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Abstract

The healthcare industry has found it challenging to build a powerful global

classification model due to the scarcity and diversity of medical data. The lead-

ing cause is privacy, which restricts data sharing among healthcare providers.

Federated learning (FL) can contribute to developing classification models by

protecting data privacy. This study has tested various federated techniques in a

peer-to-peer setting to classify brain Magnetic Resonance Images (MRI). The

authors propose various aggregation strategies for FL, including Federated

Averaging (FedAvg), Quantum FL with FedAVG (QFedAvg) and Fault Toler-

ant FedAvg (Ft-FedAvg) and FedAvg with differential privacy (Dp-FedAvg). In

each approach, a custom Convolutional Neural Network (CNN) model is

applied to compute locally run nodes with different parts of the same brain

MRI dataset for 10, 20 and 30 training and test rounds. A central server and

CNN-based three federated clients are included in the FL-based brain tumour

classification model to exchange data and combine the model weights on the

server, which are sent from local devices to the server. The superiority of the

performance of the proposed model is demonstrated by comparing it with tra-

ditional methods on various performance metrics. Experimental results show

that in brain MRI dataset classification using FL approaches, FedAVg showed

the best performance with 85.55% and 84.60% success for 10 and 20 rounds,

respectively, while Ft-FedAvg showed the best performance with 85.80% suc-

cess for 30 rounds for test set. Statistical results obtained from FL approaches

showed that FedAvg and Ft-FedAvg have superior performance with regard to

accuracy and robustness in comparison with the others.

KEYWORD S

classification, deep learning, federated learning, privacy-preserving

1 | INTRODUCTION

The lack of data privacy has always been an inherent
problem in deep learning, especially in healthcare.1,2

Deep learning methods include collecting data, sharing it

with another party, processing it and making it ready for
the model.3 Due to patient privacy, collecting data from
different institutions and performing deep learning
models with these data emerges as a challenge. Overcom-
ing these challenges has become an important research
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area where researchers work and develop new methods,
and eventually, federated learning (FL) has emerged.4

FL is a learning method that enables algorithms to
learn collaboratively by providing data privacy.4 In other
words, it is the collaborative training of a machine learn-
ing model across a server with local data obtained from
many independent devices without exchanging data.
During each training round of FL, each local client
updates the local model with their data and then uploads
the local model to the server to update the global model
by aggregating the local model.5 The training process of
FL is shown in Figure 1. FL has arisen as a significant
research topic in machine learning in recent years. Fur-
thermore, it has been used in a variety of applications,
including medical image classification,6 disease
classification,7 medical image segmentation8 and so
on. Additional research has been conducted on the effects
of FL on a range of other cancers, including breast
cancer,9 prostate cancer,10 lung cancer,11 larynx cancer,12

rectal cancer,13,14 skin cancer15 and others.
Compared with classical methods in Table 1, FL has

been used in a limited number of studies for brain
tumour classification. Islam et al. studied data from
22 brain tumour patients from the UK dataset. They cre-
ated an average Convolutional Neural Network (CNN)
model from DenseNet121, VGG19 and InceptionV3
models, integrated them into the federated learning
structure, and achieved an accuracy of 91.05%.28 In
another study, optimize weight sharing was proposed by
rating the weight percentage of each client and using
average weights. In order to assess the performance of
the proposed model, it was examined how well support
vector machine (SVM) and VGG16 performed in the FL

environment together with the average weights of pro-
posed CNN and VGG16. The experimental findings were
98% accuracy on BT_large-1c and 97.14% on BT-large-2c
for rating weight percentage.29 Viet et al. applied
FedAVG with VGG16, ResNet50, ConvNext and MaxViT
to the Figshare dataset, and ConvNeXt obtained 98.69%
accuracy on independently and identically distributed
(IID) data.30 Bhati and Samed proposed a framework for
evaluating data based on the blockchain in FL. They cre-
ated a smart contract that assesses every local update by
building a local model. It is only combined with the
global model when the local model meets a predeter-
mined accuracy criterion. The brain tumour dataset's
lowest accuracy was 89.15%, and the highest was
93.34%.31

In this study, we propose FL approaches to solve the
sharing of medical data with third institutions or individ-
uals and to enable institutions to develop joint modelling
in collaboration. These approaches are FedAvg, QFedAvg
and Ft-FedAvg strategies. Additionally, the differential
privacy method has been applied to the FedAvg strategy
to see the effects of data privacy. The advantages of the
FedAvg model include data privacy, reduced communica-
tion costs which can be beneficial for devices with limited
bandwidth, better model generalization by preventing
overfitting and the ability to be scalable to accommodate
more devices.32 No tolerance to data imbalance, slowly
converging when the data samples among the end
devices are unbalanced and identically and indepen-
dently dispersed (non-IID) and straggler problems are
considered disadvantages of FedAvg.33 Several
advantages of QFedAvg over FedAvg are providing better
convergence and accuracy by reducing the impact of

FIGURE 1 The training process of

federated learning.
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non-representative data, improving privacy by reducing
the impact of clients with different data distributions and
heterogeneous data and domain adaptation.34 One of the
limitations of QFedAvg is the difficulty in setting data
privacy because it requires access to data distributions. In

addition, computational cost, training time and resource
consumption are among the limitations. The advantage
of Ft-FedAvg over FedAvg is that it strengthens the
robustness of the system by allowing clients to recover
from communication errors and continue their

TABLE 1 Comparison with existing literature those used Figshare, Sartaj and BR35H datasets.

Ref. Dataset Algorithm Results
Performance criteria
(Accuracy %)

16 Figshare PDCNN A parallel deep convolutional neural
network (PDCNN) was used for
detecting and classifying brain cancers
in MRI images.

97.60

17 Figshare
Br35H

BMRI-Net + PFpM They suggested PFpM, a novel
parametric activation function for
brain tumour classification.

Figshare: 99.57
Br35H: 99.00

18 Figshare Modified CNNBCN + ER CNN with modified activation function
or classification of brain tumours
generated by the Erdos-Renyi (ER)
algorithm, Watts-Strogatz (WS)
algorithm and Barabasi-Albert (BA)
algorithm was devised.

95.49

19 Figshare ResNet18 + ShallowNet + SVM The authors employed the fusion of deep
and shallow data extracted from the
extended tumour region.

97.25

20 Figshare Border Collie Firefly Algorithm-based
Generative Adversarial network +

For severity-level classification in brain
tumours, a novel technique called
BCFA-based GAN is developed with
the Spark framework.

97.515

21 Figshare Channel split dual attention + a
backbone network

For efficient brain tumour classification
that is end-to-end learnable, they
proposed a channel split dual attention
based network called CDANet.

96.60

22 Figshare Bayesian Capsule Network They demonstrated the possibility for
creating the CapsNet architecture for
the purpose of classifying the various
types of brain tumours.

-

23 Br35H PO+ PSO+ CNN CNN with the political optimizer (PO)
based particle swarm optimization
(PSO) algorithm was used to detect
brain tumours from MRI.

97.09

24 Br35H DenseNet121 + ResNet101 + NasNet They combined deep features from pre-
trained deep convolutional neural
networks with ML classifiers.

98.67

25 Br35H 12-layered CNN This study used CNN for classifying
brain tumours.

98.8

26 Sartaj Ensemble of deep CNN models A deep CNN feature ensemble with two
stages was presented for the exact and
automatic classification of brain
cancers.

98.16

27 Sartaj Inceptionresnetv2 They compared nine deep-learning
models for classifying brain tumours
through transfer learning.

98.91
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participation in the training process.4 Some limitations of
Ft-FedAvg are that in cases where communication fail-
ures are frequent, the communication load of the system
increases significantly. Additionally, if the data distribu-
tion changes during the training process or while the sys-
tem is recovering from a failure, the assumption of
stationary data distribution may be violated, which can
lead to suboptimal performance or even failure of the Ft-
FedAvg algorithm. Differential privacy has been used to
eliminate the FedAvg privacy problem. Differential pri-
vacy is a rigid privacy-preserving method that forbids
unauthorized individuals from obtaining personal data
using publicly accessible data or service interfaces.35

To evaluate the effectiveness of these approaches, we
conduct experiments on the brain tumour Magnetic Res-
onance Imaging (MRI) dataset combination of Figshare,
Sartaj and BR35H.36 FedAVG outperforms other FL
methods. The results show that the FedAVG model
trained and tested in 10 rounds, the last round is 41%
more successful than the model in the first round with
FedAVG, which is the most successful strategy. The con-
tribution of the research can be summarized as follows:

• To improve the classification performance in terms of
accuracy and F1-score, we suggest FedAvg, QFedAvg,
Ft-FedAvg and Dp-FedAvg federated learning strate-
gies be merged with the CNN model based brain tumor
classification models.

• We evaluate the performance of brain tumour classifi-
cation by FL approaches against CNN and CNN-based
deep learning algorithms namely DenseNet and
VGG19.

The novelty of this study can be summarized as a
comparative study examining the effect of FL strategies
for brain tumour classification. Comparative studies have
been conducted with FedAvg, QFedAvg, Ft-FedAvg and
Dp-FedAvg. There are no similar comparative analyses,
according to our best knowledge.

2 | METHODOLOGY AND
PROPOSED MODEL

2.1 | Convolutional Neural Network

CNN is a deep learning model commonly used in com-
puter vision tasks such as image recognition, object
detection and image classification.37 CNN is specifically
designed to analyze image data by taking advantage of
spatial correlations and local patterns in the images.38

The architecture of a CNN consists of several layers,
including convolutional layers, pooling layers and fully
connected layers.

This study integrates a custom model based on CNN
with FL to classify brain MRIs. The three-layer
CNN model for cross-device collaboration has been used
in this model. The entire architecture and overall layout
of a custom CNN is shown in Figure 2. Our learning
model employs two-dimensional CNNs. As a result, the
filters of the convolutional layer only have two dimen-
sions. Additionally, for Max-pooling layers, the pool oper-
ations happen in two dimensions. The ReLU activation
function is applied to each dense layer and convolutional
layer. We also employ the Softmax activation and the
Adam optimizer in the output layer.

2.2 | Federated learning approaches

FL enables predictions through collaborative models
without taking medical data outside of the institution in
which it is located. The deep learning process is carried
out locally in each participating institution. The local
model weights are then transmitted to the server in order
to be used on the model on the device, which will be used
as a server. The local model weights are then transmitted
to the server in order to be used on the model of the
device, which will be used as a server. There are certain
challenges encountered during this whole decentralized

FIGURE 2 The architecture of the proposed model.
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process. These challenges are statistical heterogeneity,
data confidentiality and distributed optimization. The
scope of this study lies in distributed optimization using
various optimization methods and in data privacy utiliz-
ing differential privacy. Distributed optimization is train-
ing local models on local data while the central server is
responsible for the global collection of updates. The
updates collected on the central server must be opti-
mized. As shown in Figure 3, there are FedAvg, QFedAvg
and Ft- FedAvg strategies for optimization. Strategy

preferences vary according to the distribution of data, the
model's structure and the problem's kind. Data privacy is
approached to observe the effect of differential privacy on
the model. Differential privacy obfuscates each local
model parameter by adding noise to the model weights
before sending the model weights to the server for aggre-
gation. This study implements Dp-FedAvg as one of the
optimizers.

In this study, four different FL strategies are used
FedAvg, QFedAvg, Ft-FedAvg and Dp-FedAvg. In the

FIGURE 3 The general architecture of federated learning.
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first strategy, FedAvg, the model weights from three dif-
ferent clients are optimized by averaging the model
weights on the server. In the second strategy, the QFe-
dAvg method, a q parameter is added to the standard
FedAvg method. This parameter considers differences
between clients in optimizing the collected model
weights. The third strategy is the Ft-FedAvg strategy. This
approach includes tolerating errors or interruptions in a
client for any reason during the training process. In the
last strategy, Dp-FedAvg, standard FedAvg model weights
are used on the server, but unlike the first method, differ-
ential privacy and noise are added to a client's model
weights before the model weight is sent to the server. The
goal of the fourth strategy is to prevent model weights
from being acquired in any possible attack, even though
only the model weights are transmitted.

2.3 | Federated learning-based brain
magnetic resonance imaging classification
framework

The primary goal of this work is to improve the impact of
custom CNN-based FL methods on classifying brain can-
cers while ensuring data confidentiality. The training
methodology is to use FL approaches, namely FedAvg,
QFedAvg, Ft-FedAvg and Dp-FedAvg for multi-
institution datasets by collecting weighted model updates
through a central aggregator server, as shown in
Figure 4. Figure 4 illustrates the FL-based brain tumour
classification model, which includes a central server and
three federated clients to exchange information. FL
approaches are used to combine the model weights on
the server, which are sent from local devices to the
server. Within the system, the global model on the server
is first trained by using the data on the server. Then the
server sends the model parameters to the active client
devices. After receiving the model weights from the
server, the client devices train their models with local
data and perform their evaluations. As a next step, the
client devices send the current model parameters to
the server to combine the updated model parameters of
other client devices. Then, the combined models, which
are updated with various optimizers, are sent back from
the server to all client devices. This process continues for
a determined number of rounds. This study determines
the number of rounds as 10.

3 | EXPERIMENTS AND RESULTS

We implement the CNN-based unified learning proposal
with the help of the Python programming language and
the Tensorflow and Flower libraries. In addition, other

libraries, such as Numpy and Pandas, are also used in parts
of the study, such as data pre-processing. We use a machine
with 16 GB RAM, 12th Gen Intel(R) Core(TM) i5-12500H
2.50 GHz and NVIDIA GeForce RTX 3050 Ti GPU to train
the CNN model within the Flower library. Three clients
and one server are simulated on this machine.

3.1 | Dataset

This study uses the MRI dataset provided by the public
Kaggle website to classify brain images.36 This dataset
was obtained by combining three datasets (Figshare, Sar-
taj, Br35H). The dataset contains 7023 greyscale brain
MR images in four classes: 1600 Meningioma, 1600 Gli-
oma, 1350 Pituitary tumour and 1850 no tumour, exam-
ples of which are shown in Figure 5. In addition, the
distribution of classes is shown in Figure 6. The dataset is
split before the separation between clients and servers
into a training set that contains 5712 samples of the total
dataset and a testing set that contains 1311 samples of
the total dataset. The Kaggle brain tumour MRI dataset
has dimensions of 512 � 512, and samples are reduced to
128 � 128 in a pre-processing step. The reason for resiz-
ing is to reduce the parameters of the images and, thus,
the costs of model studies.

3.2 | Data sharing

This study divides the training and test datasets into four
parts for collaborative model development while main-
taining data privacy. These are three simulated devices
and one simulated server as clients. The samples are
shared as equally as possible between the clients and the
server in FL. The distribution of training and test data by
classes for each simulated device is listed in Table 2.

3.3 | Evaluation metrics

To evaluate the performance of the FL model, F1-score,
precision and recall are used as performance metrics.
After each round, the optimizers' performance and the
models' progress are compared according to the F1-score
metric. True Positive (TP) indicates that the model clas-
sifies tumour samples as the tumour, while True Nega-
tive (TN) indicates that the model classifies non-tumour
samples as non-tumour. False Positive (FP) shows that
the model incorrectly classifies non-tumour samples as
tumour, and False Negative (FN) shows that the model
incorrectly classifies tumour samples as non-tumour. All
the metrics used for evaluation are given in Equations 1–3
regarding TP, FP, FN and TN.
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Precision¼ TP
TPþFP

ð1Þ

Recall¼ TP
TPþFN

ð2Þ

F1�Score¼ 2�Precision�Recall
PrecisionþRecall

ð3Þ

In addition to evaluation metrics, a confusion
matrix is used to better see the model's performance.
The confusion matrix shows correct and incorrect
predictions.

3.4 | Experimental results of FL methods

In this study, a hybrid approach has emerged by combin-
ing the FL and CNN model to accurately determine
whether there is a tumour in the brain MRI and to which
class it belongs. With this proposed approach, it is focused
on how data privacy and data sharing are realized.

3.4.1 | Implementation details

Within the scope of the study, the three-layer CNN
model is used for cross-device collaboration. Both server

FIGURE 4 The scenario of the

proposed model.
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and client devices have the same model architecture.
Using the CNN architecture, a local model for FL is
constructed in this methodology. The model consists of
three convolutional layers with 64, 32 and 16 filters,
respectively, followed by a maximum pooling layer,
each with a pool size (2.2). Drop layers of 0.2 are added
after each maximum pooling layer to avoid overfitting.
The output of the third maximum pooling layer is flat-
tened and fed into two dense layers with 128 and
64 neurons, respectively, which have ReLU activation
functions. A learning rate of 0.0001 is chosen for the
CNN model. The loss function used is the categorical

cross-entropy. The model is trained with five epochs
and eight batch sizes.

3.4.2 | Federated learning experiments

This study compares recent FL approaches, FedAvg, QFe-
dAvg, Ft-FedAvg and Dp-FedAvg. The aim is to compare
the goodness of the models obtained by applying the FL
strategies, which properly work over the complete set of
MRI datasets. Experiments have been conducted with
FedAvg, QFedAvg, Ft-FedAvg and Dp-FedAvg models

FIGURE 5 Data samples from each class (A) Glioma, (B) Meningioma, (C) No Tumour, (D) Pituitary.

FIGURE 6 Distribution of the

classes.

TABLE 2 Data distribution

between simulated devices.
Devices Glioma Meningioma No tumour Pituitary

Client 1—Train 330 335 398 365

Client 1—Test 75 75 104 75

Client 2—Train 330 336 398 364

Client 2—Test 75 75 100 75

Client 3—Train 330 334 398 364

Client 3—Test 75 75 101 75

Server—Train 331 334 401 364

Server—Test 75 81 100 75

8 of 15 AY ET AL.

 10981098, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23018 by SA
K

A
R

Y
A

 U
N

IV
E

R
SIT

Y
, W

iley O
nline L

ibrary on [15/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



trained and tested in 10 rounds. The experimental results
are shown in Table 3. Figures 7 and 8 depict the F1-score
and loss graph, and Figure 9 shows the confusion matrix
for four-class in the brain MRI dataset.

The approaches are trained five epochs in each com-
putation round. Ten rounds of communication are per-
formed under the dataset experiments, as shown in
Figure 8. In Table 3, the development of F1-score values
according to the number of rounds of the global model
on the server is shown.

When Table 3 is examined, global models starting
from a low F1-score have improved over time for each
strategy. Round 0 shows the evaluation that results from
the global model training without any client-specific
model weights. When the results of each round are

examined, there is an overall improvement in the global
models according to the local model weights from the
three clients. However, there are cases where there is no
positive change in the evolution of the global model
between rounds. This is because any client needed to
learn better in that round. As a result, when the first and
last rounds are compared in the global model, it is
observed that the F1-score performance has increased fol-
lowing the score. After 10 computation rounds, FedAvg
appears to be the most successful strategy. This is an
explainable result because the distribution of classes
between clients is approximately even. Therefore, FedAvg
has been successful because it is an averaging strategy.
Practically, using Ft-FedAvg can be more valuable than
FedAvg, so the preference between two strategies that
close performances can be based on the problem and
hardware features. When reaching the final round,
FedAvg's F1-score is 85.50%, which improves 11.8%, 2.4%
and 11.2% compared to the other approaches. Figure 8
shows the loss change curves. In the last training round,
the model loss value trained by the FedAvg method is the
largest, and the model loss of the other approaches on
FedAvg differs.

Figure 9 shows the complexity matrices in the first
round and the complexity matrices in the last round for
the global model for each FL approach for the test set.
When the first and last rounds for the server model were
compared on the test set, it was seen that the local model,
which made many incorrect predictions at the end of the
first training round, reduced the incorrect predictions at
the end of the last training round. When examining con-
fusion matrices, FedAvg is the most successful strategy,
but FaultTolerant may be preferred over FedAvg. After
examining all complexity matrices, a standard global
model was successfully developed by collecting model
information on the server without sharing data between
devices, and client devices developed their local models
in this way while preserving data confidentiality.

3.4.3 | Comparison with state-of-the arts

We evaluate the performance of brain tumour classifica-
tion by FL approaches against CNN and CNN-based deep
learning algorithms namely DenseNet and VGG19 on the
above metrics. Table 4 shows the performances of FL
approaches. The FedAvg presents a high F1-score, 85.5%,
compared with the others, and the strategy approach
with the shortest training period was Q-FedAvg. This is
expected because Q-FedAvg applies compression to the
model weights, so the communication time is shorter
than other strategies as the models are not used at full
capacity. QFedAvg showed the lowest performance with

TABLE 3 Model F1-score on the magnetic resonance imaging

test dataset for 10 rounds.

Round

F1-score

FedAvg QFedAvg Ft-FedAvg Dp-FedAvg

0 0.607 0.607 0.565 0.622

1 0.686 0.653 0.692 0.598

2 0.743 0.622 0.695 0.647

3 0.749 0.650 0.728 0.644

4 0.782 0.631 0.758 0.647

5 0.764 0.713 0.755 0.707

6 0.843 0.695 0.779 0.698

7 0.798 0.707 0.837 0.725

8 0.825 0.710 0.816 0.722

9 0.852 0.728 0.861 0.710

10 0.855 0.737 0.831 0.743

FIGURE 7 F1-score of different federated learning approaches

on the global model for test set.
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an F1-score of 73.7%. This is because QFedAvg is useful
for heterogeneously distributed data rather than evenly
distributed data. QFedAvg addresses this issue by using
quantization to compress updates before they are sent to
the server. For this reason, there may be relative losses in
model performance as a result of quantization. FedAvg,
on the other hand, gives its best performance in homoge-
neous data distributions. Therefore, in our experiment, it
is expected that FedAvg will perform better than QFe-
dAvg. On the other hand, federated learning methods'
performance is typically not able to outperform that of
non-federated learning methods. This demonstrates that
FedAvg can improve performance and successfully
address the privacy-preserving classification problem.

3.4.4 | Ablation analysis of our method

In order to evaluate the accuracy and effectiveness of the
proposed FL models, an ablation study was carried out
on different tasks.

Effect of training and test rounds of FL
We also examine the implications of varying the number
of rounds in federated learning for our techniques' gener-
alization performance. The test results for 10 rounds are
compared to those for 20 and 30 rounds in Table 5. As
can be seen from Table 5, the generalization performance
of FL strategies will decline with the increase of the num-
ber except Ft-FedAvg for 30 rounds. Additionally,
F1-scores of FL approaches on the global model for test
set for 20 and 30 rounds are given in Figures 10 and 11,
respectively.

Analysis of p-values of statistical test
Significance test is an important metric for statistically
analyzing the performance of observations. In this sec-
tion, we tested statistical significance for federated learn-
ing models for different rounds. The analysis of p-values
of the Wilcoxon signed-rank test with a significant differ-
ence of 0.05 and obtained ranking values of Friedman's
test for the designed strategies are shown in Table 6.
When Table 6 is examined, it is seen that the p-values are
less than 0.05. Therefore, it turns out that the results of
these FL strategies are significant.

Examining the results of both tests, we can see that
using the FedAvg strategy on brain tumour data is signifi-
cantly better than the others for training 10 and
20 rounds. In training 30 rounds, the Ft-FedAvg strategy
is more successful than other strategies.

4 | DISCUSSION

4.1 | Privacy

To address the privacy issue, FL has emerged as a prom-
ising alternative work, enabling the development of
machine learning models using data from multiple
sources without the need to share data. Thanks to FL,
meta information MRI images containing patient infor-
mation such as the patient's name and age does not leave
the organizations.

This paper offers a privacy-preserving paradigm for a
collaborative MRI-based brain tumour classification
framework across devices. The framework we proposed is
designed for the multi-institutions training sample MRI-

FIGURE 8 Loss value of different

federated learning approaches on the

global model.
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based brain tumour classification task, which ensures
data security by requiring data healthcare providers to
share only the trained model parameters rather than

their datasets. In addition, since the amount of local data
is equal on each simulated device, FedAvg, QFedAvg and
Ft-FedAvg strategies were used in the study. To see the

FIGURE 9 Confusion matrices of global model

of (A) FedAvg, (B) QFedAvg, (C) Ft-FedAvg,

(D) Dp-FedAvg for test set.
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effects of data privacy, the differential privacy method
was applied to the FedAvg strategy (Dp-FedAvg), which
is the most successful strategy, to observe the difference
between the results.

4.2 | Implications

Accurate classification of brain tumours is crucial for suc-
cessful treatment planning, and the use of machine learn-
ing models has shown great potential in the healthcare
field. However, privacy concerns around sharing medical

data have limited the application of traditional machine
learning methods. There are many legal requirements for
processing medical data in ML applications. Confidential-
ity is essential to comply with requirements and avoid
legal consequences. In summary, medical data privacy is
very important for ML. Healthcare providers and ML
developers must take all necessary precautions to ensure
the confidentiality of patient data to protect patient pri-
vacy, maintain ethical standards, prevent bias and dis-
crimination and comply with legal requirements.
Federated learning offers a promising solution to this
problem by allowing the development of machine learn-
ing models that use data from multiple sources while pre-
serving data privacy. Federated learning enables
predictions to be made through collaborative models
without taking medical data outside the institution where
it is stored.

This study sought answers to the questions of
whether a model can be developed by protecting the pri-
vacy of medical data with FL, whether models trained
with relatively little data can perform like models
trained with high data thanks to cooperation, how differ-
ent strategies affect the models and whether adding dif-
ferential privacy affects model performance.

As a result, the importance of research in this field is
of great importance in terms of distributed training of
learning models, as well as data security and privacy
issues, in today's world where an increasing amount of
data is available.

4.3 | Limitations and future works

This study can be improved. For example, in this study,
data sharing between clients and server is distributed
equally. In the next step, data sharing between clients

TABLE 4 Performance of federated learning approaches on

test set against others.

Algorithms F1 score (%) Time (sn)

FedAvg 0.855 4490.27

QFedAvg 0.737 3970.61

Ft-FedAvg 0.831 4982.88

Dp-FedAvg 0.743 5011.36

CNN 0.835 -

DenseNet 0.853 -

VGG19 0.850 -

TABLE 5 Performance of FedAvg, QFedAvg, Ft-FedAvg and

Dp-FedAvg with Convolutional Neural Network as backbone under

different numbers of rounds.

Round

F1-score

FedAvg QFedAvg Ft-FedAvg Dp-FedAvg

10 0.855 0.737 0.831 0.743

20 0.846 0.719 0.819 0.718

30 0.852 0.736 0.858 0.728

FIGURE 10 F1-score of different federated learning

approaches on the global model for test set for 20 rounds.

FIGURE 11 F1-score of different federated learning

approaches on the global model for test set for 30 rounds.
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and servers and distribution between classes can be done
in an unbalanced way. Thus, we can focus on solving the
problem of statistical heterogeneity. In this case,
the strategy approaches used will differ. Optimizers such
as FedProx, created for statistical heterogeneity, may be
preferred to solve this problem. In this study, there is one
server and three clients. Therefore, central communica-
tion architecture was used. Real life problems do not
always require a server or a server may not be available.
In this case, decentralized communication architecture
can be preferred. With decentralized communication
architecture, all clients will develop a common model by
sharing model weights among themselves, without a
server. The difficulties of developing a common model
with decentralized communication will also be discussed.
For example, difficulties such as resolving the communi-
cation problem that will occur if a client is slower than
other clients due to device heterogeneity, and finding
solutions to ensure that the low model performance that
may occur due to a client's local data does not affect other
clients and the development of the common model
should be addressed.

In the future, we will focus on the distribution of data
according to the clients' statistical heterogeneity or
develop models based on different strategies. Moreover, it
is possible to carry out studies on vertical learning by
simulating a non-IID situation.

5 | CONCLUSION

Data privacy is a significant concern in the analysis of
medical data. The FL method used in this study allows
more comprehensive use of data while maintaining data

privacy. FL is a distributed learning method, eliminating
the need to collect and store data in a central location. In
this study, the FL approach has been proposed to perform
the analysis of medical imaging data accessible to a
broader use without the need for central data storage
infrastructure. In this approach, we have designed and
integrated a custom CNN model in an FL setting to clas-
sify the brain MRI dataset. A scenario is designed by
dividing the brain MRI dataset into three local global
models with data-sharing. Local CNN models were initi-
ated using MRI of local devices from three different orga-
nizations simulated. The global CNN model on the server
is fed with the weights of the local CNN models. Local
model weights have been updated with the local model
weight optimized on the server. FedAvg, QFedAvg, Ft-
FedAvg and Dp-FedAvg are preferred as FL approaches.
Experimental results show that in brain MRI dataset clas-
sification using FL approaches, FedAVg showed the best
performance for 10 and 20 rounds, while Ft-FedAVg
showed the best performance for 30 rounds. Additionally,
on the basis of the statistical tests on brain tumours, we
can observe that the FedAvg strategy is clearly superior
to the others. A standard client-to-client model has been
developed by keeping the local data on the clients by
using all the suggested strategies. Compared to classical
deep learning models, where confidentiality is not pro-
tected, and data is collected and trained on a server, con-
fidentiality is preserved, and clients are provided with
high model performance with less local data. The results
show that thanks to FL, more data in an institution is
needed to prevent model development. Additionally, the
models have been developed with fewer epochs, thus
reducing the time cost considerably. As FL continues to
evolve and gain popularity, several research directions

TABLE 6 Analysis of the designed

method for the MRI brain tumour

classification model. Round Algorithms

Wilcoxon signed rank test

Rankingp-value

10 FedAvg - 1.3

QFedAvg 0.0020 3.6

Ft-FedAvg 0.0635 1.7

Dp-FedAvg 0.0020 3.4

20 FedAvg - 1.10

QFedAvg 8.8324e-05 3.35

Ft-FedAvg 7.7877e-04 1.90

Dp-FedAvg 8.8324e-05 3.65

30 FedAvg - 1.65

QFedAvg 1.7235e-06 3.48

Ft-FedAvg 0.0490 1.35

Dp-FedAvg 1.7279e-06 3.52
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can be explored to improve its efficiency, scalability and
security.
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