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Abstract In this paper, we find all Padovan numbers which can be written as are difference of two repdigits. It is
shown that all Padovan numberswhich can bewritten as a difference of two repdigits are Pk ∈ {2, 3, 4, 5, 7, 9, 12,
16, 21, 28, 37, 49, 65, 86, 200, 3329}.
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1 Introduction

Positive integers with all digits equal are called repdigit. The number of repdigits for many special sequences
has been searched. Below are the repdigit numbers found for some sequences:

{0, 1, 2, 3, 5, 8, 55} for Fibonacci numbers [1],

{1, 2, 3, 4, 7, 11} for Lucas numbers [1],

{0, 1, 3, 7} for Pell numbers [2],

{2, 6} for Pell-Lucas numbers [2],

{0, 1, 2, 3, 4, 5, 7, 9} for Padovan numbers [3],

and

{0, 2, 3, 5, 7, 22} for Perrin numbers [3].

In later years, some authors investigated the Fibonacci andLucas numbers, which are the sumof two repdigits.
In [4], it was shown that the largest of this type of Fibonacci number is F20 = 6765 = 6666+99 byDíazAlvarado
et al.. Similarly, in [5], it was shown that the largest of this type of Lucas number is L14 = 843 = 777 + 66 by
Adegbindin et al.. Later, some special number sequences that can be written as a concatenations of two repdigits
were investigated by several authors. In [6], Rayaguru and Panda examined that the balancing number in this form
is 35. In [7], the Alahmadi et al. showed that Fibonacci numbers in this form are only 13, 21, 34, 55, 89, 144, 233
and377. In [8–11],Keskin et al.workedon the problemsof findingFibonacci orLucas numberswhich are product,
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sum, difference, or concatenations of two or three repdigits. Moreover, in [12–15], Keskin et al. determined
repdigits in base b or 10 which are products or sums of two Fibonacci or Lucas numbers. Specially, in [8]
and [10], Erduvan and Keskin showed that all Lucas numbers which are concatenations of two repdigits are
only 18, 29, 47, 76, 199, 322 and concatenations of three repdigits are only 123, 199, 322, 521, 843, 2207, 5778.
In [16], Batte et al. showed that all Perrin numbers which are concatenations of two distinct repdigits are
Pn ∈ {10, 12, 17, 29, 39, 51, 68, 90, 119, 277, 644}. In [17], Chalebgwa and Ddamulira showed that the only
Padovan numbers which are palindromic concatenations of two distinct repdigits are Pn ∈ {151, 616}. In [24],
Ddamulira explored all repdigits as sums of three Padovan numbers. In [18], Bhoi and Ray investigated Perrin
numbers, which can be represented as sums of two base b repdigits. In [19], Rihane and Togbé studied repdigits
which are products of consecutive Padovan or Perrin numbers and in [20], they manifested Padovan numbers
and Perrin numbers which are products of two repdigits. In [21], Lomelí and Hernández determined repdigits
which are sums of two Padovan numbers.

Let η be an algebraic number of degree d with minimal polynomial

a0

d∏

i=1

(
x − η(i)

)
∈ Z[x],

where the η(i)’s are conjugates of η and the ai ’s are relatively prime integers with a0 > 0. Then, h(η), the
logarithmic height of η, is

1

d

(
log a0 +

d∑

i=1

log
(
max

{
|η(i)|, 1

}))
. (1)

Moreover, if η = a/b ∈ Q, gcd(a, b) = 1 and b ≥ 1, then h(η) = log (max {|a|, b}) .

Proof of the following properties is found in [22].

h(η) + h(γ ) ≥ h(ηγ ±1), (2)

log 2 + h(η) + h(γ ) ≥ h(η ± γ ), (3)

h(ηm) = |m|h(η). (4)

Let (Pk)k≥0 be the sequence of Padovan numbers given by

P0 = 0, P1 = P2 = 1, Pk = Pk−2 + Pk−3

for k ≥ 3.

α =
3
√
108 + 12

√
69 + 3

√
108 − 12

√
69

6
,

β=−(
3
√
108 + 12

√
69 + 3

√
108 − 12

√
69) + i

√
3(

3
√
108 + 12

√
69 − 3

√
108 − 12

√
69)

12
= γ .

are the roots of the characteristic equation x3 − x − 1 = 0.
The Binet formula for the Padovan numbers is

Pk = t · αk + s · βk + r · γ
k

where

t = α(α + 1)

2α + 3
, s = β(β + 1)

2β + 3
, r = γ (γ + 1)

2γ + 3
.

Then it is known that

αk−3 ≤ Pk ≤ αk−1, for k ≥ 1,

1.32 < α < 1.33,

0.86 < |β| = |γ | = α−1/2 < 0.87,

h(t) ≤ 1

3
log 23,
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and

0.28 < |s| = |r | < 0.29.

Moreover, for k ≥ 1, it can known that

|e(k)| := |r · γ k + s·βk | ≤ |r | · |γ |k + |s| · |β|k = α−k/2|s| + α
−k/2|r | <

1

αk/2 .

In addition, the minimal polynomial of t over Z is given by 23x3 − 5x − 1 and zeros of this equation are r, s, t.
See [3,23–25], etc., for more information on Padovan sequences.

Let F := Q(α, β) be the splitting field of the polynomial φ over Q. Then, we have [Q(α) : Q] = 3,
|Gal(F/Q)| = [F : Q] = 6 and

Gal(F/Q) � {(1), (βγ ), (αβ), (αγ ), (αβγ ), (αγβ)} � S3.

We will use it for the permutation (αβ).

In this article, the Padovan numbers, which are the difference of two repdigits, were examined and found
to be Pk ∈ {2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 200, 3329}. To find these solutions, the Diophantine
equation

Pk = d1(10n − 1)

9
− d2(10m − 1)

9
(5)

is solved where n ≥ 2, k and m are positive integers. Also, it was concluded that the equation Pk = 10n − 10m

has no solutions. We will apply Baker’s theory of lower bounds to solve this equation.

2 Preliminaries

We will give the four lemmas necessary to solve our problem. These lemmas are popular lemmas that are often
used in similar studies. We will reduce the k sub-index with the help of these lemmas.

Lemma 1 is deduced from Corollary 2.3 of Matveev [26] (also see Theorem 9.4 in [27]).

Lemma 1 Let b1, b2 . . . , bt be nonzero integers, γ1, γ2, . . . , γt be positive real algebraic numbers in a real
algebraic number field K of degree D, and

� := γ
b1
1 · · · γ bt

t − 1 �= 0

Then, for all i = 1, 2 . . . , t,

exp
(
−30t+3t4.5(1 + log D)1.4D2A1A2 · · · At (1 + log B)

)
< |�|,

where

max {|b1|, |b2| . . . , |bt |} ≤ B,

and max {0.16, Dh(γi ), | log γi |} ≤ Ai .

Now we will now give the lemma proven in [28], which is a different type of the lemma given by Dujella
and Pethő in [29].

Lemma 2 Let the function || · || denote the distance from x to the nearest integer. Let A > 0, μ, B > 1 be some
real numbers u, v, w, M be positive integers, and p/q be a convergent of the continued fraction of the irrational
number γ where q > 6M. Let ε := ||μq|| − M ||γ q||. If ε > 0, then there exists no solution to the inequality

0 < |uγ − v + μ| < AB−w,

with

log(Aq/ε)

log B
≤ w and u ≤ M.
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Lemma 3 [31] Assume that a, x ∈ R. If |x | < a and 0 < a < 1, then

|log(x + 1)| <
log(1/(1 − a))

a
· |x |

and

|x | <
−a

e−a − 1
· ∣∣ex − 1

∣∣ .

The following lemmas are given in [3].

Lemma 4 The largest Padovan numbers that can be written as a repdigit is P11 = 9.

3 Main Theorem

In this section, we will give a theorem about Padovan numbers and we will use Matlab for all our calculations.

Theorem 5 If Pk is expressible as difference of two repdigits, then

Pk ∈ {2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 200, 3329} .

Proof Suppose that the equation (5) is valid. We will solve this equation in three cases.
Case 1: Suppose 1 ≤ k ≤ 573 and n ≥ 2. It can be shown that

P4 = P5 = 2 = 11 − 9, P6 = 3 = 11 − 8,

P7 = 4 = 11 − 7, P8 = 5 = 11 − 6,

P9 = 7 = 11 − 4, P10 = 9 = 11 − 2,

P11 = 12 = 111 − 99, P12 = 16 = 22 − 6,

P13 = 21 = 22 − 1, P14 = 28 = 33 − 5,

P15 = 37 = 44 − 7, P16 = 49 = 55 − 6,

P17 = 65 = 66 − 1, P18 = 86 = 88 − 2,

P21 = 200 = 222 − 22, P31 = 3329 = 3333 − 4

by using MATLAB.
Case 2: Suppose k ≥ 573 and n = m. It can be easily shown that d1 > d2 and Pk is a repdigit. This is

impossible by Lemma 4.
Case 3: Suppose k ≥ 573 and n − m ≥ 1. By (5), we write

Pk = t · αk + s · βk + r · γ k = d1 · (10n − 1)

9
− d2 · (10m − 1)

9
.

We will use this equation by arranging it in two different ways as follows.

9 · t · αk − d1 · 10n = −9(s · βk + r · γ k) − d2 · 10m − (d1 − d2), (6)

and

t · αk − d1 · 10n − d2 · 10m
9

= −(s · βk + r · γ k) − (d1 − d2)

9
. (7)

Let’s take absolute value of these equation and re-arrange them as follows. Then, we write
∣∣∣∣
9 · t · αk

d1 · 10n − d1 · 10n
d1 · 10n

∣∣∣∣ =
∣∣∣∣
9 · 10−n · t · αk

d1
− 1

∣∣∣∣

≤ 9|s · βk + r · γ k |
d110n

+ d210m

d110n
+ |d1 − d2|

d110n

≤ 9(|e(k)|
d110n

+ d2
d110n−m

+ 8

d110n
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≤ 9α−k/2

d110n
+ d2

d110n−m
+ 8

d110n

≤ 9α−k/2

10n−m+1 + 9

10n−m
+ 8

10n−m+1

<
9.81

10n−m
. (8)

and
∣∣∣∣
t · αk

t · αk
− d110n − d210m

9 · t · αk

∣∣∣∣ =
∣∣∣∣1 − (d1 − d210m−n) · 10n · α−k

9t

∣∣∣∣

≤
∣∣∣∣
(s · βk + r · γ k)

t · αk

∣∣∣∣ +
∣∣∣∣
(d1 − d2)

9 · t · αk

∣∣∣∣

≤
∣∣∣∣
e(k)

t · αk

∣∣∣∣ + |d1 − d2|
9 · t · αk

≤ α−k/2

t · αk
+ 8

9 · t · αk
<

1.65

αk
, (9)

To apply Lemma 1, we take

(�1, γ1, γ2, γ3, b1, b2, b3) :=
(

αk · 10−n · 9 · t
d1

− 1, α, 10,
9 · t
d1

, k,−n, 1

)
(10)

and

(�2, γ
′
1, γ

′
2, γ

′
3) :=

(
1 − α−k · 10n · (d1 − d210m−n)

9t
, α, 10,

(d1 − d210m−n)

9t
)

)

(b′
1, b

′
2, b

′
3) := (−k, n, 1). (11)

Moreover, K = Q(γ1, γ2, γ3) = Q(α) or K = Q(γ ′
1, γ

′
2, γ

′
3) = Q(α). Thence, D = 3. Additionally, if �1 = 0,

then t · αk = 10nd1
9 and if �2 = 0, then t · αk = 10n(d1−d210m−n)

9 . We take an automorphism σ from both sides
of these equation and apply absolute values, then it can be shown that

∣∣∣∣
10nd1
9

∣∣∣∣ = |σ(tαk)| = |sβk | < 1

and
∣∣∣∣
10n(d1 − d210m−n)

9

∣∣∣∣ = |σ(tαk)| = |sβk | < 1,

which are impossible can be shown by a simple calculation. As a result, �1 �= 0 and �2 �= 0. The logarithmic
height for γ1, γ2, γ3, γ ′

1, γ
′
2, γ

′
3 are as follows:

h(α) := h(γ1) := h(γ ′
1) = logα

3
,

h(γ2) := h(γ ′
2) = log 10,

h(γ3) := h

(
t · 9
d1

)
≤ h(t) + h(9) + h(d1) ≤ 1

3
log 23 + log 9 + log 9 < 5.44,

h(γ ′
3) := h

(
d1 − d210m−n

9t

)

≤ log 2 + h(9) + h(t) + h(d1) + h(d2) + h(10)(n − m)

≤ (n − m) log 10 + 8.34.
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Then, we choose

(A1, A2, A3, A
′
1, A

′
2, A

′
3) := (logα, log 103, 16.32, logα, log 103, 25.02 + 3 · (n − m) · log 10). (12)

Moreover, the inequality

α8(n−2) < 10n−2 ≤ 10n−2 + 10n−1 − 10n−1 <
d1(10n − 1)

9
− d2(10m − 1)

9
= Pk ≤ αk−1

can be written. Therefore, n < 8n < k + 15. Also, since B ≥ max {|k|, |n|, 1} , we choose

B := k + 15. (13)

By using Lemma 1, (8), (10), (12), and (13), it can be written that

10−n+m · (9.81) > |�1|
> exp

(
−306 · (1.4) · 34.5 · 32 · (1 + log 3) · logα · log 103 · 16.32 · (1 + log(k + 15))

)
,

i.e.,
(m − n) log 10 > −8.58 · 1013 · (1 + log(k + 15)) − log(9.81). (14)

Similarly, by using (9), (11), (12), (13), and Lemma 1, we have

1.65 · α−k > |�2|
> exp

(
−1.4 · 306 · 36.5(1 + log 3) · logα · log 103 · (1 + log(k + 15))

·
(
25.02 + log 103 · (n − m)

))

i.e.,
−k logα + log(1.65) > −5.26 · 1012 · (1 + log(k + 15)) (25.02 + 3(n − m) log 10) . (15)

From (14) and (15), we find

k logα − log 1.65 < 5.26 · 1012 · (1 + log(k + 15))
(
25.02 + 3[8.58 · 1013 · (1 + log(k + 15)) + log(9.81)]

)
.

It can be shown that 573 ≤ k < 2.59 · 1031. Now, we take

z1 := −n · log 10 + log

(
9
t

d1

)
+ k · logα (16)

and
z2 := log 10 · n − k · logα + log

(
(d1 − d210

m−n)/(9t)
)
. (17)

We write

|x | = ∣∣ez1 − 1
∣∣ <

9.81

10n−m
< 0.99

and

∣∣x ′∣∣ = ∣∣ez2 − 1
∣∣ <

1.65

αk
< 0.1

for n −m ≥ 1 and k ≥ 573 from (8) and (9). Let’s choose a := 0.99 and a′ := 0.1 to use Lemma 3. Thence, we
obtain the inequalities

|z1| = |log(x + 1)| <
log(100)

(0.99)
· 9.81

10n−m
< 45.7 · 10m−n (18)

and

|z2| = ∣∣log(x ′ + 1)
∣∣ <

log(10/9)

(1/10)
· 1.65

αk
< 1.74 · α−k . (19)
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From (16), (17), (18), and (19), we get

0 < |k · logα − n · log 10 + log(9t/d1)| < 45.7 · 10m−n,

0 <

∣∣∣∣

(
logα

log 10

)
k − n +

(
log(9t/d1)

log 10

)∣∣∣∣ < 19.9 · 10m−n, (20)

and

0 <
∣∣n · log 10 − k · logα + log

(
(d1 − d210

m−n)/(9t)
)∣∣ < 1.74 · α−k,

0 <

∣∣∣∣∣n
(
log 10

logα

)
− k + log

(
(d1 − d210m−n)/(9t)

)

logα

∣∣∣∣∣ < 6.19 · α−k . (21)

If we take γ := logα

log 10
/∈ Q, γ ′ := log 10

logα
/∈ Q and M := 2.59 · 1031, it can be shown that the denominator

of the 72nd convergent of γ, q72, exceeds 6M and the denominator of the 136th convergent of γ ′ exceeds 6M.

Firstly, we apply Lemma 2 for γ := logα

log 10
and take

μ := log(9t/d1)/ log 10.

Since 1 ≤ d1 ≤ 9, it can be shown that the inequality

0.08 < ε(μ) := ||μq72|| − M ||γ q72|| < 0.47.

In Lemma 2, suppose that (A, B, w) := (19.9, 10, n − m). At that case, there is no solution to the inequality
(20) if

log(19.9 · q72/ε)/ log 10 < 35.8 < n − m.

That’s why

n − m ≤ 35

and from (15), it follows that k < 2.1 · 1017. Similarly, we take γ ′ := log 10

logα
/∈ Q, M := 2.1 · 1017, and

μ := log
(
(d1 − d210m−n)/(9t)

)

logα
.

For 1 ≤ n − m ≤ 36 and 1 ≤ d1, d2 ≤ 9, we have

0.00005 < ε(μ) = ||μq136|| − M ||γ q136|| < 0.4999.

In Lemma 2, suppose that (A, B, w) := (6.19, α, k). At that case, there is no solution to the inequality (21) if

log(A · q136/ε)/ log B < 568.85 < k.

That’s why k ≤ 568. Since k ≥ 573, this is impossible. 	
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