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Abstract
Real-time condition monitoring of electric motors and early diagnosis is of great importance for ensuring safe and reliable 
operation, preventing major accidents, and reducing production costs. Therefore, many intelligent fault diagnosis methods 
have been proposed. However, in industrial applications, the constantly changing loads of electric motors and the inevitable 
noise from the working environment cause a decrease in the performance of intelligent fault diagnosis methods. In this 
study, an effective and reliable deep learning model named the Combined One and Two-Dimensional Deep Convolutional 
Neural Network with Wide First-layer Kernels (WDD-CNN) is proposed for real-time condition monitoring and early fault 
diagnosis under noisy and changing operating conditions. The primary contribution of this study is the development of a 
fault diagnosis method that can operate in real-time to provide early detection of faults that may occur in electrical drive 
systems under operating conditions that are unpredictable and noisy. In addition, the proposed model works directly on raw 
signals, eliminating the complexity of preprocessing processes. The Case Western Reserve University (CWRU) dataset is 
used to test the performance and effectiveness of the proposed WDD-CNN model under different load conditions and for 
noise suppression. Additionally, the effectiveness of the model against data coming from a single sensor channel is also 
tested, and the results are recorded. The proposed method achieves 100% accuracy when tested with normal signals. Com-
parative results reveal that the WDD-CNN model outperforms other current state-of-the-art methods with an accuracy rate 
of 96.45% under different operating loads.

Keywords Intelligent fault diagnosis · Convolutional neural network · Raw signals · Dual pathway · Different operating 
conditions · Noisy environment

1 Introduction

Faults in electric motors are inevitable, and a single fault, 
such as a short or open circuit in one of the motor windings, 
can lead to significant problems. These problems encom-
pass poor performance, unstable operation, increased noise 

and vibration, and unwanted torque fluctuations [1, 2]. Such 
problems can result in substantial costs and even pose risks 
to the environment and human safety [3]. Reliable and robust 
diagnostics of electric powertrains early on are essential to 
overcome such issues and ensure efficient, safe, and reliable 
operation [4]. Various diagnostic methods are available in 
the literature, including motor current signature analysis, 
mechanical vibration analysis, temperature measurement, 
infrared recognition, and chemical analysis [5]. These meth-
ods involve measuring signals such as stator currents, exter-
nal magnetic flux densities, rotor position and speed, output 
torque, temperature, and case vibrations [6].

Traditional motor fault detection and diagnosis methods 
rely on the knowledge and experience of experts. However, 
data-driven artificial intelligence-based approaches are 
increasingly replacing expert experience. These approaches 
aim to reduce the periodic maintenance cycle of electric 
motors, widely used across diverse fields, and enhance the 
accuracy of fault diagnosis [7]. Data-driven intelligent fault 

Technical Editor: Jarir Mahfoud.

 * Eyup Sonmez 
 d175045051@subu.edu.tr

1 Department of Mechatronics Engineering, Faculty 
of Technology, Sakarya University of Applied Sciences, 
54187 Sakarya, Turkey

2 Department of Electrical and Electronics Engineering, 
Faculty of Technology, Sakarya University of Applied 
Sciences, 54187 Sakarya, Turkey

3 Department of Computer Engineering, Faculty 
of Technology, Sakarya University of Applied Sciences, 
54187 Sakarya, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s40430-023-04537-8&domain=pdf
http://orcid.org/0000-0001-7836-5833


 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2023) 45:644

1 3

644 Page 2 of 19

diagnosis focuses on creating diagnostic models capable of 
automatically establishing relationships between collected 
data and engine robustness. In the data-driven intelligent 
diagnostic method, vibration data and current signals are 
widely used for motor fault diagnosis [8, 9]. These signals 
provide valuable information about the operational state of 
motors, allowing for the detection of various types of faults, 
including mechanical wear, electrical issues, and bearing 
failures. By analyzing the patterns and anomalies in these 
signals, machine learning and deep learning algorithms can 
effectively identify and classify motor faults, thereby ena-
bling predictive maintenance and reducing unplanned down-
time in industrial systems.

In the data-driven intelligent fault diagnosis process, tra-
ditional machine learning approaches consist of three main 
stages: feature extraction, feature selection and classifica-
tion. Before the classification stage, features from both the 
frequency and time domains can be extracted separately 
from the signals collected by the sensors. Then, for these 
extracted features, the feature selection should be performed 
in the dimension reduction stage. These selected features are 
used as inputs for fault diagnosis through machine learn-
ing methods such as artificial neural networks (ANN) [10, 
11], support vector machines (SVM) [12, 13] and k-nearest 
neighbor (k-NNR) [14, 15], classifiers.

Recent advancements in artificial intelligence and 
machine learning have led to the development of numerous 
data-driven intelligent diagnosis algorithms [16–19]. These 
algorithms enable the automatic identification of motor fault 
types and severities based on input data and training data-
sets. Asr et al. [20] proposed diagnosis of a new combined 
faults based on the Non-Naive Bayesian (NNBC) classifier, 
in which features are extracted from the resampled multi 
component signals using Empirical Mode Decomposition 
(EMD), and these features are used for intelligent fault diag-
nosis of the rotary mechanism. Georgoulas et al. [21] used 
the Symbolic Aggregate approXimation (SAX) framework 
to extract features from vibration signals and then, classify 
the faults using the k-NNR classifier. Piltan and Kim [22] 
proposed an intelligent digital twin integrated method based 
on a support vector machine for bearing anomaly detection 
and crack size identification and tested the impact of their 
proposed model with the Case Western Reserve University 
bearing dataset. Shahbaz and Amin [23] proposed a new 
hybrid fault-tolerant control system (HFTCS) with custom 
nonlinear controllers and used ANN for estimation of faulty 
sensor values in the observer model. Shifat and Hur [24] 
proposed a multiple sensor data fusion method combining 
vibration and current signals based on Principal Components 
Analysis (PCA) and ANN for reliable multi-fault diagnosis 
framework of a brushless DC (BLDC) motor.

Although intelligent fault diagnosis based on traditional 
machine learning methods has been widely used for years, 

these approaches have some disadvantages such as the time-
consuming process of feature extraction and the requirement 
of expert experience [25].

Most of the data-driven intelligent diagnostic techniques 
in the literature have difficulty adapting to different operat-
ing conditions such as different motor loads and environ-
mental noise. However, the performance of deep learning 
methods has been shown to be better than other techniques 
[26]. One of the most important advantages of applying deep 
learning methods is that, instead of manual feature extrac-
tion in traditional machine learning methods, features are 
automatically extracted from the raw signals collected from 
the sensors and motor fault diagnosis and classification can 
be made using these features. The ability of deep learning 
algorithms to automatically extract features from raw data 
removes complex feature engineering stages, but also makes 
these algorithms more suitable for use in many fields.

In particular, a lot of research has focused on deep 
learning methods due to the advantage of automatically 
processing raw signals, eliminating the need for time-con-
suming manual feature extraction. Deep learning methods 
eliminate the disadvantages of traditional machine learn-
ing with the ability to learn end-to-end by taking the raw 
signals collected from the sensors as input. Therefore, deep 
learning methods such as Convolutional Neural Network 
(CNN), Long Short-Term Memory (LSTM) and Autoen-
coders (EA) architectures are used by many researchers 
today for intelligent fault detection. Zhang et al. [27] pro-
posed an intelligent fault diagnosis method based on Con-
volutional Neural Network that converts raw signals into 
two-dimensional images and automatically extracts fea-
tures from these images. They analyzed the effect of differ-
ent sizes of input data and different load conditions on the 
fault diagnosis capability of this method. Shao et al. [28] 
used two-dimensional grayscale images as input vector for 
fault diagnosis. They obtained grayscale images by trans-
forming current and vibration signals into time–frequency 
distribution (TFD) with wavelet transform and then, apply-
ing them to two separate deep convolutional neural net-
works, discussed the results. Wang et al. [29] proposed a 
multi-signal diagnostic network based on 1D-CNN model 
for permanent magnet synchronous motors (PMSM). The 
advantage of the proposed method is that feature extraction 
modules can extract multi-scale features from complex 
conditions. In addition, they proposed a class feature map 
to automatically determine the frequency component. With 
the experimental results, they tried to reveal whether the 
proposed model could effectively diagnose three different 
engine states—healthy state, demagnetization fault state, 
and bearing fault state. Wang et al. [30] proposed a multi-
resolution and multi-sensor fusion network (MRSFN) con-
sisting of a 1D CNN and LSTM for motor fault diagnosis. 
They discussed both the feature extraction efficiency of the 
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proposed architecture and the extent to which it adapts to 
varying motor speed. Zhang et al. [31] proposed a method 
named Deep Convolutional Neural Networks with Wide 
First-layer (WDCNN) processing directly on raw tempo-
ral signals without the need for complex preprocessing, 
to address the fault diagnosis problem. In their method, 
they addressed the classification accuracy against noise 
and working load changes using wide kernels in the first 
convolution layer for characterizing the input signal and 
suppressing high-frequency noise. Zhuang et al. [32] pro-
posed an intelligent diagnostic method named stacked 
residual dilated convolutional neural network (SRDCNN) 
with automatic feature extraction and high performance in 
noisy environments. The proposed method offers a deep 
learning framework that integrates Dilated Convolution, 
Input Gate Structure of LSTM, and Residual Network. 
Zhang et al. [33] developed a method named Neural Net-
works with Training Interference (TICNN) for solving the 
problem of bad performance caused by different work-
ing loads and environmental noises. They added with the 
additive white Gaussian noise to the original signals and 
used six convolution and pooling layers to overcome the 
problem. They also configured the first-layer kernel to be 
64 × 1 wide in order to better filter out the noise. They used 
the CWRU database as the data set to test the proposed 
model, and they achieved an average accuracy of 96.1%. 
Jia et al. [34] presented the Deep Normalized Convolu-
tional Neural Networks (DN-CNN) model to overcome 
the problem that classical CNNs have low accuracy rates 
with few data, and it has been shown that the model has 
high performance with few data. They also proposed the 
neuron activation maximization (NAM) algorithm to better 
understand the feature learning process. Karim et al. [35] 
aimed to enhance the performance of the Fully Convo-
lutional Neural Networks (FCN) network by augmenting 
the FCN with their proposed Long Short-Term Memory 
Fully Convolutional Network (LSTM-FCN) and Atten-
tion LSTM-FCN methods. The proposed model has been 
tested with the University of California Riverside (UCR) 
Benchmark datasets [36]. The model has been compared 
with different algorithms and it has been shown that the 
performance has improved significantly. Zhang et al. [37] 
presented an enhanced CNN model that uses time–fre-
quency images as inputs for bearing fault diagnosis. With 
the proposed model, short-time Fourier transform theory 
and the scaled exponential linear unit (SELU) function are 
introduced for overcoming problems such as the inability 
of single time or frequency domain analysis methods to 
extract features effectively and the ReLU function greatly 
affected by the learning rate. Shenfield and Howarth [38] 
proposed dual-path neural network with a wide first-kernel 
capable of operating on raw temporal signals by adding a 
recurrent neural network (RNN)-based pathway in parallel 

to the deep convolutional neural network pathway. The 
performance of the proposed model revealed by testing 
with data acquired both under different operating condi-
tions and under noisy conditions.

The studies mentioned above include different feature 
extraction methods and methods using different variations 
of RNN-CNN architectures in order to increase the perfor-
mance in classification. However, when these studies are 
examined, it is understood that they have disadvantages such 
as high computational cost, tendency to incorrectly model 
feature dependencies, loss of the continuous nature of time 
series data, low accuracy rates, and model complexity. In our 
study, unlike the mentioned studies, a new model with faster 
speed and higher accuracy is proposed, which combines the 
advantages of 1D-CNN and 2D-CNN architectures. Thanks 
to our proposed model, spatial and temporal features are 
used together. We show that the proposed model performs 
well directly on raw signals and under different operating 
conditions, without the need for manual feature extraction 
and noise filtering stages. In Table 1, the traditional machine 
learning and other deep learning methods mentioned in the 
literature are compared with the method we propose.

The architecture of our proposed model is inspired by 
the “dual-path recurrent neural network with a wide first-
kernel and deep convolutional neural network pathway 
(RNN-WDCNN)” proposed by Shenfield and Howarth [38]. 
There are also different models that combine RNN and CNN 
architectures [35]. However, the RNN architectures used in 
these models require more computational resources and 
time due to their large and complex nature. Therefore, they 
require higher computational resources or longer training 
times when working with large datasets or complex models. 
In addition, RNN models are more complicated and have 
shortcomings in capturing spatio-temporal features [39]. On 
the other hand, two-dimensional convolutional neural net-
work (2D-CNN) architectures are very effective in captur-
ing spatial relationships of features. 2D-CNNs are equipped 
with convolution and pooling layers and use these layers to 
extract features from image data and reduce their complex-
ity. 2D-CNNs are very effective in learning local features 
through convolution layers. By traversing different regions 
of the data, convolution layers capture the spatial structure 
of features. In addition, the computational complexity of 
one-dimensional convolutional neural network (1D-CNN) 
architectures is low. Thanks to its parallel computing capa-
bilities, it can be trained quickly, and the prediction time is 
short. Convolution operations can be performed in parallel, 
making it able to work quickly even with large datasets or 
complex models [40].

In this study, we propose an effective and reliable novel 
deep learning model, which we call WDD-CNN, that can 
operate in noisy and variable operating conditions for real-
time condition monitoring and early fault detection. The 
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proposed WDD-CNN model is a model that combines the 
advantages a one-dimensional and two-dimensional deep 
convolutional neural network pathway and has a wide first-
kernel layer. The main contributions of this study are:

1. We propose a new deep learning model with a first wide 
kernel layer that combines one and two-dimensional 
convolutional neural network pathway.

2. With the model we propose, we use both spatial and 
temporal features and show its effect on performance.

3. We show that the proposed model performs well directly 
on raw signals without the need for manual feature 
extraction and noise filtering stages.

4. We show that the proposed model also performs well 
under different operating conditions.

5. We show that it achieves higher performance by compar-
ing our model with different fault diagnosis models in 
the literature.

2  A brief introduction to convolutional 
neural networks

CNNs are an important type of deep neural networks that 
have been successfully applied to various classification prob-
lems [41]. CNNs consist of multiple filtering stages and clas-
sification stages that do feature extraction automatically. The 
filtering stage includes layers such as the convolution layer, 
nonlinear activation layer, batch normalization and pooling 
layer. The classification stage is a multilayer perceptron con-
sisting of several fully connected (Fc) layers. Figure 1 shows 
an example of a simple CNN architecture.

CNNs are a class of deep neural networks that can extract 
and classify certain features from images and are widely 
used for analyzing visual images. These deep neural net-
works are very useful as it minimizes the need for expert 
experience by automatically detecting the features. CNNs 
have been originally proposed for two-dimensional image 
processing and very good results have been obtained with 
CNNs in real-world applications in this field [42–44]. How-
ever, one-dimensional convolutional neural networks are 
also used effectively in the fields of automatic speech rec-
ognition, document classification, machine translation, and 
classification of one-dimensional data such as time series 
[45, 46].

The basic functions in the layers of convolutional neural 
networks can be listed as follows:

• The input layer is the first layer of convolutional neural 
networks, and the input data is raw data without any pre-
processing.
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• In the convolution layer, the input data is convoluted with 
a set of weights called a convolutional filter, and high-
level features (such as edges and curves in an image) are 
extracted from these input signals by applying a nonlin-
ear activation function.

• The pooling layer acts as a down sampling operation that 
reduces the number of the extracted features and elimi-
nates the redundant details. Thus, with the decrease in 
the number of parameters and features, the computational 
load is reduced.

• The classification layer is a multilayer perceptron con-
sisting of several fully connected layers where the clas-
sification is made. The features must be prepared by con-
verting to one-dimensional vectors with the Flatting layer 
before the fully connected layers.

As the input signals progress through the convolutional 
stages, the network learns more detailed features. Therefore, 
layers consist of more than one block that follows each other. 
Batch Normalization (BN) layer is used to reduce the shift 
of the internal covariance and speed up the training process 
of the deep neural network [47]. The BN layer is usually 
added just after the convolution layer or the fully connected 
layer and before the activation unit. The Dropout layer, on 
the other hand, is used to prevent overfitting in deep neural 
networks. The Dropout layer helps prevent overfitting by 
randomly setting the input units to 0 with a frequency of rate 
at each step during the training time, ultimately improving 
its generalization performance on unseen data.

3  Proposed WDD‑CNN method for fault 
diagnosis

The proposed WDD-CNN model for real-time condi-
tion monitoring and early fault diagnosis is tested with 
the CWRU dataset, and the classification performance of 
the model is measured. The flow diagram of the model is 
shown in Fig. 2. Here, after the raw time series has been split 
into training and test data, the training data are subjected 
to data augmentation. Then, both training and test data are 
converted into one- and two-dimensional training samples. 
After the model is trained with the training samples, the 
test data are subjected to the classification process and the 
model is evaluated.

3.1  The WDD‑CNN model architecture

Researchers are still working to improve the fault diagno-
sis method of occurring faults in electric motors. In recent 
years, there has been an increasing interest in methods based 
on deep learning in fault diagnosis. These methods are gen-
erally categorized from two aspects: those that reshape one-
dimensional input signals into two dimensions, such as time 
series data, and methods that operate on one-dimensional 
signals [41]. Fault classification is widely studied subfield 
in convolutional network-based fault diagnosis inspired by 
image classification. In image classification, 2D-CNN is 
widely used in fault diagnosis because it can readily exploit 
spatial patterns in common imagery. In addition, some 
advantages of 2D-CNN architecture for time series data can 
be listed as follows:

1. Capturing Spatial-Temporary Relationships: While time 
series data are usually represented in one dimension, 
2D-CNN architecture is effective in capturing spatial–
temporal relationships to understand the changes and 

Fig. 1  Representation of a simple convolutional neural network (CNN)
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patterns of time series data over time. Convolution lay-
ers capture patterns at different time stages and spatially 
analyze the features of the time series.

2. 2.Parallel Processing Capability: 2D-CNN architecture 
provides fast processing of time series data thanks to its 
parallel processing capability. Convolution operations 
can be performed in parallel, allowing it to work quickly 
even with large datasets or complex models.

3. Extraction of Feature Maps: 2D-CNN extracts important 
features from time series data and creates feature maps 
representing these features. Feature maps represent fea-
tures at different time points and capture dynamics and 
relationships across time series.

4. Learning of Hierarchical Features: 2D-CNN models 
provide learning of hierarchical features in time series 
data. Lower layers can extract lower-level features (for 
example, edges), while upper layers can extract more 
complex features (for example, patterns). This provides 
a higher level of representation of time series data.

5. Reduction of Data Preprocessing Requirements: 
2D-CNN architecture can reduce some data preprocess-
ing stages. Instead of traditional methods (for example, 
Fourier transform) to obtain features, 2D-CNN can learn 
features directly.

On the other hand, 1D-CNN models have many advan-
tages when working effectively on 1D data structures such 
as time series data. Some of the advantages of 1D CNN can 
be listed as follows:

1. Local and Global Feature Extraction: 1D-CNN can 
extract local and global features at different scales effec-
tively. Convolutional layers define local features as they 
hover over different regions of the data and then, obtain 
global features by combining these local features.

2. 2.Scaling Invariance: 1D-CNN models have scaling 
invariance. This reduces the sensitivity of the data to 
scale changes. For example, when the signal samples 
in the time series data have scale changes (expansion or 
compression), the 1D-CNN model can still capture the 
same features.

3. Reduced Number of Parameters: 1D-CNN models have 
fewer parameters compared to traditional RNN models. 
This provides faster learning of the model and less com-
putational cost. It can also perform well even on smaller 
datasets.

4. Fast Training and Prediction Time: 1D-CNN can be 
trained quickly thanks to its parallel computational 
capabilities, and the estimation time is short. Convolu-
tion operations can be performed in parallel, allowing 
it to work quickly even with large datasets or complex 
models.

5. Feature Auto-Learning: Instead of manually defining 
features, 1D-CNN models can automatically discover 
features on the dataset.

6. 6.Overfitting Resistance: 1D-CNN models are generally 
more resistant to overfitting. Convolution layers capture 
the local structures of the data, thus increasing the gen-
eralization ability of the model. It can also be used to 
control overfitting with methods such as dropout and 
regularization.

In this study, we present a new dual-pathway WDD-
CNN model combining 1D-CNN and 2D-CNN network for 
real-time condition monitoring and early fault diagnosis of 
electric motors under noisy and changing operating condi-
tions by integrating the advantages of the two approaches 
aforementioned.

Each of the convolution blocks in both pathways (1D-
CNN and 2D-CNN pathways) in the model architecture 
shown in Fig. 3 has a set of convolutional filters to extract 
meaningful features from the raw input signals. An acti-
vation function (ReLU) has been added to each block to 
include nonlinear features into the network. Additionally, 
there is a BN block for reducing internal covariance shift 
and improving the training performance by normalizing 
layer inputs between groups, and a max pooling block for 
accelerating the training process by reducing computational 
complexity. In the proposed model, in the first convolutional 
stage in both pathways, a much wider filter kernel is used for 
both suppressing high-frequency noise in the input signals 
and capturing distant dependencies. In other convolution 

Fig. 2  Flow diagram of the fault 
diagnosis process
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stages, smaller sized kernels are used for obtaining more 
useful features in the input signals and improving the per-
formance of the network.

After the convolution layers, the data are prepared by 
converting it to a single array in the flattening layer and 
transferred to the fully connected layers for the learning. In 
addition, after the fully connected layer, dropout and BN 
operations are applied, respectively, to prevent overfitting 
and for providing a much stable and accelerated the training 
regime. Finally, the data coming out of the fully connected 
layers are subjected to the addition process through the Add 
layer, and the classification is performed by transferring to 
the output classification layer where the softmax function 
exists to be converted into a probability distribution between 
0 and 1 corresponding to the motor fault classes. Softmax 
function is defined as follows:

In Eq. (1), z⃗ is the input vector of the softmax function, 
and all of zi values are elements of the input vector of the 
softmax function. K is the number of classes in the classi-
fier. The parameters of the convolution and pooling layers of 
both pathways in the proposed model are detailed in Table 2.

(1)𝜎(z⃗)i =
ezi

∑K

j=1
ezj

fori = 1,… ,K

3.2  Data augmentation

Data augmentation is the process of artificially increasing 
the amount of data by generating new data points from the 
original data with a sort of minor geometric transformations 
in order to increase the diversity of the training set. Deep 
learning models require large amounts of data to train the 
model. However, in deep learning-based diagnostic appli-
cations, it is difficult to obtain large amounts of faulty data 
because it is impossible and costly for operating machines 
in faulty conditions for a long time. With the increase in 
parameters, a deep learning model can remember certain 
data points with an insufficient number of training data, 
leading to a generalizability problem with overfitting [48]. 
Due to the aforementioned problem, augmentation of train-
ing data is often used in fault diagnosis of a convolutional 
neural network [49]. Data augmentation allows the model 
to learn more features and variations by varying the samples 
in the data set. Data augmentation can help prevent overfit-
ting when applied correctly. Data augmentation diversifies 
the data set, allowing the model to learn more features and 
variations, which increases the generalization ability of the 
model [50].

In this study, data augmentation is used for preventing 
the overfitting and increasing the classification accuracy. In 

Fig. 3  Architecture of the proposed WDD-CNN model
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the data augmentation process, only the amount of avail-
able training data has been increased, but the test data have 
been left in its original form in order to obtain more realistic 
results. A sliding window approach, which is an effective 
and easy method for data augmentation, is adopted. The 
overlapping sliding windows used during data augmenta-
tion ensure that each training sample obtained contains vari-
ations of the original signal. The advantages of using data 
augmentation in time series with the sliding window method 
can be listed as expanding the data set, providing diversity 
and variation, highlighting important features, increasing 
computational efficiency and preventing overfitting.

As shown in Fig. 4, in the sliding window approach, the 
data are increased by overlap depending on the specified 
step size. With the sliding window method, approximately 
5568 training samples, each consisting of 3600 data points, 
can be created by using 64 step sizes in a data containing 
360,000 data points, for example. This increases the number 
of samples in each fault type approximately 55 times with 
data augmentation using the sliding window method.

3.3  Signal‑to‑2D matrix conversion method

The Signal-to-2D Matrix Conversion Method is a process 
used in the WDD-CNN model to convert the raw time series 
data into 2D matrices. This conversion is essential to capture 
the spatial relationships and dependencies among the data 
points in the time series and effectively utilize both 1D and 
2D representations in the model.

Here is a theoretical description of the Signal-to-2D 
Matrix Conversion Method and the methods used:

3.3.1  Preprocessing

Before conversion, the raw time series data are normalized 
to scale all features in the signal to the similar range. This is 
done to improve its performance and stability and to ensure 
that all features are treated fairly.

3.3.2  Segmentation

The preprocessed time series data are segmented into train-
ing and test samples to ensure unbiased evaluation of the 
model performance.

3.3.3  Signal‑to‑1D array conversion

As shown in Fig. 5, each segment of the time series data is 
converted into a 1D array of length N2 . To achieve this, the 
sequential data points in the time series are stacked together, 
forming a long 1D array. The length ( N2 ) of the 1D arrays 
is created for the model input is determined to include the 
failure effect in the engine.

3.3.4  1D to 2D matrix transformation

As shown in Fig.  5, after obtaining the 1D arrays, 
they are reshaped into N × N matrices, where N repre-
sents the length of each side of the square matrix. This 

Table 2  Details of the proposed WDD-CNN model

Convolutional pathway 1 Convolutional pathway 2

No Layer type Kernel size Stride Kernel 
number

Layer type Kernel size Stride Kernel 
number

C1 1D Convolution 512 × 1 2 × 1 16 2D Convolution 15 × 15 2 × 2 8
C2 Max Pooling 1D 2 × 1 2 × 1 16 Max Pooling 2D 2 × 2 2 × 2 8
C3 1D Convolution 32 × 1 2 × 1 32 2D Convolution 5 × 5 2 × 2 8
C4 Max Pooling 1D 2 × 1 2 × 1 32 Max Pooling 2D 2 × 2 2 × 2 8
C5 1D Convolution 32 × 1 2 × 1 32 2D Convolution 5 × 5 2 × 2 16
C6 Max Pooling 1D 2 × 1 2 × 1 32 Max Pooling 2D 2 × 2 2 × 2 16
C7 1D Convolution 64 × 1 2 × 1 64 2D Convolution 3 × 3 2 × 2 16
C8 Max Pooling 1D 2 × 1 2 × 1 64 Max Pooling 2D 2 × 2 2 × 2 16
C9 1D Convolution 64 × 1 2 × 1 64 2D Convolution 3 × 3 2 × 2 32
C10 Max Pooling 1D 2 × 1 2 × 1 64 Max Pooling 2D 2 × 2 2 × 2 32
C11 Fully connected 256 1 Fully connected 256 1
C12 Fully connected 50 1 Fully connected 50 1

Output

No Layer type Kernel size Number of kernel

O1 Softmax 10 1
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transformation converts the 1D representation of the 
sequential data into a 2D representation, allowing the 
model to capture spatial patterns and dependencies.

3.3.5  Dual‑pathway model

The transformed 2D matrices and the original 1D arrays 
are used as input data for the two pathways of the WDD-
CNN model. This dual-pathway architecture enables 
the model to leverage both 1D and 2D representations, 
enhancing its ability to learn complex features from the 
time series data.

The methods used in this conversion process, such as 
reshaping the 1D arrays into 2D matrices, are standard 
techniques in data manipulation and representation in deep 
learning models. By applying this Signal-to-2D Matrix Con-
version Method, the WDD-CNN model can effectively han-
dle the complex spatial and temporal dependencies present 
in the vibration signals, resulting in improved performance 
in real-time condition monitoring and fault diagnosis tasks.

3.4  Training of the WDD‑CNN model

There are many hyperparameters in CNN architectures that 
affect the performance of the model. The optimum hyper-
parameter values applied to the proposed model in this 
study are determined using the random search method [51]. 
The hyperparameter values applied for training are shown 
in Table 3. In addition, computer hardware with NVIDIA 
Gforce RTX2080Ti graphics card, 32 GB memory and 
2.94GHz i5-1400F processor is used for model training.

The proposed WDD-CNN architecture is designed to 
use both 1D and 2D input data together. The main differ-
ence between 1 and 2D CNNs is that traditional 2D-CNN 
uses two-dimensional kernel and two-dimensional feature 
maps whereas 1D-CNN uses one-dimensional kernel and 
one-dimensional feature maps. Glorot uniform initializa-
tion method is used in all convolution kernels of the pro-
posed model for weight initialization [52]. We have used the 
Adam optimization algorithm with an initial learning rate 
of  1e − 3  and a final learning rate of 1e − 4 to update the 
model weights during training [53]. Glorot uniform initiali-
zation method ( U[−limit, limit] ) is calculated as a random 

number with a uniform probability distribution in the range 
[−limit, limit] . Here, Glorot uniform weight initialization is 
expressed as in Eq. (2), where nin and nout are the number 
of input and output units in the weight tensor, respectively.

Adaptive Moment Estimation (Adam) is a method that 
calculates the adaptive learning rate for each parameter. 
Adam uses the exponential moving average vt of the past 
squared gradients ( g2

t
 ) to scale the learning rate, and the 

exponential moving average mt of the past gradients instead 
of the gradient itself ( gt ) to leverage momentum. Exponen-
tial moving averages ( vt and mt ) are defined as follows:

Where �1 and �2 are exponential decay rates. mt−1 and vt−1 
indicate the previous exponential moving averages. The 

(2)W = U

�

−
√

6
√

nin + nout

,

√

6
√

nin + nout

�

(3)mt = �1mt−1 +
(

1 − �1
)

gt

(4)vt = �2vt−1 +
(

1 − �2
)

g2
t

Fig. 4  Training data augmentation using overlap

Fig. 5  Signal-to-2D matrix conversion
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vectors of the moving averages ( mt andvt ) are initialized with 
zeros in the first iteration. The estimators ( mt andvt ) tend to 
zero at the first-time steps and especially when the decay 
rates are small (i.e., β1 and β2 are close to 1). Therefore, it 
is necessary to correct the estimators. Bias correction is as 
in Eq. (5), respectively. With t in � t

1
 and � t

2
 , we denote power 

of β1 and β2:

Finally, by replacing mt ve vt with the terms m̂t ve v̂t , Adam 
weight update formula is obtained as follows:

where � is the step size, �t is the previous weight, and  � is 
a very small positive constant such as  10−8 that is used to 
correct the division by zero error.

In the proposed model, the categorical cross-entropy func-
tion has been used to calculate the cross-entropy loss between 
the target class probability distribution and the softmax output 
probability distribution estimated and to evaluate the train-
ing. In the categorical cross-entropy function, the closer the 
estimated value is to the ground truth, the less the loss. The 
cross-entropy loss between p and q is shown as follows:

where n shows the number of class. pi and qi are the original 
label value and softmax output value for i. class, respectively.

In order to prevent overfitting and improve the adaptabil-
ity of the network, a standard dropout with 50% dropout rate 
has been applied at the end of each fully connected layer in 
both pathways of the model [54]. In addition, at the end of 
each convolution block in the 2D-CNN pathway, a total of 

(5)m̂t =
mt

1 − � t
1

andv̂t =
vt

1 − � t
2

(6)�t+1 = �t − �
m̂t

√

v̂t + �

(7)Loss = H(p, q) = −

n
∑

i=1

pilog(qi)

five standard dropouts with dropout rate of 25% have been 
applied. The performances of the proposed model are evalu-
ated in the next section.

4  Validation of the WDD‑CNN model 
through comparative analysis

4.1  Data description

Bearing fault dataset from CWRU Bearing Data Center 
[55] is used to validate the proposed WDD-CNN model and 
compare its performance with existing studies. The CWRU 
bearing dataset is chosen because it is open source and 
widely used in the scientific literature [56]. The vibration 
data provided by CWRU is data collected from the bearing 
test platform shown in Fig. 6 (Image in Fig. 6 taken from 
itself website). The platform shown in Fig. 6 consists of 
a 2 HP motor, a shaft mounted torque transducer/encoder 
(center), dynamometer (right) and electronic control sys-
tem (not shown). The test bearings support the motor shaft. 
The vibration data from the test platform are collected data 
for fault-free (normal) bearings, single-point drive-end and 
fan-end faults. The vibration data are collected at 12 and 
48 kHz for drive-end bearing faults, and all fan-end bearing 
data are collected at 12 kHz sampling rates. The data are 
obtained from two different channels by measuring from 
two different locations near to and remote from the motor 
bearings for each type of fault. For the experiments to be 
carried out to form the dataset, four types of faults of vary-
ing severity, 0.007, 0.014, 0.021, and 0.028 inches in diam-
eter, are formed using electro-discharge machining (EDM) 
on the drive and fan-end bearings. There are four different 
types of bearing faults including normal, ball fault, inner 
raceway fault and outer raceway fault. Faults ranging from 
0.007 inches in diameter to 0.028 inches in diameter are 

Table 3  Hyperparameter values applied for model training

Hyperparameter Description Value

Learning rate Rate at which the model learns from data 0.001
Batch size Number of samples used in each iteration 10
Epochs Number of times the entire dataset is passed through the model 50
Activation function Nonlinear function applied to the output of each neuron ReLU
Optimizer Algorithm used to update the model's parameters during training Adam
Dropout rate (After each pooling layer) Proportion of neurons randomly set to zero during training to prevent 

overfitting
0.25

Dropout rate (After FC Layer) 0.5
Weight initialization Method used to set the initial values of the model's weights Xavier/Glo-

rot Initiali-
zation
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introduced separately at the inner raceway, ball and outer 
raceway. Engine loads of 0hp, 1hp, 2hp and 3hp are applied 
by attaching defective bearings to the test platform sepa-
rately, and data are collected by operating at four different 
fixed speeds (four different motor speeds of 1730, 1750, 
1772 and 1797 rpm).

It is recommended to use a high sampling rate for data 
collection, since bearing faults are more evident at high fre-
quencies [57]. For this reason, 48 kHz driver end bearing 
fault data are used in this study. It has been shown that the 
training and testing of the proposed model are performed 
only with the data collected from a single accelerometer 
(Drive-end accelerometer), and good results are obtained 
even with the data coming from a single channel. In Table 4, 
the fault conditions of the 48 kHz data set used in our study 
are shown in detail.

The data, collected from the shaft rotating between 1772 
and 1730 rpm at operating conditions of the CWRU experi-
mental set, with a sampling frequency of 48 kHz, contain 
between 1626 and 1665 data points per revolution. The train-
ing samples used to train the model in this study consist of 
3600 data points to include the bearing fault impact. This 
means that there are at least two bearing fault impacts in 
each training sample.

The training samples used to train the proposed model in 
this study are obtained by augmenting the existing data using 
the sliding window method.

In our study, the sliding window method is used sepa-
rately for each class by taking an equal amount of data points 
from each class (360,000 data points), that is, each input 
sequence is obtained under a single fault condition, so all 
augmented sequences are assigned to the same fault tag as 
the original input sequence. Thus, class imbalance is pre-
vented. With data augmentation, 5625 training samples are 
obtained for each fault by using 64 step size and 3600 win-
dow length in the sliding window. These obtained training 
samples are prepared for the 1DCNN pathway of the pro-
posed model. For the 2DCNN pathway of the model, each 

training sample consisting of 3600 data points is prepared 
by transforming into 60 × 60 matrices.

Each test sample is created without data augmentation 
using a window length of 3600, in accordance with the real-
world application. Test samples consist of 100 samples for 
each fault. The number of each fault type for both train-
ing and test datasets under different loads (1hp, 2hp, 3hp) 
is evenly distributed as shown in Table 5. Each training is 
repeated ten times for different scenarios, and the results are 
obtained by taking the averages.

4.2  Performance metric for experiments

Accuracy, Precision, Recall and F1 score performance meas-
ures are used to evaluate the performance of the proposed 
WDD-CNN model under different operating loads. These 
measures are briefly described as follows:

Accuracy is a metric that represents the number of cor-
rectly classified data samples over the total number of data 
samples. In other words, it evaluates the capacity of the algo-
rithm by measuring the ratio of correctly predicted observa-
tions to the total number of observations. However, if the 
accuracy dataset is balanced, it gives more intuitive results. 
Since the dataset is balanced in our fault classification, the 
accuracy the primary performance measure, but the results 
of other performance measures (Precision, Recall and F1 
score) are also presented to provide more insight into the 
performance of the model. It is expressed mathematically 
as follows:

where TP, TN, FP, and FN represent number of true positive 
cases, number of true negative cases, number of false posi-
tive cases, and number of false negative cases, respectively.

(8)Accuracy =
TP + TN

TP + FN + FP + TN

Fig. 6  CWRU Bearing Data Center test stand [55]

Table 4  Description of bearing fault for CWRU datasets

Fault ID Fault label Fault type Fault 
diameter 
(inch)

1 normal Normal 0
2 b007 Ball fault 0.007
3 b014 0.014
4 b021 0.021
5 ir007 Inner race fault 0.007
6 ir014 0.014
7 ir021 0.021
8 or007c Outer race fault 0.007
9 or014c 0.014
10 or021c 0.021
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Precision is the ratio of correctly predicted positive cases 
to the total predicted positive cases. This metric highlights 
the true positive predictions out of all positive predictions. 
Precision value close to one indicates the low false positive 
rate. It is expressed mathematically as follows:

Recall is the ratio of correctly predicted positive observa-
tions to the all observations belong to a class. Recall high-
lights the sensitivity of the algorithm, i.e., it defines how 
many of all true positives are captured by the model. It is 
expressed mathematically as follows:

F1 score, defined mathematically by Eq.  (10), is the 
weighted average of Precision and Recall. F1-score com-
bines Precision and Recall, providing a balance between 
them. Therefore, this score takes both false positives and 
false negatives into account:

Precision, recall, and F1-score offer a viable alterna-
tive to the traditional accuracy metric and provide detailed 
information about the method being analyzed. Precision, 
recall, and F1 score metrics are calculated as macro-aver-
aged, since multiple fault classes are taken into account, 
and our sample numbers are equal for each fault class. 
The macro-mean is obtained by calculating the arithme-
tic mean over all classes, after each metric is calculated 
separately per class.

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)F1 − score = 2 ×
Precision × Recall

Precision + Recall

4.3  Experimental results and discussion

The operating and load conditions of electric drive sys-
tems are variable. In addition, noise is inevitable in the 
operating conditions of electric motors in the real-world 
applications, and this noise adversely affects raw vibra-
tion signals. Therefore, the intelligent diagnostic systems 
are expected to have an effective and high performance 
under different load conditions and noisy environments. 
In this section, the performance of the proposed WDD-
CNN model will be evaluated separately under these two 
situations (variable load and noisy environment condi-
tions). The evaluation is carried out under the following 
limitations.

1. Since bearing failures are more pronounced at high fre-
quencies, 48 kHz driver end bearing fault dataset are 
used.

2. Each training sample are adjusted to include the bearing 
fault impact.

3. Tests are carried out under different loads (1 hp, 2 hp, 3 
hp) by equally distributing the number of each fault type 
for both training and test datasets.

4. Each training is repeated ten times for different scenarios 
and the results are obtained by taking the averages.

5. Training samples are augmented with the sliding win-
dow method, but the test data are left in its original form.

6. To avoid class imbalance, each input data are acquired 
under a single fault condition so that all augmented 
sequences are assigned the same fault tag as the original 
input data.

7. The assumptions and limitations mentioned are dis-
cussed in detail below.

Table 5  Numerical distribution of each fault type under different loads

Dataset A
(Motor Load:1hp)

Dataset B
(Motor Load:2hp)

Dataset C
(Motor Load:3hp)

Dataset A
(Motor Load:1hp)

Dataset B
(Motor Load:2hp)

Fault Id Train samples Test samples Train samples Test samples Train samples Test samples
1 5625 100 5625 100 5625 100
2 5625 100 5625 100 5625 100
3 5625 100 5625 100 5625 100
4 5625 100 5625 100 5625 100
5 5625 100 5625 100 5625 100
6 5625 100 5625 100 5625 100
7 5625 100 5625 100 5625 100
8 5625 100 5625 100 5625 100
9 5625 100 5625 100 5625 100
10 5625 100 5625 100 5625 100
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4.3.1  The effect of data number on performance

There are many parameters that affect the performance of 
the model in CNN architectures. The number of training 
data is a critical factor affecting the performance of the CNN 
model. More training data can improve the generalization of 
the model, resulting in better performance [31]. If too little 
training data are used, the model's learning capacity may be 
limited, and the risk of overfitting may be high. However, 
when a lot of training data are used, the learning process of 
the model may take longer, and the data processing cost may 
increase. Therefore, it is important to carefully determine 
the number of training data. The training data set should be 
created in a highly representative, diverse and balanced way. 
The number of training data is an important parameter to 
consider when evaluating the performance of the model. In 
order to investigate how much training data the WDD-CNN 
model can perform better in our study, our model under the 
hyperparameter conditions given in Table 3 is trained with 
the C dataset and tested with the A and B datasets. Different 
numbers of training data are obtained by augmenting with 
the step numbers of 64, 128, 256 and 512, respectively, using 
the sliding window method, but the test data are not aug-
mented. Here, in determining the number of training data, 
care is taken to include the bearing fault effect of each train-
ing sample as mentioned in Sect. 4.1. The generated training 
dataset is a balanced dataset.

The number of each fault type in the training samples is 
the same. Ten runs are made to reduce the negative effects of 
the random initial values of the network. The recommended 
method is implemented with NVIDIA GForce RTX2080Ti 
graphics card and i5-1400F processor with 32 GB memory 
at 2.94 GHz. Results figured. It is shown in Fig. 7. Accu-
racy values in Fig. 7 are given by taking the average of the 
test results. At Fig. 7, it is clear that as the training samples 

increase, the standard deviation decreases while the accu-
racy increases. It is seen that the accuracy increases by 
5.95% with the increase in the number of training samples. 
However, the average accuracy value obtained with the 
data augmented with the number of 128 steps in these tests 
is 0.75% higher than the average accuracy value obtained 
with the data augmented with the number of steps of 64. 
This shows that our model gives good results with less data. 
While our training sample numbers are 2532 and 5063 per 
fault, our accuracy rate is over 90%, showing that our model 
has high performance.

An important consideration in diagnostic methods is the 
time cost required to produce a classification inference. In 
real-world applications, the acceptable time for model fault 
inference may vary depending on the application's require-
ments and usage scenario. Especially, in real-time or inter-
active applications, low fault diagnosis time is important 
because the user may need a quick response. In this sec-
tion, the fault inference times of our model have also been 
determined and given in Fig. 7. When these inference times 
are examined, it shows that the fault inference time (aver-
age 0.72 s) is acceptable for real-world applications of our 
model.

4.3.2  Performance under different working conditions

Experimental studies in this section are carried out to meas-
ure the performance of the proposed model against data 
obtained under different load conditions. Data from three 
different load conditions (1 hp, 2 hp and 3hp) are used for 
training the proposed model. Table 6 shows how to arrange 
the datasets. Dataset A, B and C in Table 6 are obtained from 
the collected signals at the load conditions of 1, 2 and 3 hp, 
respectively. As mentioned in Sect. 3.2, the training samples 
required for the training of the model are augmented with the 
sliding window method, but the data augmentation operation 
is not performed for the test samples, and the original data 

Fig. 7  Numbers of training 
samples, training times and 
diagnosis results (C to AB)
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are used. Experiments are carried out with 5625 training 
samples and 100 test samples, each containing 3600 data 
points for each fault class. The confusion matrices of the 
model are given in Fig. 8.

When Fig. 8 is investigated, the model trained with 
dataset B confuses the 21 inch inner race fault (ir021) in 
dataset C with the 21 inch rolling element fault (b021) at 
a rate of approximately 50%. When the model is trained 
with dataset C, it confuses 21 inch rolling element fault 
(b021) in dataset A with 14 inch outer race fault (or014) 
approximately 77%. Again, it is seen that the model 
trained with dataset C confuses the 21 inch inner race 
fault (ir021) in dataset A with14 inch outer race fault 
(or014) by 20%. This shows us that the 21 inch inner race 
bearing fault data in the A datasets and the 21 inch roll-
ing element fault data in the C datasets are problematic 
datasets. It is seen that the model performs very well in 
detecting other types of faults. As a result, the proposed 
model works by combining the advantages of 1D-CNN 
and 2D-CNN architectures. This means that 1D-CNN is 
effective in extracting the features of one-dimensional 
data, while 2D-CNN is effective in capturing the features 
of multidimensional data. When the confusion matrices of 
our model, which is tested under variable load conditions, 
are examined, it shows that the model can capture both 
the spatial and temporal properties of the data very well 
by using this dual pathway.

The Accuracy metric alone may not be sufficient to 
fully evaluate classification performance. It should be sup-
ported by other performance metrics. For example, metrics 
such as precision, recall, F1 score can be used to further 
evaluate the model’s performance on false positives, false 
negatives, true positives, and true negatives. Therefore, 
the accuracy metric can be used in conjunction with other 
performance metrics, allowing us to evaluate the model’s 
performance more accurately and comprehensively.

In addition to our study, to provide more information on 
the performance of the proposed model, precision, recall 
(sensitivity) and F1-score results are also presented in 
Table 7. Precision shows how many of the values we pre-
dicted as positive are actually positive. Sensitivity, on the 
other hand, is a metric that shows how many of the values 
we need to positively predict, we predict positively. There-
fore, precision gives information about the cost of false 

positives, while sensitivity provides information about the 
cost of false negatives.

A high precision value indicates that the model tends 
to reduce false positives. In balanced classes, precision 
can evaluate the model's ability to make true positive 
predictions. A high recall value indicates that the model 
tends to reduce false negatives. In balanced classes, 
recall can measure the samples that the model misses and 
evaluate the model's ability to catch true positives. The 
F1 score is a metric that represents the weighted aver-
age of precision and recall. When Table 5 is examined, 
it is seen that the proposed model has high performance 
in terms of precision, recall and F1 score, with average 
values of 97.57, 96.45 and 96.23%, respectively.

4.3.3  Comparison with the results of different methods

Comparative results of the adaptation performance of 
the proposed model in different load conditions with 
WDCNN [31], SRDCNN [32], TICNN [33], RNN-
WDCNN [38], BiLSTM [51] and LINET (AdaBN) [58] 
models are detailed in Fig. 9. Table 8 shows at which 
sampling frequencies the collected raw signals are col-
lected for obtaining the CWRU dataset used in the com-
pared models.

In contrast to existing literature, our study deviates 
by utilizing vibration signals sampled at 48 kHz from 
the fan end and drive-end accelerometers, instead of the 
commonly used 12 kHz sampled data. Although data 
with a sampling frequency of 12 kHz are easier to diag-
nose, many bearing faults manifest at high frequencies, 
as noted by Smith and Randall [57]. Therefore, an effec-
tive diagnostic framework must be capable of working 
with data with a high sampling frequency. It is impor-
tant that the data sampling frequency is sufficient so that 
faults at high frequencies can be detected accurately. In 
this case, the decision to use data with a sampling fre-
quency of 48 kHz reflects a more efficient approach to 
detecting bearing faults present at higher frequencies. In 
this way, it is aimed to better detect the faults that exist 
at high frequencies and to provide an accurate diagnosis.

When the accuracy average values of the models are 
investigated and the sampling frequencies of the data 
they use are taken into consideration, it is clearly seen 
that the proposed model is superior to the other mod-
els. In addition, when the accuracy average values of the 
models are examined, and the sampling frequencies of 
the data run in the models are taken into account, it is 
clearly seen that the proposed WDD-CNN model is supe-
rior to other models with an accuracy rate of 96.45%.

Table 6  Dataset arrangement for load adaptation

Labeled data for training Unlabeled data for test

Dataset A (data of 1 hp) Dataset B Dataset C
Dataset B (data of 2 hp) Dataset A Dataset C
Dataset C (data of 3 hp) Dataset A Dataset B
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Fig. 8  Confusion matrices for 
the WDD-CNN model on the 
different load adaptation cases 
of test datasets

Table 7  Load adaptation 
precision, recall and F1 scores 
of the WDD-CNN

Metrics A to B A to C B to A B to C C to A C to B Average

Precision 99.5 98.8 99.1 95.5 93.2 99.3 97.57
Recall 99.5 98.8 99.1 93.4 88.6 99.3 96.45
F1 Score 99.5 98.8 99.1 93.0 87.7 99.3 96.23
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4.3.4  Performance under different amounts of noise

In this section, performance of the proposed WDD-CNN 
model to noisy environments has been investigated and veri-
fied. In real-world industrial production conditions, there are 
many sources of noise and interference with the collected 
vibration signals is inevitable. Therefore, the proposed model 
should work effectively in noisy environment and its perfor-
mance should be verified. In the experimental study, datasets 
A, B and C are tested separately. 70% of the data in each data 
set is reserved for training by augmenting with the sliding win-
dow method mentioned in Sect. 3.2, and the remaining 30% 
data are reserved for testing in original form without augmen-
tation. By adding white Gaussian noise to the original data 
reserved for testing, noisy test data with different signal-to-
noise ratios (SNR) in the range of 0–10 dB are obtained. With 
the noisy test data obtained, our proposed WDD-CNN model 
is tested, and the results are presented in Table 9.

When Table 9 is investigated, it is seen that our model 
performs very well at low signal-to-noise ratios (at least 
99% between 4 and 10 dB). It is obvious that the proposed 
model achieves very good results for Dataset A and Dataset 
C at noise ratios of 0 and 2 dB. However, it is seen that the 
performance has decreased slightly in Dataset B. When the 
average accuracy values are examined, it is seen that our 
model gives good results in noisy environments.

5  Conclusions and further work

In this study, an intelligent fault diagnosis model was pro-
posed for condition monitoring and fault diagnosis of elec-
trical motors operating under variable load conditions. The 
proposed model was introduced as a novel dual-pathway 
deep learning model that combines 1D and 2D convolutional 
layers. WDD-CNN model directly processed raw vibration 
signals without time-consuming manual feature extraction. 
The WDD-CNN model, tested using the CWRU bearing 
dataset and the results of which are given comparatively in 
Sect. 4.3, was found to provide superior performance with 
high classification accuracy.

In addition to the superior performance of the model 
under different load conditions, its robustness against noisy 
environments was also demonstrated in this study. With 
these results, it was exposed that good results could be 
obtained with data from a single sensor channel through a 
successful model. Consequently, the proposed WDD-CNN 
model proved to be an efficient solution for condition moni-
toring and intelligent diagnostics of electric motors operat-
ing in high-noise industrial environments.

However, testing the proposed model on artificial fault 
signals obtained by EDM method instead of real-world 

Fig. 9  Accuracy comparison 
between WDD-CNN and 
five other different models 
(WDCNN, SRDCNN, TICNN, 
RNN-WDCNN, LINET 
(AdaBN) and BiLSTM) under 
varying load domains

Table 8  Sampling frequencies of the CWRU dataset used in the compared models

Models WDCNN [31] SRDCNN [32] TICNN [33] RNN-WDCNN [38] BilSTM [51] LINET (AdaBN) [58] WDD-CNN

Sampling frequency of 
raw data

12 kHz 12 kHz 12 kHz 48 kHz 48 kHz - 48 kHz
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faults and only for bearing fault can be seen as disadvan-
tages and shortcomings. Using artificial fault signals may 
cause some limitations in reflecting real-world data. Real-
world data may have more noise, variability, and complexity. 
Therefore, it is important to remember that testing based on 
real data is important to fully evaluate how your model will 
perform in real-world conditions. Additionally, our research 
focused solely on bearing faults. However, faults in electri-
cal motors can often be very diverse and addressing just one 
type of fault may not cover the wider range of faults you may 
encounter in real-world applications.

In future work, we plan to integrate motor current signals 
alongside vibration signals to provide a more comprehensive 
approach to intelligent diagnostics and control. This will 
enable us to detect various types of faults in engines more 
precisely and accurately while enhancing overall engine per-
formance. Instead of relying on the global bearing dataset, 
we will conduct tests for different types of electric motor 
faults using both normal and faulty data collected from our 
electric motor test setup, and we will evaluate performance 
of the proposed model. Our goal is for the proposed model 
to achieve a sensitive and reliable fault diagnosis capability 
for different types of electric motor faults.

Furthermore, we aim to test our real-time intelligent diag-
nostic model on real hardware setups, incorporating a wider 
range of data, including real-world failure conditions rather 
than artificial faults. This will further improve the classifica-
tion accuracy, reliability, and generalizability of our model.
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