\ 1. Then, the differential equations of

the unified chaotic system become

_x ¼ yz;
_y ¼ aðx� yÞ;
_z ¼ b� cxy� 1� cð Þx2:

8
<

:
ð8Þ

This system has three nonlinearities with six terms. As it

can be seen easily in Table 1, in which all the reported

Fig. 2 2D state plots of unified chaotic system with a = 3, b = 25 and c = 0.5 in a x–y phase portrait, b x–z phase portrait, c y–z phase portrait
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chaotic systems with ‘‘a new 3D unified’’ are listed and

compared, when a = 1, b = 1 and c = 1, system (8) is

equivalent to Sprott B chaotic flow; when a = 1, b = 1 and

c = 0, it is equivalent to Sprott C chaotic flow; when a = 1,

0\ b B 1 and c = 1, it is equivalent to van der Schrier–

Mass chaotic system; and when a = 5, b = 90 and c = 1, it

is equivalent to Munmuangsaen–Srisuchinwong chaotic

system.

With the initial conditions x(0) = 2, y(0) = 1.2, and

z(0) = - 0.3, some 3D state space plots of chaotic system

(8) for different parameter values are shown in Fig. 1. The

2D state plots of the unified chaotic system are shown with

the parameter values a = 3, b = 25 and c = 0.5 in Fig. 2.

3 Electronic Circuit Design

In this section, we realize theoretical system (8) via an

electronic circuit. The circuit is designed with electronics

components (see Fig. 3). The circuit includes four opera-

tional amplifiers, three capacitors, eight resistors, three

analog multipliers.

The values of the components are selected as R1 = R2-

= 10 kX, R4 = 40 kX, R5 = R6 = 133 kX, R7 = 400 kX,
R8 = R9 = 80 kX, C1 = C2 = C3 = 1 nF. Here, the types of

operational amplifiers, analog multipliers are TL084 and

AD633, respectively. In Fig. 4, the displayed experimental

results of the chaotic dynamics agree with the numerical

ones in Fig. 2.

Fig. 3 The circuit design of the

unified chaotic system (8)
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4 Basic Properties of Unified Chaotic System

4.1 Sensitivity to Initial Conditions

Sensitivity analysis to initial conditions is one of the

noteworthy properties of chaotic systems. The presence of

sensitivity to initial conditions in the proposed unified

chaotic system can be shown with a simple numerical

experiment. When slightly different initial conditions are

considered for system (8), for example y(0) = 1.2,

y(0) = 1.20001, and y(0) = 1.20002, the sequence becomes

very different after a certain time elapsed despite the small

differences (see Fig. 5). The same phenomenon is observed

for the first and third states of the system even though the

initial conditions x(0) = 2 and z(0) = - 0.3 are not

changed.

4.2 Dissipativity and the Existence of Attractor

For dynamical system (8), it can be obtained as

rV ¼ o _x

ox
þ o _y

oy
þ o _z

oz
¼ �1: ð9Þ

Since rV ¼ �1; the dynamical system is a dissipative

system and the exponential contraction of system (8) is

dV

dt
¼ e�1: ð10Þ

In the proposed unified chaotic system, a volume ele-

ment V0 is obviously impacted by the flow into a volume

(a)

(b)

(d)

(c)

Fig. 4 The electronic circuit

outputs of the unified chaotic

system a time series, b x–

y phase portrait, c x–z phase

portrait, d y–z phase portrait
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element V0e
-t at time t, which means each volume com-

prising the trajectory of this dynamical system shrivels to

zero as time goes to infinity at an exponential rate - 1.

Thus, all orbits of this dynamical system are finally

bounded to a specific subset, which has zero volume, the

asymptotic motion arranges into an attractor of system (8).

4.3 Lyapunov Exponents

Lyapunov exponents represent a mathematical and

numerical means of probing a system for chaotic or

stable behavior, which characterizes the rating separation

of infinitesimally close trajectories of a dynamical system.

Positive maximal Lyapunov exponent is one of the key

components of chaotic dynamics. Lyapunov exponents

measure the average exponential rating divergence or

convergence of nearby trajectories in the state space for a

dynamical system. If a system has all negative Lyapunov

exponents, this system is a fixed point. If a system has one

zero Lyapunov exponent with all rest negative exponents,

the motion of the system is a limit cycle. If a system has at

least one positive Lyapunov exponents with one zero and

one negative exponents, then it is defined as chaotic by

Chen and Ueta (1999).

The Lyapunov exponents of the proposed unified

chaotic system are demonstrated for different parameter

values in Fig. 6a, c and e. When parameters are a = 3,

b = 25 and c = 0.5, the Lyapunov exponents of system (8)

are calculated by using the algorithm of Wolf et al. (1985)

as follows:

L1 ¼ 0:9; L2 ¼ 0 and L3 ¼ �3:89: ð11Þ

So that one of the Lyapunov exponents is positive,

system (8) possesses expanding nature of different direc-

tions in phase space, the proposed unified system is chao-

tic. The geometry and the density of chaotic systems can be

difficult to describe. Some quantitative characterizations

such as Lyapunov and Kaplan–Yorke dimensions of the

attractors are used. The Lyapunov dimension of system (8)

is fractionally described by

DL ¼ 1� L1

L3
¼ 1� 0:9

�3:89
¼ 1:231: ð12Þ

where L1[ L3. Kaplan–Yorke dimension is a useful tool for

determining the fractal dimension and the rate of entropy

production of the considered dynamical attractor. For a

three-dimensional autonomous system, the Kaplan–Yorke

dimension is between 2.0 and 3.0. It is generally slightly

greater than 2.0. The Kaplan–Yorke dimension of proposed

unified chaotic system is calculated as:

DKY ¼ jþ 1

Ljþ1

�
�

�
�

Xj

i¼1

Li ¼ 2þ 0:9þ 0

�3:89j j ¼ 2:231: ð13Þ

4.4 Bifurcation Diagrams

A bifurcation diagram is a graphical depiction of the

relationship between the values of one parameter and the

behavior of a nonlinear system in which the parameter is

being measured. In other words, it shows the sudden

Fig. 5 Time series of unified chaotic flow with a = 3, b = 25 and c = 0.5 for a x signals, b y signals, c z signals
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appearance of qualitatively different solutions such as fixed

points, periodic orbits or chaotic attractors for a dynamical

system as a function of a parameter is varied. The extre-

mum values of one of the state variables are considered.

The stable values are usually represented with a solid line,

and the unstable values are represented with a dotted line,

though the unstable points are often omitted. The bifurca-

tion of unified system (8) is demonstrated for varying a in

Fig. 6b, for varying b in Fig. 6d, and for varying c in

Fig. 6f. For displaying of the figures, we used blue color

for initial conditions (2, 1.2, - 0.3) and red color for initial

conditions (0.5, 0.5, 0.5).

The bifurcation maps in Fig. 6 show that there are some

gaps, in which the proposed unified chaotic system has

limit cycles. The local Lyapunov exponents and bifurcation

analysis for varying c in 0.96 and 0.99 with a = 3 and

b = 25; x time series and 3D state space plot of unified

chaotic system (8) with parameter values a = 3, b = 25 and

c = 0.98 are given in Fig. 7.

4.5 Nontrivial Equilibria, Jacobian Matrix,
Eigenvalues

The equilibria of proposed unified chaotic system can be

calculated by obtaining _x ¼ 0; _y ¼ 0; _z ¼ 0, with the solu-

tion of the following system:

yz ¼ 0;
a x� yð Þ ¼ 0;
b� cxy� 1� cð Þx2 ¼ 0:

ð14Þ

So, it has two equilibrium points: E1ð
ffiffiffi
b

p
;

ffiffiffi
b

p
; 0Þ and

E2ð�
ffiffiffi
b

p
;�

ffiffiffi
b

p
; 0Þ. This system has nontrivial equilibria

which means no zero equilibria.

The Jacobian matrix of system (8) is

Fig. 6 Lyapunov exponents (left) and bifurcation maps (right) with blue color for initial conditions (2, 1.2, - 0.3) and red color for initial

conditions (0.5, 0.5, 0.5) for a, b a parameter with b = 25 and c = 0.5, c, d b parameter a = 3 and c = 0.5, e, f c parameter a = 3 and b = 25
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J ¼
0 z y

a �a 0

�cy� 2ð1� cÞx �cx 0

0

@

1

A: ð15Þ

The corresponding Jacobian matrices for E1ð
ffiffiffi
b

p
;

ffiffiffi
b

p
; 0Þ

and E2ð�
ffiffiffi
b

p
;�

ffiffiffi
b

p
; 0Þ are:

J E1ð Þ ¼
0 0

ffiffiffi
b

p

a �a 0

c� 2ð Þ
ffiffiffi
b

p
�c

ffiffiffi
b

p
0

0

@

1

A; ð16Þ

and

J E2ð Þ ¼
0 0 �

ffiffiffi
b

p

a �a 0

� c� 2ð Þ
ffiffiffi
b

p
c

ffiffiffi
b

p
0

0

@

1

A: ð17Þ

To calculate the eigenvalues, let |kI - J(E1)| = 0 and

|kI - J(E2)| = 0; then, the same characteristic polynomial

is obtained for the nontrivial equilibrium points E1 and E2

as follows:

k3 þ ak2 þ 2� cð Þbkþ 2ab ¼ 0: ð18Þ

So, they give the same eigenvalues. For a = 3, b = 25

and c = 0.5, they are calculated as:

k1 ¼ �3:7294; k2 ¼ 0:3647þ 6:3315i;

k3 ¼ 0:3647� 6:3315i:
ð19Þ

Finally, k1 2 R�, k2 and k3 2 C, which are conjugate

with positive real parts. That means the nontrivial equi-

libriums E1 and E2 are unstable saddle-focus points.

4.6 Switching to Other Chaotic Flows

Transition of the proposed unified system to Sprott B,

Sprott C, van der Schrier–Mass, and Munmuangsaen–

Srisuchinwong chaotic flows is examined. As shown in

Fig. 8, unified system (8) is started with parameters a = 3,

b = 25, c = 0.5, then their values are changed when

t[ 100, and switching to these chaotic flows is achieved

successfully. Therefore, this simple unified chaotic system

includes more complex dynamical behaviors. Switching to

other chaotic flows makes it more proper for engineering

applications such as image encryption, secure communi-

cation and random number generator. However, the values

of states at the cutoff point may cause some problems

because of the sensitive dependence on initial values of

chaotic systems. For this reason, synchronization with

unknown parameters can be needed. When the synchro-

nization rules are applied to the chaotic systems, two dif-

ferent signals are synchronized. Based on the control and

stability theory, the synchronization of chaotic systems has

been designed with unknown parameters by using some

effective control methods (Zhang et al. 2015; Driss and

Mansouri 2016; Gao et al. 2016; Sun et al. 2017; Tirandaz

and Saeidiaminabadi 2017; Tirandaz et al. 2018).

Fig. 7 The unified chaotic system for a = 3, b = 25, a Lyapunov exponents for varying c in 0.96 and 0.99, b bifurcation map, c x time series for

c = 0.98, d 3D state space plot for c = 0.98
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5 Conclusion

This paper introduces a new unified chaotic system, which

can identify with a kind of unique and unified classification

of four chaotic attractors containing the Sprott B, Sprott C,

Van der Schrier–Mass, and Munmuangsaen–Srisuchin-

wong chaotic flows. This unified chaotic system has sub-

stantially complex dynamical behaviors. In addition, this

unified chaotic system has:

• Become the smallest unified chaotic system. It consists

of six terms, three of which have nonlinearities,

• Contributed to a better understanding of the relationship

between Sprott B, Sprott C, van der Schrier–Mass, and

Munmuangsaen–Srisuchinwong chaotic systems,

• Moreover, including four different chaotic flows is an

advantage for the engineering applications such as

chaotic mixer, medical electronics, and secure

communication,

• For ease of use in engineering, such compact unified

chaotic attractor models with new combinations must

be further explored and examined.
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Lü JH, Chen GR, Zhang SC (2002a) The compound structure of a

new chaotic attractor. Chaos Solit Fract 15(5):669–672. https://

doi.org/10.1016/S0960-0779(02)00007-3
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