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ABSTRACT Infinite lines of equilibria exist in a new memristive system when a tangent function is
introduced for attractor self-reproducing. Lyapunov exponent spectra and bifurcation diagram shows that
the newly proposed chaotic system exhibits intermittent chaos and hypermultistability characterized for the
coexistence of infinite countable and uncountable attractors. The physical feasibility of the new memristive
chaotic system is confirmed by PSpice circuit simulation. Finally, the system is applied in color image
encryption, where the performance in the process is evaluated. Numerical simulation proves that the new

memristive chaotic system has high security in image encryption.

INDEX TERMS Memristive chaotic system, infinite lines of equilibria, image encryption.

I. INTRODUCTION

In recent years, memristor has been introduced into chaotic
systems widely, which is used in neural networks [1]-[4],
communication systems [5]-[7], computer enginee-
ring [8]-[10], chaotic signal control [11]-[15] and image
encryption [16]-[19]. Studies of hidden attractors allow
the understanding of potentially unexpected disastrous
responses of dynamical systems to perturbations [20]-[22].
Therefore, increasing attention has been found to hidden
oscillations of chaotic systems [23]-[26], and equilibrium
point is one of the key factors influencing the dynamical
characteristics in chaotic system. The number or type of
equilibria shows its power in chaos producing or manifold
complexity. Lorenz, Lorenz - like systems [27]-[29] and
Chua systems [22], [30]-[34] have a couple of unstable equi-
libria [35], [36], while some other chaotic systems without

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun Junwei

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

any equilibria [37]-[39] or with infinite equilibria [40]-[43]
shows different properties compared with the formers.

In general, systems with more equilibria may bring
unexpected stabilities to some extent, such as extreme
multistability [34], [44]-[46], megastability [47], [48] and
infinite multistability [49], [50]. Extreme multistability is
mainly associated with the memory effect from a memristor
or from coupling. Megastability or infinite multistability
is usually induced by periodic trigonometric function for
initial-condition based offset boosting. To the best of our
knowledge, there is no chaotic case found showing both
extreme and infinite multistability, which forms the first
motivation of this work. For better demonstration, we firstly
define this multistability as hypermultistability for those
cases hosting infinite countable and uncountable attractors
different from extreme multistability, megastability and other
conventional infinite multistability. Furthermore, chaotic
systems have been applied for image encryption. In [51],
a new three-dimensional chaotic system without equilibria
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is presented and its real environment electronic circuit is
designed and implemented, and applied to chaotic image
encryption. In [52], a new chaotic system with infinite num-
ber of equilibria located on an exponential curve is presented,
the new random number generator and encryption algorithm
are designed. In [53], a multi-vortex chaotic system based on
simplified Lorenz system with unstable equilibria is designed
and applied to chaotic image encryption. These explorations
show the possibility for chaos-based application. However,
there is no chaotic system with infinite lines of equilibria and
hypermultistability applied in image encryption.

In this paper, a new memristive chaotic system with infinite
lines of equilibria and hypermultistability is designed for
application in image encryption. In section 2, the model
of the memristive chaotic system is given with basic
analysis. In section 3, bifurcation analysis finds the inher-
ent intermittent chaos. In section 4, hypermultistability is
observed by two initial-value-triggered regimes of bifurca-
tion. In section 5, an analog circuit experiment is completed
by PSpice simulation for system verification. In section 6,
the chaotic sequence generated by the new system is applied
into image encryption. Conclusion is drawn in the last
section.

Il. SYSTEM MODEL

Based on the chaotic system variable boostable VB2 [54],
which has only one quadratic term and four linear terms,
a new memristive chaotic system is obtained by inserting
tangent functions and a memristor,

X =y + ytan(z),
y = —tan(a), (1)
z = xW(u) — atan(z),

u=x.

where the flux-controlled memductance is W(u) = blu| — ¢
is introduced in the third dimension.
Here the flux-controlled memristor is defined as,

i = W(ux,
W) = blu| — c, 2
U=Xx.

The flux-controlled memductance is related to the system
variable x, which can be written as,

t !
W(u)=b|u|—c=b/xds—c:bWo—i—b/xds—c
00 0

3

t t
where W(u) = | [ xds| — fxds‘.
—00 0
The plot of memductance and pinched hysteresis curve are
shown in Fig. 1.
System parameters are chosen asa = 1, b =2,¢c = 2
and four attractors appear in different positions, as shown
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FIGURE 1. The memductance and pinched hysteresis loop.
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FIGURE 2. Coexisting chaotic attractors of system (1) witha=1,b=2,
c=2,[0,1,0,0]is red, [0, 1, =, 0] is green, [0, 1, —x, 0] is blue,
[0, 1, 2%, 0] is cyan, [0, 1, —2x, O] is yellow: (a) x - z plane, (b) y - z plane.

in Fig. 2, which have the same Lyapunov exponents (0.9801,
0, —1.3328, —5.683) and Kaplan-Yorke dimension of 2.7354.

Ill. BASIC DYNAMICAL ANALYSIS

A. ANALYSIS OF EQUILIBRIA AND STABILITY

Let —tan(z) = 0, it is easy to calculate the solution z (z = k)
(k eN). Whena =1,b =2, ¢ = 2, system (1) has infinite
equilibria (0, 0, k7, u)(k € N), the characteristic polynomial
equation is,

MR +ar—c+blu)=0 )
Considering Routh—Hurwitz condition are given by,

a >0,
W) > 0, 5)
a-0—W(u) > 0.

When the parameters of the system (1) are all positive,
it is found that Routh-Hurwitz condition is not satisfied.
When a =1, b = 2, ¢ = 2, the eigenvalues of the
infinite lines equilibria have a pair of complex conjugate roots
with positive real parts, demonstrating that the infinite lines
equilibria is an unstable saddle point.

B. BIFURCATION ANALYSIS

When the parameter a varies in [0.5, 2], intermittent chaos
is found in system (1) where chaos and periodic oscillation
appear alternately as shown in Fig. 3. As can be seen
from the figure, when a is in the interval [0.55, 0.65] and
[1.7, 2], the system produces cycle-1 attractor. When « is in
the interval [0.5, 0.55] and [1.2, 1.7], the system produces
cycle-2 attractors. When a is in the interval [0.82, 0.95],
the system produces cycle-3 attractors. When a is in the
interval [1.13,1.2], the system produces cycle-4 attractors.
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FIGURE 3. Lyapunov exponents and bifurcation diagram of system (1)
with b = 2, ¢ = 2, when a varies in [0.5, 2].

When a is in the interval [0.65, 0.82] and [0.95, 1.13], system
in a state of chaos. Typical phase portraits of attractors of
system (1) under different parameters are shown in Fig. 4. The
corresponding Lyapunov exponents are shown in Table 1.
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FIGURE 4. Phase portraits of attractors of system (1) with b =2,c =2
and IC = (0, 1, 0, 0) on the x - y plane: (a) a = 0.69, (b) a = 0.86,
(c)a=1.0,(da=1.18,(e)a=13,(fa=1.9.

When fixing a = 1 and ¢ = 2 and the parameter b
changes in the interval [1], [3], the Lyapunov exponents and
Bifurcation diagram of system (1) are shown in Fig. 5, which
can be seen from the figure. When the value of b is in the
interval [1, 1.16], the system is in a chaotic state; when the
value of b is in the interval [1.16, 1.73], the system is in a
periodic state; when the value of b is in the interval [1.73, 3],
the system returns to chaotic state.

When the fixed a = 1 and b = 2 and the parameter
c changes in the interval [1, 3], the Lyapunov exponents
and Bifurcation diagram of system (1) are shown in Fig. 6.
It can be seen from the figure that when the value of c is
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TABLE 1. Attractors in system (1) with b = 2, ¢ = 2 under initial
conditions of [0, 1, 0, 0].

Attractor Parameter LEs Dxy
chaos a=0.69 (0.0147, 0, 3.0020
-0.0011, -7.2068)
_ (0,0,-0.2302,
cycle-3 a=0.86 -6.7454) 1
_ (0.9801, 0,
chaos a=1.00 413328, -5.683) 2.7354
- _ (0, 0,-0.0485,
cycle-4 a=1.18 -5.9043) 1
_ (0,0,-0.0919,
cycle-2 a=1.30 -5.7868) 1
_ (0, 0,-0.0653,
cycle-1 a=1.90 -5.7825) 1
01
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FIGURE 5. Lyapunov exponents and bifurcation diagram of system (1)
with @ = 1, ¢ = 2, when b varies in [1, 3].
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FIGURE 6. Lyapunov exponents and bifurcation diagram of system (1)
with a = 1, b = 2, when c varies in [1, 3].

in the interval [1, 1.63], the system is in the cycle-2 state;
when the value of c¢ is in the interval [1.63, 1.75], the system
is in the cycle-4 state. When the value is in the interval
[1.75, 2], the system is in a chaotic state; when the value of
c is in the interval [2, 2.3], the system is in the cycle-3 state,
when the value of c is in the interval [2.3, 2.83], The system
is in a chaotic state, and when the value of c is in the interval
[2.83, 3], The system is in a periodic state.

IV. MULTISTABILITY ANALYSIS

In general, the value of a memristor has some relations with
the initial condition. When the initial condition uq varies
in [—2, 2], the system has different stable state, in which
Lyapunov exponent and bifurcation evolution are shown
in Fig. 7, where the typical phase portraits of attractors under
different ug are shown in Fig. 8. The corresponding Lyapunov
exponents are shown in Table 2.When the initial condition
zo varies in [—1, 1], the system has different stable states,
indicated by Lyapunov exponents and bifurcation diagram
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FIGURE 7. Dynamical behavior of system (1) witha=1,b=2,c =2
under initial condition [0, 1, 0, ug]: (a) Lyapunov exponents,
(b) bifurcation diagram.
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FIGURE 8. Coexisting attractors of system (1) witha=1,b=2,c =2
under the initial condition [0, 1, 0, ug]: (a) ug = —1, (b) ug = —0.65,
(c) ug = —0.15, (d) ug = 0, (e) ug = 0.25, (f) ug = 0.7.

shown in Fig. 9, where the typical phase portraits of attractors
under different zp are shown in Fig. 10. The corresponding
Lyapunov exponents are shown in Table 3.

The property of multistability is unique. From Fig. 7 and
Fig. 9, intermittent chaos with small interval and large interval
are captured. Furthermore, for the periodic tangent function,
all the infinite countless attractors can be self-reproduced
as shown in Fig. 11. All the periodic or chaotic attractors
are reproduced in the dimension of z. Here the unique
hypermultistability is clearly seen in phase space. Here
four typical attractors including chaos and limit cycles are
reproduced in phase space for clear demonstration.

V. CIRCUIT IMPLEMENTATION
When a =1, b = 2, ¢ = 2 and under different

initial conditions, we find that the system variables oscillate
between —15 and 15 from the Fig. 2. Therefore, it is
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TABLE 2. Attractors in system (1) with @ = 1, b = 2, ¢ = 2 under initial
conditions of [0, 1, 0, ug].

Initial

Attractor condition LEs Dxy
cycle-3 up=—1 (0’,0{; ;?).7075)48, )
__ (0.4688, 0,
chaos uo=—0.65 —0.5972~7 4693) 27851
cycle-3 up=—0.15 (0,?7, :‘2.8131)29, |
_ (0.9801, 0,
chaos =0 ~1.3328,-5.6830) 2.7354
cycle-2 =025 (0,_0;‘ ;(‘)‘.2120)47, .
cycle-1 =077 (0,709 ;(1).4107)59, |
AN
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FIGURE 9. Dynamical behavior of system (1) witha=1,b=2,c =2

under initial condition [0, 1, zy, 0]: (a) Lyapunov exponents,
(b) bifurcation diagram.
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FIGURE 10. Coexisting attractors of system (1) witha=1,b=2,c =2
under the initial condition [0, 1, zy, 0]: (a) zg = —0.9, (b) zy = —0.75,
(c) zg = —0.2, (d) zg = 0, (e) zo = 0.5, (f) zo = 0.85.

convenience for circuit design from the original equation by
using the operational amplifier OPA404, the ideal multiplier,
the diode D1N4500 and the tan operation unit. The analog
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FIGURE 11. Coexisting attractors of system (1) witha=1,b=2,c=2,
[0, 1, 0/£x/+2x, 0] is green (chaos), [0, 1, 0/+n/+2x, —1] is red (cycle-3),
[0, 1, 0/+x/+2x, 0.25] is blue (cycle-2), [0, 1, 0/+x/+2x, 0.7] is pink
(cycle-1): (a) x - y - z space, (b) y - z - u space.
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FIGURE 12. Circuit schematic of memristive system (1).

circuit is designed in PSpice as shown in Fig. 12 with the
following circuit equation,

. 1 1

= ——y+ ——yt
X R1C11y+ R C1y an(z),
y=- tan(z),

RSCC2 b ©)

7= — tan s
¢ If4C3 R5C3 @+ C3x u

= X

R7Cy

Being equivalent with the combination of system param-
etera = 1, b = 2, ¢ = 2, circuit component parameters
are selected as: R4 = Rg = 500k, Rj = Ry, = R3
Rs = Ry = 1000k2, R§ = Rg = Rjg = Ry =R =
Riz3 = Ris4 = Ry5 = Rig = 100kS2. Select capacitor C; =
C, = C3 = C4 = InF V represents |u|. Select initial
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FIGURE 13. Equivalent circuit of the flux-controlled memristor.
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FIGURE 14. Pinched hysteresis loop of memristor W(u). (x-axis: 0.1v/div,
y-axis: 0.1v/div).
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FIGURE 15. When a = 1, b = 2, ¢ = 2, the system (1) takes chaotic
attractors with different initial values. [0, 1, 0, 0], [0, 1, =, 0], [0, 1, —=, O],
[0, 1, 27, 0], [0, 1, =27, O] are for red, green, blue, cyan, yellow
correspondingly: (a) x — z plane, (b) y - z plane.

voltage of the capacitor Vi = V3 = V4 =0V, V, =1V.
In the following we select a tangent signal generator to
reproduce the coexisting attractors. The circuit simulation
diagram and a plot of pinched hysteresis loop of memristor
are shown in Fig. 13 and Fig. 14. The chaotic attractor is
shown in Fig. 15. The typical phase portraits of attractors
under different uy are shown in Fig. 16., while the typical
phase trajectories under different zq are indicated in Fig. 17.

VI. APPLICATION IN IMAGE ENCRYPTION

In contrast, the memristive chaotic system with infinite line
equilibria has stronger unpredictability, larger key space and
higher complexity, which makes the encryption more secure
in theory.
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FIGURE 16. When a = 1, b = 2, ¢ = 2, the system (1) takes attractors with
different initial values. [0, 1, 0, —1], [0, 1, 0, —0.65], [0, 1, 0, —0.15], [0, 1,
0, 0], [0, 1, 0, 0.25], [0, 1, O, 0.7] are for purple, green, orange, cyan, pink,
red correspondingly: (a) x - y plane, (b) x - u plane.
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FIGURE 17. When a = 1, b = 2, ¢ = 2, the system (1) takes attractors with
different initial values. [0, 1, —0.9, 0], [0, 1, —0.75, 0], [0, 1, —0.2, 0], [0, 1,
0, 0], [0, 1, 0.5, 0], [0, 1, 0.85, 0] are for green, orange, purple, cyan, pink,
red correspondingly: (a) x - y plane, (b) x - u plane.

A. ALGORITHM DESCRIPTION

In this paper, a method based on the combination of
memristive chaotic system and DNA coding is used into
encrypting the image. Here traditional DNA cryptography is
applied for digital images encryption based on the chaotic
sequences from a newly developed system. Compared with
other algorithms, large space of encryption key and strong
sensitivity is still found showing robustness against attacks.
Its main contents include: firstly, the image is scrambled by
Logistic chaotic mapping, and then the image is encrypted by
combining DNA coding and computing with ordered random
columns generated by memristive system. The specific
encryption process is shown in Fig. 18.

Random matrix Logistic chaotic
sequence

.................................

DNA encoding

DNA . ) -
‘{ computing H Diffusion H DNA decoding HEncrypled image|

DNA encoding

Memristive
chaotic sequence

‘ Image matrix H Zero padding |——| Original image

FIGURE 18. Encryption flowchart.

The specific encryption process is as follows:

Stepl: In order to increase the applicability of the
algorithm, the number of rows and columns of the image is
supplemented into numbers that are divisible by 7, which is
the size of the block. Let the gray value of the filled pixel
point My and Ny be 0;
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Step2: Set the initial value xo and parameter u of the
Logistic mapping, and continuously iterate the Logistic
mapping to obtain the one-dimensional sequence {p;} with
length M x N + 1000 (i = 1001, 1002..., M x N + 1000);

Step3: Convert all elements in the sequence into [0, 255],
and then convert the sequence into a two-dimensional random
matrix R of order M x N;

Step4: For the image and the random matrix, the size of
each block is set as ¢t x ¢, where t is 4;

Step5: Four initial values Xo, Yo, Zop and Uy of the
hypermultistability chaotic system were set, and four chaotic
sequences, namely {x;j}, {vi}, {z;} and {#;} (i = 3002, 3003,
..., 3001 + M/t + N/ t);

Step6:{x;} and {y;} determine the DNA encoding mode of
each block of image matrix and random matrix respectively.
Taking image matrix as an example, the selection process of
encoding mode is as follows: transform all elements in {x;},

xi = mod(round(x; x 10%), 8) + 1 @)

The gray value of all pixels in the block is converted into
binary number and DNA coding is carried out in the x; way;
Step7: {zi} determines the DNA operation between image
matrix and random matrix. The selection process of DNA
operation is as follows: transform all elements in {z;},

zi = mod(round(z; x 10%), 4) ®)

If z; = 0, DNA addition is performed between the ith block of
image matrix and all corresponding pixels in the ith block of
random matrix. If z; = 1, it is a subtraction operation; If z; =
2, is an xor operation; If z; = 3, it is the same or operation;

Step8: In order to obtain better encryption effect, diffusion
algorithm is introduced. The relationship between the current
image block encryption result and the previous image block
encryption result is also determined by {z;}. Take z; = 0 as
an example, the encryption result c; of the ith block is

ci=c¢-1+L+Ri 9

The encrypted image is obtained after decoding.

Decryption algorithm is the inverse process of encryption
algorithm. Random matrix and DNA encoding operation
mode can be obtained through the key.

FIGURE 19. Encrypting experimental images: (a)the original image,
(b)encrypted image, (c)decrypted image.

B. ENCRYPTION APPLICATION WITH MEMRISTIVE
CHAOTIC SYSTEM AND DNA CODING

A standard color image is selected for testing, as shown
in Fig. 19(a). The control parameters and initial conditions
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TABLE 3. Attractors in system (1) with @ = 1, b = 2, ¢ = 2 under initial
conditions of [0, 1, zy, 0].

Initial

Attractor condition LEs Dxy
chiaos 27709 fo.ég’(?si%’.zoz’zs) 2.3349
cycle-4 20=-0.75 (0,707,.-9(;.3(3;)47, .
cycle-3 20=-02 (0,_06;(;.7326)24, .
chaos =0 - 3(2295 915’25’;30) 2.7354
cycle-2 20=0.5 (0,93;?57'/)36, .
cycle-1 29=10.85 (0,70:1,;2'90;)25’ |

TABLE 4. Algorithm key.

Key i X0 Xo Yo Zo Uo
Value 3.9999 0.5475 0 1 0 0
Key ki k2 Mo No
Value 0.3883 0.4134 0 0

of the Logistic system are u = 3.9999 and x9 = 0.5475,
respectively. The system parameters of the new memristive
chaotic system (1) are a =1, b = 2 and ¢ = 2. The initial
conditions are set as Xo =0, Yo = 1, Zp = 0 and Uy = 0.
DNA coding rules are randomly generated. The selected keys
are shown in Table 4. M and Ny are the parameters of zeroing
during encryption; k; is the average gray level of channel G in
the original image; k> is the average gray level of channel B
in the original image. The encrypted image after simulation
is shown in Fig. 19(b). It can be seen that the image after
encryption is chaotic and completely different from the image
before processing. Fig. 19(c) is the properly decrypted image,
which is exactly the same as the original image.

C. SECURITY ANALYSIS

The most basic and immediate requirement for an encrypted
system is security. Generally speaking, the chaotic image
encryption system needs to have a large enough key space,
reversible encryption and decryption, strong anti-attack
and other performances, and then the performance of the
chaos-based encryption will be analyzed from these aspects:
key space analysis, histogram analysis, information entropy
analysis, correlation analysis and analysis of anti-noise
interference ability.

1) KEY SPACE ANALYSIS

With 64-bit computers, floating point precision up to
10716, the key space can reach (10'®)!0 = 10'%0 which
is larger than 10%8 [19], so the new system can better
resist the attacker’s exhaustive attack. When the algorithm
key is slightly changed, such as changing the key Xy to
0.0000000000000001 with the other parameters unchanged,
the decrypted image cannot be obtained correctly, as shown
in Fig. 20. Therefore, the new system has strong key
sensitivity.
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FIGURE 20. Initial condition perturbation ciphertext.

2) HISTOGRAM ANALYSIS
Gray histogram is a statistical analysis method, which can
visually display the frequency distribution of each gray level
pixel. After encryption, the histogram of the image becomes
smooth and even from the fluctuation before encryption,
so as to effectively prevent the attacker from obtaining the
original image information by statistical analysis, resulting
in information leakage, and ensure information security.
Fig. 21(a) is the histogram of the original image, and (b) is
the histogram of the encrypted image. It can be seen that the
new system can resist a stronger attack.

R channel

G channel B channel

3500 3000 3500
o 0 _J_JL 0
0 250 0 (a) 250
R channel G channel B channel
200 200 200
OWMMMMWWWWMWWMM 0_____J_JL_L____ 0“”““lmmuwmwwmw
0 250 0 (b) 250 0 250

FIGURE 21. Encryption experiment histogram: (a)Histogram of the
original image, (b)Encrypted image histogram.

3) INFORMATION ENTROPY ANALYSIS

Information entropy reflects the uncertainty of image infor-
mation. The higher the entropy, the stronger the randomness.
The random distribution of pixel values in image encryption
is calculated as follows [17],

N
H(x) = =) p(xi)log, pxi) (10)

i=1
where N represents the number of gray levels, x; represents
the gray level of the image, and p(x;) represents the frequency
of the gray level. Theoretically, for a completely random
digital image with a grayscale of 256, its pixel value is evenly
distributed in [0, 255], then p(x;) = 1/256 (i € [0, 255]),
and the calculated information entropy is 8bits. Therefore,
if the image is encrypted, the closer the information entropy
of the ciphertext image is to 8, the better the encryption
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characteristics are. The information entropy of the three
channel in original image and encrypted image by the
system (1) are shown in Table 5, the entropy values obtained
by our algorithm are larger than those of Ref. [18], which
represents the great image encryption effect.

TABLE 5. Three-channel image information entropy in original and
encrypted pictures.

Image Red Green Blue
Original image 7.2682 7.5901 6.9951
Encrypted image 7.9992 7.9994 7.9994

4) CORRELATION ANALYSIS

The larger the correlation coefficient of adjacent pixels,
the higher the correlation degree of adjacent pixels. Con-
versely, the smaller the coefficient, the lower the correlation.
Therefore, the security of the algorithm can be judged
by calculating the correlation coefficient. The smaller the
coefficient, the lower the correlation and the higher the
security. In order to measure the correlation between the
original image and adjacent pixels of the ciphertext image, N
pairs of adjacent pixels were selected from the image and the
correlation coefficients were calculated from three directions:
horizontal, vertical and diagonal. The correlation coefficients
were calculated as follows [17],

1 N

Ekx) = N;xi (11)
1 N

D) = > (i = E)* (12)

i=1

1 N
covr,y) = = ) (i — EQ)0i —EG) - (13)
i=1

cov(x, y)

= /DDo)

where cov(x, y) represents correlation function and D(x)
represents mean square deviation.

(14)

TABLE 6. Correlation coefficient test results.

Image Channel horizontal Vertical Diagonal
Original Red 0.9749 0.9866 0.9623
image Green 0.9753 0.9873 0.9638
Blue 0.9517 0.9711 0.9293
Encrypted Red 0.0007 0.0118 0.0154
image Green 0.0086 -0.0154 -0.0166
Blue 0.0012 0.0014 0.0124

Table 6 shows the test results of the correlation coefficients
of the adjacent pixels of the test image in various directions.

As can be seen from Table 6, the correlation coefficients
of the original image are all close to 1, and the correlation
coefficients of the encrypted image are all close to 0,
indicating that the pixel point distribution of the encrypted
image is highly discrete.
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5) ANALYSIS OF ANTI-NOISE INTERFERENCE ABILITY

In the real communication process, the signal is transmitted
through the channel and will be interfered by the noise to
some extent. Therefore, when ciphertext images are transmit-
ted through channels, they will inevitably be interfered with.
The most common one is pepper and salt noise. Fig. 22 shows
the decrypted image of R channel ciphertext images under
different intensity of pepper and salt noise interference. It can
be seen intuitively that although the decrypted image has
some distortion, it has little effect on obtaining effective
information, so the new system can resist the attack of noise
to some extent.

FIGURE 22. Decrypted image disturbed by salt-and-pepper noise:
(a)noise density n = 0, (b)noise density n = 0.05, (c)noise density n = 0.1,
(d)noise density n = 0.2.

VIl. CONCLUSION AND DISCUSSIONS

When a periodic tangent function is introduced in a
memristive system, a new chaotic case is found where infinite
lines of equilibria are coined which may be responsible for
intermittent chaos. Numerical analysis and circuit simulation
by PSpice show consistence with each other proving the
new phenomenon. Most strikingly, the unique chaotic case
shows hypermultistabiltiy with infinite uncountable different
attractors and attractor self-reproducing with infinite count-
able ones. As a typical application, the property of image
encryption is exhaustedly analyzed. With the chaotic signal
from the new system, a color image is well encrypted and
decrypted in key space. Histogram and correlation of adjacent
pixels are used for showing the high encryption performance.
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