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Abstract— In this study, SVM and DNN models were employed 

to classify participants' emotional states using the publicly 

available SEED dataset, achieving impressive accuracy rates of 

79.8% for DNN and 79.4% for SVM, surpassing the accuracies 

of previous models. Furthermore, our electrode reduction study, 

which optimized electrode placement by focusing on emotionally 

relevant brain regions, yielded high accuracy. The use of EL 

further enhanced model accuracy to 81.3%. These classification 

results suggest that future research with more extensive datasets 

could lead to even more robust models. Consequently, this work 

has the potential to provide guidance for personalized 

recommendations in areas such as music, movies, books, and 

other choices tailored to individuals' emotional states. 
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 I.  INTRODUCTION   

In recent years, studies have focused on emotion recognition 

with an emphasis on the frequency bands of brain signals 

obtained through Electroencephalography (EEG) and the 

identification of crucial EEG electrodes for emotion 

recognition. Zheng and Lu [1] noted in their research that an 

approach involving the separation of important frequency 

bands was pursued to select the most suitable band for 

emotional analysis. As a result of this investigation, the gamma 

band was identified as congruent with emotional steady-state 

visual evoked potentials for EEG-based emotion classification. 

Additionally, efforts have been directed toward utilizing only a 

few electrodes for emotion recognition purposes and 

determining optimal electrode placement positions [2, 3].  

In Li and Feng study, they employed the Random Forest (RF) 

algorithm to assess the significance of EEG electrodes. They 

chose the wavelet transform (WT) method for feature 

extraction. Through the WT approach, they obtained features 

which were subsequently subjected to a classification process 

using Convolutional Neural Network (CNN) [4].  

Kul et al. have demonstrated the significance of electrode 

placements in EEG-based emotion recognition studies. Upon 

examining the positions of channels, they have evidenced that 

the combined utilization of F3, F4, F7, and F8 channels yields 

more successful outcomes in comparison to other 

combinations. In accordance with preceding studies, they have 

achieved more accurate results through the utilization of 

Support Vector Machines (SVM) [5].  

In their conducted study, Ozcan and Cizmeci have 

demonstrated that even when obtained from the same 

individual, EEG signals can be subject to degradation. 

Therefore, they have revealed that in the analysis of incoming 

EEG signals, CNN-based approaches prove to be more 

effective and yield successful results compared to prediction 

studies conducted using the Welch power spectral density 

method. This observation underscores the superiority of CNN 

based methods in handling EEG signals [6].    

Li et al. have employed a fusion of spatial, frequency, and 

temporal features of EEG signals to define human emotions. 

These combined features have been mapped onto a two-

dimensional image, thus generating a multidimensional feature 

map from EEG data. In this study, a hybrid deep neural network 

(DNN) was constructed by combining Convolutional Neural 

Networks (CNN), Long Short-Term Memory (LSTM), and 

Recurrent Neural Networks (RNN) architectures. As a result, 

they achieved an average accuracy rate of 75.21%, 

underscoring the effectiveness of their approach in emotion 

recognition through EEG signals [7].  

In this current study, drawing upon the research by Zheng 

and Lu [1], emotion analysis has been conducted through the 

extraction of features from EEG signals.  

II.  MATERIALS AND METHODS 

The block diagram of the completed study is displayed in Fig 

1. 
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Fig 1. Block diagram of the study. 

A. Dataset  

In this study, the open-source SEED dataset, which is a 

commonly used resource for emotion analysis investigations, 

was employed. The SEED dataset comprises EEG recordings 

obtained using a 62-channel electrode configuration positioned 

according to the international 10-20 system. The recordings 

were conducted utilizing the anESI NeuroScan apparatus at a 

sampling rate of 1000Hz [1].  

       The SEED dataset contains EEG data from 15 participants 

[8]. These data were captured while participants were exposed 

to various emotional stimuli. The stimuli consisted of carefully 

selected film clips belonging to three distinct emotional 

categories: positive, negative, and neutral, aiming to evoke 

corresponding emotional responses [1].        

B. Preprocessing  

Zheng and Lu [1] employed a band-pass frequency filter to 

clean artefacts present in the EEG data. This filter was applied 

to signals within the frequency range of 0.3-50Hz, effectively 

removing noise and other unwanted signals. The filtered signal 

was then decomposed and sampled down to a sampling 

frequency of 200 Hz for each film clip's recorded EEG signals. 

To prevent signal overlap, all experiments were divided into 

segments of the same length, yielding approximately 3300 

segments for each experiment.  

C. Feature Extraction  

Activities in different regions of the brain are observed in 

distinct frequency ranges, thus emphasizing the significance of 

decomposing EEG signals into frequency bands [9].  

Feature extraction methods were employed to enhance the 

informational value of the data. In literature, it is observed that 

features such as Differential Entropy (DE), Differential 

Asymmetry (DCAU), Rational Asymmetry (RASM), DASM, 

and RASM have been utilized [1], [9]. These features have been 

employed in data analysis and exhibit various potentials for 

providing informative insights.  

3) Electrode Selection  

The electrode reduction method is employed to identify 

critical brain regions associated with emotion recognition. 

Previous studies have demonstrated that reducing the electrode 

array not only decreases computational complexity but can also 

filter out irrelevant noise [12].  

In this study, initially, multi-channel EEG signals were 

used, extending up to 62 channels, and were utilized for model 

training. The DNN model was trained with the assumption that 

changing weights carry more information since it assigns higher 

weights to important features. The weight distribution analysis 

of the DNN model was used to identify critical channels and 

frequency bands. In this context, four different electrode 

configurations were selected and their performances were 

compared to the performance of the 62-electrode full setup. 

Electrode locations are shown in Fig 2. 

 
Fig 2. (a) 4-channel: FT7, FT8, T7, and T8; (b) 6-channel: FT7, FT8, T7, T8, 

TP7, TP8; (c) 9-channel: FP1, FPZ, FP2, FT7, FT8, T7, T8, TP7, TP8; (d) 12-

channel: FT7, FT8, T7, T8, CP5, CP6, TP7, TP8, CP5, CP6, P7, P8. 

 III.  RESULTS  

 After feature extraction, training was performed using LR, 

KNN, SVM, and DNN models. The parameters of the 

employed models are provided below.  

LR: L2-regularized: 5  

KNN: K=5  

SVM: Linear Kernel was utilized (C parameter: 5.2) 

DNN: Two hidden layers were used, with the first layer 

having a dimension of 300 and the second layer having a 

dimension of 200. The activation function used was the ‘relu’ 

function. The learning rate was set to 0.003.  

 In their study, Zheng and Lu [1] initially defined the output 

layers as sigmoid, however, experimental results indicated that 

for multi-class problems, the ‘SoftMax’ activation function 

yields better outcomes [11]. The error matrices of the trained 

models are depicted in Fig 3.  
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Fig 3. The error matrices of the models: a) Linear Regression, b) K-Nearest 
Neighbors, c) Support Vector Machine, d) Artificial Neural Network 

As evident in Figure 3, our SVM and DNN models exhibit 

superior results compared to the other models. Considering 

these outcomes, separate trainings were conducted for the two 

models to delineate the distinctions between brain waves and 

features. Table I presents the training results for the SVM and 

DNN models based on four feature algorithms, and trainings 

were performed on the alpha, beta, theta, delta, and gamma 

signals of each extracted feature. Following the conducted 

trainings, the DE feature is observed to yield better results 

compared to the other features. Additionally, the significance of 

the Beta and gamma bands for emotion classification becomes 

apparent when compared to other bands.  

Table II provides classification results based on electrode 

quantities. These results highlight a difference of 7.7 between 

the 4-channel and 62-channel trainings. Upon analyzing Table 

1, the significance of the beta and gamma bands is clearly 

evident. However, this distinction becomes more challenging to 

discern in the case of the 4-channel experiment. As the number 

of electrodes increases, the accuracy rate is observed to rise, as 

evident from Table II. In the case of 12-channel training, only a 

marginal difference is observed in comparison with the 

62channel training. Despite this slight variance in accuracy rate, 

disparities in speed and overall preprocessing steps emerge due 

to the difference in duration.  

 The Ensemble learning (EL) method was employed with 

the objective of enhancing accuracy. This method aims to 

strengthen predictions by amalgamating predictions from 

multiple models. In general, employing models with different 

architectures yields superior results in EL. In Table III, accuracy 

values of LR, KNN, SVM, and DNN models are displayed, 

along with the combined prediction outputs of these four 

models using the EL method. During the training process, when 

the EL method was applied utilizing 62 channels and the DE 

feature, training these four models collectively yielded higher 

accuracy compared to individually trained models. These four 

models were designed in accordance with the parameter 

configurations outlined in the results section. 

 TABLE I. ACCURACY VALUES OF MODELS ACCORDING TO FEATURE TYPES 

Classification  Feature  Delta  Theta  Alpha  Beta  Gamma  Total  

SVM  

DE  52.9  57.9  63.0  72.8  70.5  79.2  

DASM  45.1  41.3  35.2  40.3  38.7  50.7  

RASM  45.1  42.2  36.8  43.3  39.1  50.7  

DCAU  45.1  43.8  49.5  52.4  54.6  60.7  

DNN  

DE  60.7  65.5  68.5  73.3  72..4  79.8  

DASM  55.8  61.4  48.0  49.8  50.9  66.2  

RASM  55.9  59.5  49.5  54.6  51.5  63.7  
DCAU  60.1  53.5  62.9  63.6  64.8  74.3  

 

TABLE II. ACCURACY VALUES OF THE DNN MODEL BASED ON DIFFERENT ELECTRODE QUANTITIES AND FEATURE DEPENDENCIES 
Electrode Number  Feature  Delta  Theta  Alpha  Beta  Gamma  Total  

4  

DE  38.3  41.1  46.7  48.4  49.7  72.1  

DASM  41.4  42.9  49.1  53.4  52.8  63.2  

RASM  41.7  40.1  45.51  44.01  46.87  61.4  

6  

DE  54.64  59.28  62.28  69.47  71.33  74.3  

DASM  42.41  46.82  51.34  58.94  60.09  61.8  

RASM  39.28  42.17  43.95  52.72  49.24  69.4  

9  

DE  52.41  58.47  64.74  72.4  76.8  77.6  

DASM  49.14  48.74  51.77  63.48  65.74  58.2  

RASM  43.4  45.8  58.1  64.4  65.8  69.3  

12  

DE  54.8  53.87  56.21  78.4  79.02  79.5  

DASM  53.89  52.64  55.92  72.87  71.25  60.1  

RASM  40.5  41.2  46.7  45.7  45.4  70.3  
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TABLE III. ENSEMBLE LEARNING MODELS  
Classification  Accuracy  Precision Recall F1 

LR  68.8  68.7 68.3 68.0 

KNN  77.4 76.9 77.1 76.8 

SVM  79.3  79.1 78.9 78.9 

DNN  79.8  76.6 76.6 76.5 

EL  81.3  80.4 80.7 79.6 

IV.  DISCUSSION 

The conducted study assessed the performance of various 

models for emotion classification using EEG signals. 

According to the obtained results, SVM and DNN models 

outperformed the other models. Other studies related to emotion 

classification using the SEED dataset are presented in Table IV. 

To further enhance the feature extraction process, Zheng and 

Lu [1] applied the Deep Belief Network (DBN) model to 

process the extracted features more comprehensively. As seen 

in Table IV, DBN exhibits higher performance. This result can 

be interpreted as an indicator of the insufficiency of the 

extracted features in carrying meaningful information [13, 14]. 

When these findings are combined with the EL model 

presented in Table III, the accuracy level achieved is determined 

to be 81.3%. These findings suggest that accuracy can be 

improved by employing more complex models. 

 

TABLE IV. CLASSIFICATION PERFORMANCE FOR EMOTION 

RECOGNITION IN TASK-DEPENDENT EEG  
Classification  Accuracy  

Random forest [12]  78.46  
Canonical correlation analysis [12]  77.63  

Deep Belief Networks [1]  86.08  
Our Study  81.3  

Through the utilization of electrode reduction technique, 

significant brain regions associated with the emotion 

recognition process have been identified. The optimal electrode 

layout was determined through the analysis of weight 

distributions. The conducted analysis revealed an increase in 

accuracy rate with an increase in the number of critical channels 

identified. Notably, the configuration with 12 electrode 

channels exhibited comparable performance to that of the 

62channel configuration. This observation underscores the 

potential of electrode reduction in reducing computational costs 

and filtering out irrelevant noise.  

 V.  CONCLUSIONS  

In conclusion, this study has supported the development of 

effective methods for emotion classification using EEG signals. 

Machine learning models such as SVM and DNN have 

demonstrated superior performance compared to other models. 

Furthermore, the electrode reduction technique has been 

employed to identify crucial brain regions associated with 

emotion recognition, leading to the achievement of high 

accuracy rates through optimal electrode placement.  

Based on the obtained emotion classification results, systems 

offering recommendations such as music suggestions, movie 

recommendations, and other personalized systems aligned with 

users' emotional states could be developed. In the future, 

conducting experimental studies with larger datasets and 

employing various deep learning models could further propel 

progress in this domain.  
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