
ARTIFICIAL NEURAL NETWORK MODELING OF GRAIN REFINEMENT PERFORMANCE
IN ALSi10MG ALLOY

Engin Kocaman
Department of Metallurgical and Materials Engineering, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
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Abstract

Optimization of casting parameters is essential in terms of

quality factors in foundries. Nowadays, to optimize process

parameters, new approaches such as artificial neural net-

works method are being used. In this study, a neural net-

work model has been developed to control the grain size in

aluminum casting alloys. Some of the important grain

refinement parameters such as casting temperature, hold-

ing time and addition level have been evaluated as inputs

for the model. The network training architecture was

optimized at 241 training cycles with quasi-Newton algo-

rithm with a single hidden layer and 6 neurons. With

modeling, mean absolute percent error was found at 0.99

between experimental measurements and model estimation.

R2 value has been calculated as 99.2%. The minimum grain

size was measured for the parameter of 680 �C casting

temperature, 0.25% Ti, 25-min holding time. It was found

that there was a good agreement between experimental

measurements and artificial neural network predictions.

Keywords: aluminum, aluminum casting, grain refinement,

optimization, artificial neural network

Introduction

Hypoeutectic Al–Si alloys are the most preferred alloy

group in aluminum alloys because of their properties, such

as high strength, high corrosion resistance and easy pro-

cessability. Moreover, due to the superior properties of

these alloys, their usage in the automotive and aerospace

industries is increasing continuously.1,2 To the improve-

ment of mechanical properties, the fine and equiaxed grain

structure is usually desirable in the aluminum castings.

However, recent works show that grain size increases to

approximately 4000 lm with increasing silicon content in

Al–Si alloys.3–5 In the formation of such a structure, grain

refinement plays a crucial role in the cast and wrought

aluminum alloys. Besides, a small amount of grain refiner

in the melting affects not only mechanical properties but

also the stability of alloys.

Moreover, grain refinement contributes to reducing hot

tearing risk, better at eliminating porosity and improving

the ability to achieve a uniform surface.6–16 Nowadays,

grain refinement has mostly been achieved by the addition

of the master alloys such as Al–B or Al–Ti–B in a waffle or

rod form in the casting industry.17–19 At the same time,

new generation grain refiners such as Al–Ti–B–C and Al–

B–Nb are reported,20–22 yet they have limited usage in the

industry. Also, in recent studies, it has been reported that

rare earth elements such as La and Ce refine the grain.23–25

However, effective grain refinement is mostly not achieved

due to several reasons. First, the mechanism of grain

refinement is still contradictory.26 Secondly, the amount of

grain refiner addition is significant for economic reasons,

because excess amount of grain refiner addition will lead to

high costs which need to be optimized. Thirdly, holding

time has a crucial role because the grain refinement effect

is disappeared over time.14,27 Also, the temperature of
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grain refiner addition affects the grain structure.28 As

mentioned above, effective grain refinement can be

achieved, considering the significant number of

parameters.

Today, economic advantages can be achieved in many

industries with various optimization methods. One of these

methods is artificial neural networks. ANN models have

been developed to predict and optimize several properties

of materials. This technique is used to construct a mathe-

matical model and to establish a relationship between

dependent variables and independent variables in solving

complex problems in which linear relationships cannot be

determined.29,30 Hassan et al.31 have studied hardness,

density and porosity in SiC-reinforced Al-Cu alloys

depending on the reinforcement ratio. In another study,

Liao et al.30 investigated the effects of the addition of Si,

Cu, Mg and Mn to aluminum shrinkage with different

algorithms. Patel et al.32 compared the modeling results

obtained from ANN and statistical regression analysis with

experimental results and found that the results obtained

from ANN were more compatible with the experimental

results. Undoubtedly, one of the areas where artificial

neural networks can be used is foundries. The casting

process involves many stages that can be optimized in

terms of time, energy and cost. It will be a great advantage

to obtain the desired quality cast parts in a shorter time and

economically by optimizing the grain refining applications,

especially in aluminum casting processes. However, there

are still a limited number of studies on this subject in the

literature. In this study, various grain refinement parame-

ters such as casting temperature, holding time and addition

level, which are the critical factors affecting the quality of

aluminum casting parts, were modeled by using ANN.

Materials and Method

Casting

For the experimental study, an AlSi10Mg alloy, which was

received from Eti Aluminyum A.Ş (Konya, Turkey), was

used. The chemical composition of the starting material

determined using the Oxford-Instrument Spectral Analysis

device is shown in Table 1. According to the table, the

titanium ratio of starting material was observed as

0.012 wt%.

The alloy was melted in an approximately 1.5-kg capacity

SiC crucible by using an electric resistance furnace. The

alloy was poured in an open sand mold that was prepared

by 2.5 wt % resin cured with CO2. The mold and casting

geometry were designed, as illustrated in Figure 1a. The

model dimensions are bottom diameter Ø35 mm, top

Table 1. Spectral Analysis Results of A360 Alloy

Si Fe Cu Mn Mg Ni Zn Ti Al

9.47 0.228 0.046 0.477 0.277 0.02 0.044 0.012 Bal.

Figure 1. (a) Dimensions of the model, (b) Schematic illustration of the sand
mold
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diameter Ø40 mm and height 60 mm. Samples were

poured directly into the open mold, as shown in Figure 1b.

Altair Inspire Cast casting simulation was used to calculate

the solidification time of the sample. According to the

simulation study, the solidification module of the sample

was calculated as approximately 0.6 cm (Figure 2a), and

the solidification time was calculated approximately 200 s

(Figure 2b).

Extruded rod type of Al5Ti1B master alloy was added into

the melt, according to parameters in Table 2. The given

addition level in Table 2 is the targeted Ti values. For

example, for the addition of 0.30 wt. Ti %, 90 grams of

Al5Ti1B extruded rod-type master alloy has been added to

1.5 kg of liquid metal, adding 4.5 g of Ti and about 0.9 g

of B. Before pouring, degassing was carried out with dry

nitrogen for 3 min. This process was repeated for each

experimental parameter given in Table 2.

Then, the samples were cut 25 mm height from the bottom

side. For the microstructure analysis, the samples were

grounded up to 2500 grid using SiC paper followed by

polishing using 50-nm alumina suspension. The grain size

measurement was taken by using an optical metal micro-

scope (Nikon Eclipse L150) with a Clemex Vision image

analysis software according to the linear intercept method

ASTM E112 standard, at different regions of each sample

as shown in Figure 3 schematically.

Figure 2. (a) Solidification modulus, (b) solidification time of the sample.

Table 2. Grain Refinement Process Parameters and Their Respective Levels

Parameters Levels

1 2 3 4 5 6

Casting temperatures �C 680 690 700 710 720 740

Holding times min. 15 20 25 30 45 60

Addition level wt%. 0.05 0.10 0.15 0.20 0.25 0.30
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Modeling with ANN

Artificial neural networks have a highly interconnected

structure similar to the brain cells of human neural net-

works and consist of many simple processing elements

called neurons arranged in different layers in the network.

Each network consists of an input layer, an output layer

and one or more hidden layers. One of the most important

known advantages of ANN is that it can learn from the

sample set called the training set. Once the network

architecture is defined, weights are calculated to provide

the desired output during the learning process.31 ANN

operations include the steps of multiplying the input neu-

rons defined in the input layer by the weights of the con-

nections, connecting these neurons in the hidden layer and

then passing them through an activation function to pro-

duce the hidden layer. The output of the latent neurons is

multiplied again by the weights of the connections, con-

necting the hidden neurons to the output neurons and

summed to produce an output that will pass through

another activation function. This process is called feed-

forward.33 The mathematical expression of feedforward

operation is given in Eqn. 1.

Y ¼ f X~:w~þ b~
� �

Eqn: 1

where Y is the output neuron, X is the input neuron, w is the

weight assigned to the connection between the input and

the neuron, b is bias, and f is the activation function. As can

be seen from the information given above, the activation

function is to be selected, and the number of neurons in the

hidden layer directly affects the performance of the model.

The procedure used for the learning process in an artificial

neural network is called an optimization algorithm. There

are many different optimization algorithms. Each has dif-

ferent features related to the expected performance and

numerical precision. In this study, the quasi-Newton

algorithm has been used as an optimization tool.

The application of the Newton’s method can be time-

consuming since it requires many processes to evaluate the

Hessian matrix and compute its inverse. New approaches,

known as quasi-Newton or variable metric methods, have

been developed to eliminate such disadvantages. These

methods generate an approach to the inverted Hessian

where each iteration, instead of directly calculating Hes-

sian, the algorithm repeats and then evaluates the inverse.

This approach is only computed with information about the

first derivatives of the error function. The basic idea behind

the quasi-Newton method is to approximate the inverse

Hessian with another G matrix (s) using only the first

partial derivatives of the loss function. Then, the quasi-

Newton formula can be expressed as:

w sþ1ð Þ � w sð Þ ¼ G sð Þ:g sð Þ:a sð Þ Eqn: 2

where s = (0,1,2…) is the steps of the weight vector, g is

gradient, and s is training rate, which adjusted here at each

epoch using line minimization.34

If there are huge differences between the mathematical

values of the experimental parameters used in an ANN

model, calculation accuracy may not occur precisely. In

such cases, the data are normalized before modeling. In

other words, all data are scaled to be distributed between

[0, 1] and [- 1, 1].35,36 Equations 3 and 4 were used for

the normalization of the data used in this study.

XN ¼ 2
x� xminð Þ

xmax � xminð Þ � 1 Eqn: 3

XN ¼ x� xmeanð Þ
StdDevð Þ Eqn: 4

In order to determine the best ANN model, it was aimed to

reach the minimum mean squared error (MSE) value by

performing experiments from 1 neuron to 10 neurons in the

hidden layer with tansig, logsig and linear activation

functions. Obtaining the minimum MSE value enables the

ANN model to produce the most realistic results.37 The

mathematical representation of MSE is given below.

MSE ¼
Xn
i¼1

ðai � fiÞ2

n
Eqn: 5

where ai is experimental results, fi is ANN model

estimation, and n is the number of data points used.

Figure 4 shows the different activation functions and the

number of different neurons obtained according to the

MSE graph.

According to Figure 4, the lowest MSE value was obtained

from 2.06E-5 hyperbolic tangent activation function with

six neurons. The network architecture is constructed

according to these values, and an ANN model is created.

In this study, ANN architecture created by Neural Designer

software is shown in Figure 5. According to this figure,

casting temperature, addition level and holding time are

defined in the input layer. In the output layer, the particle

size, which is our experimental target, is defined. The

Figure 3. Schematic illustration of the grain size
measurement.
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hidden layer is designed to be a single layer and with six

neurons.

Results and Discussion

The microstructure image of AlSi10Mg alloy with and

without grain refining is given in Figure 5. It is seen that

grain size changes with different grain refining parameters.

The grain structure of commercially AlSi10Mg alloy is

coarse and predominantly consists of elongated primary

dendritic structure (Figure 6a). This sample had been

poured at 720 �C without any addition grain refiner and

holding time. According to the measurements carried out in

different regions of the sample, the average grain size was

found to be around 3200 lm. With the addition of a small

amount of grain refiner, grain size is reduced, as shown in

Figure 6b. In the sample, the grain size was found to be

1390.7 lm by using parameters of the addition of 0.05% Ti

at 720 �C and 45-min holding time. The average grain size

was measured as 1160.6 lm in the sample performed by

adding 0.10% Ti at 700 �C and 45 min of holding time,

shown in Figure 6c. The microstructure picture obtained as

a result of the experiment performed with 0.20% Ti at

680 �C and 20-min holding time is given in Figure 6d. In

the measurements taken from different points of this

microstructure, the average grain size was measured as

603.7 lm. When we compare Figure 6a, b, it is seen that

the addition of Ti even in small amounts at the same

casting temperature positively affects the grain size.

However, if it is necessary to make an evaluation between

Figure 6b, c, it is seen that the grain size decreases as a

result of increasing the casting temperature and additional

Ti amount during the same holding period, whereas,

according to the literature, it is emphasized that the grain

size increases with the increase in the casting tempera-

ture.28,38 This case shows that grain size cannot be exam-

ined depending on a single parameter.

Table 3 shows all the experimental parameters and the

average grain size measurements taken from the experi-

ments performed with these parameters. According to the

table, there is no linear relationship between the experi-

mental grain sizes. It is seen that different grain sizes are

obtained at different parameters. Previous studies reported

that grain refiner must be added at a certain limit to reduce

the grain size, but it does not cause a significant change in

grain size by adding grain refiner over this limit.9,39 In

studies conducted on holding time, it was observed that the

grain refiner lost its effect over time in the stationary cru-

cible, and the minimum grain size was generally obtained

at 20–30 min.40 Besides, by mixing the molten metal

before casting, a certain amount of grain size reduction

occurs.28,41 However, mixing is not possible in industrial

applications and especially in the hot chamber pressure

casting process.

On the other hand, the casting temperature after the addi-

tion of grain refiner into the molten metal is another

parameter affecting the grain size. Samuel et al. reported in

their study that the grain size increased with increasing

casting temperature.28 Besides, it was observed that grain

size decreased with increasing casting temperature in the

literature.38

Figure 7 is a summary of the change in grain size

according to the parameters obtained from experimental

studies. This graph is obtained when a triple diagram is

analyzed between the inputs and the output. One of the

results obtained from Figure 7 is that the grain size

decreases as the amount of grain refiner increases. The

general description is the presence of Al5Ti1B master alloy

in the melt leading to the formation of intermetallic phases

such as TiAl3 and/or TiB2. On the other hand, according to

Al–Ti phase diagram, 0.15 wt% Ti is a critical limit to let

primary TiAl3 precipitate and act as a nucleation substrate

for alpha-Al. A large number of intermetallic phases

formed behave as heterogeneous nucleation centers and

Figure 4. Effect of different activation functions and
neuron numbers on MSE.

Figure 5. ANN architecture.
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contribute to the refinement of the grain size. For this

reason, it is expected that the grain size will decrease with

the increase in the amount of grain refiner added. However,

it has been reported that it does not contribute to decreasing

the grain size after the amount of grain refiner exceeds a

certain rate. Similar studies in the literature have found

similar results for this alloy.9,42 Another significant result is

that the holding time has positive effects on grain size for a

certain period, while it loses its effect over a certain period.

Also, it was found that the casting temperature had no

significant effects on grain size, particularly in sand cast-

ings. In the literature, Wang et al.27 carried out grain

refining experiments by adding Al5TiB and Al3B master

alloy to Al-7Si alloy and determined that the grain size

decreases until a certain amount of addition; however, as

the amount of addition increases, the grain size does not

change. Hu et al.30 investigated the change in grain size by

adding AlTi, AlB and AlTiB to the Al-8.15Si-2.4Cu alloy

and observed similar results to Wang.27 As the amount of

Si increases in Al–Si alloys, TiAl3 particles surfaces are

covered with titanium silicon, which prevents heteroge-

neous nucleation of a-Al dendrites. Li et al.43 suggested

that the Ti–Si covalent bond, which may occur in TiAl3
2DC, can disrupt the lattice, thereby reducing chemical

interaction with a-Al and preventing epitaxial nucleation.

However, it is reported in the literature that an increasing

amount of Al–Ti-B grain refiner contributes to grain

refining by overcoming the poisonous effect of silicon,

depending on the ratio of Si and Mg in the alloy.44 Birol45

indicated that Si poisoning is a function of the solidification

range. Riestra et al.4 and Bolzoni et al.5 have worked with

hypoeutectic Al–Si alloys. They observed that grain size

increased due to increasing solidification time in the same

compositions. In the light of all these data, especially when

we examine the green-colored region in Figure 7, which

contains the average grain size distribution, it can be said

that the grain refining process is not accurate enough to be

explained by a single parameter. Thus, grain formation and

growth are a dynamic process depending on many

parameters. In other words, if one parameter decreases the

grain size, the change in another parameter may cause an

adverse effect, causing the refining effect to be lost, vice

versa.

The grain sizes obtained from the experimental studies

were defined as the input to the system, as shown in Fig-

ure 4. After the network architecture was established, the

network was trained to complete the learning process

Figure 6. Grain structure micrographs of (a) without grain refiner, (b) 30 min after %0.10 Ti addition
at 740 �C, (c) 45 min. after %0.05 Ti addition at 720 �C and (d) 20 min. after %0.20 Ti addition at
680 �C.
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(Figure 8). The learning process aims to bring training and

test errors to as close to 0 as possible at the end of the

training cycles. The closer the value is to 0, the better the

network is trained. In this study, at the end of 241 itera-

tions, training error was decreased to 3,06e-8 and test error

to 1,41.

The mathematical model obtained as a result of the training

of the neural network is presented as follows

y1 ¼ tanh
0:912694 þ ðNCT � 0:87977Þ
þðNAL � 0:177889Þ þ ðNHT � 3:35946Þ

� �

Eqn: 6

y2 ¼ tanh
�12; 5671 þ ðNCT � 11; 4191Þ

þðNAL � 9; 31175Þ þ ðNHT � 3; 5692Þ

� �

Eqn: 7

y3 ¼ tanh
1:97756 þ ðNCT � �8:2731ð ÞÞ
þðNAL � 12:9977Þ þ ðNHT � �2:45239ð ÞÞ

� �

Eqn: 8

y4 ¼ tanh
�18:1659 þ ðNCT � �6:56964ð ÞÞ
þðNAL � 4:06615Þ þ ðNHT � �22:0254ð ÞÞ

� �

Eqn: 9

y5 ¼ tanh
�2:94493 þ ðNCT � �0:130788ð ÞÞ
þðNAL � 16:5083Þ þ ðNHT � 0:709597Þ

� �

Eqn: 10

y6 ¼ tanh
2:41605 þ ðNCT � �1:28989ð ÞÞ
þðNAL � 0:0320112Þ þ ðNHT � 2:09307Þ

� �

Eqn: 11

NGS ¼ tanh

1:15005 þ y1 � 2:57891ð Þ þ y2 � �0:268882ð Þð Þ
þ y3 � 1:19364ð Þ þ y4 � 1:40368ð Þ
þ y5 � �1:51884ð Þð Þ þ y6 � �2:202ð Þð Þ

2
4

3
5

Eqn: 12

GS ¼ 0:5 � NGS þ 1ð Þ: 1641:43 � 362:88ð Þ þ 362:88½ �
Eqn: 13

Table 3. Experimental Parameters and Grain Size
Results

Sample
num.

Casting
temperature
(�C)

Ti addition
level (wt%)

Holding
time (min)

Grain
size
(lm)

1 680.00 0.25 25.00 362.88

2 680.00 0.30 30.00 393.03

3 680.00 0.20 20.00 603.70

4 680.00 0.15 15.00 1484.92

5 680.00 0.10 30.00 999.13

6 680.00 0.20 45.00 1086.9

7 680.00 0.30 60.00 1044.9

8 690.00 0.25 30.00 435.45

9 690.00 0.20 15.00 1050.9

10 700.00 0.30 20.00 407.38

11 700.00 0.25 15.00 507.26

12 700.00 0.15 25.00 724.05

13 700.00 0.05 30.00 753.93

14 700.00 0.10 15.00 806.23

15 700.00 0.20 60.00 779

16 700.00 0.30 45.00 1010.6

17 710.00 0.25 20.00 365

18 710.00 0.30 15.00 1232.98

19 710.00 0.15 30.00 1378.6

20 720.00 0.05 45.00 1397.53

21 720.00 0.20 15.00 952.33

22 720.00 0.30 30.00 828.5

23 740.00 0.10 45.00 1160.63

24 740.00 0.20 30.00 1427.43

25 740.00 0.30 15.00 884.63

Figure 7. The effects of the parameters on the grain size.

Figure 8. Network training process.
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where the values starting with y are the output functions of

each neuron in the hidden layer. NCT, NAL, NHT and NGS

values are normalized of casting temperature, addition

level, holding time and grain size data, respectively. In

order to test the model, after we normalize the CT and HT

values measured in test sample 17 according to Eqn. 3 and

the RA value according to Eqn. 4, we place them in the

corresponding places in Eqns. 6–11; then, y1, y2, y3, y4, y5

and y6 values are calculated as - 0.99, - 1, - 0.98, 0.99,

- 1 and 0.42, respectively. When we place these values in

Eqn. 12, the normalized grain size value is found to be

- 0.31. Then, the grain size value estimated by using

Eqn. 13 was denormalized and 806.23 value was found.

ANN model estimation values obtained from all input data

and comparison with experimental results are given in

Table 4.

Then, 5 more experiments were carried out and the accu-

racy of the ANN model created was tested. Process

parameters used in the verification experiment, grain sizes

and ANN model estimation results are given in Table 5.

It is seen that in Table 4, the mean absolute percent error

(MAPE) values were compared with experimental results,

min deviation was 0%, max deviation was 9.87%, and

mean deviation was 1.04%. When the results of the veri-

fication experiment in Table 5 are examined, the minimum

deviation between the experimental results and the esti-

mation results was found to be 0% where the max deviation

was 3.81% and the average deviation was 0.76%. Another

result obtained in ANN studies is the sensitivity analysis.

Sensitivity analysis is a method used to evaluate the effects

of independent variables on dependent variables.30,31,46,47

The sensitivity analysis results obtained in this study are

given in Figure 9. According to these results, the effect of

Ti addition level on the grain size was found as 40.5%, the

effect of holding time on grain size was 36.6%, and the

effect of casting temperature on grain size was 22.8%.

Results indicated that the most effective parameter on the

Table 4. Comparison of Experimental and Model Results

Sample
num.

Experimental grain
size (lm)

Predicted grain
size (lm)

MAPE
(%)

1 362.88 363.2657 0.1063

2 393.03 375.2398 4.5252

3 603.70 603.6985 0.0002

4 1484.92 1454.043 2.0794

5 999.13 999.1274 0.0006

6 1086.90 1189.109 9.4037

7 1044.90 1044.901 0.0001

8 435.45 435.4501 0.0000

9 1050.90 1050.896 0.0004

10 407.38 407.3674 0.0019

11 507.26 507.2727 0.0020

12 724.05 724.0457 0.0006

13 753.93 753.9295 0.0005

14 806.23 806.2337 0.0000

15 779.00 778.996 0.0005

16 1010.60 1010.607 0.0007

17 365.00 364.879 0.0331

18 1232.98 1232.979 0.0003

19 1378.60 1242.523 9.8706

20 1397.53 1397.537 0.0003

21 952.33 952.357 0.0025

22 828.50 828.5044 0.0005

23 1160.63 1160.627 0.0006

24 1427.43 1427.432 0.0001

25 884.63 884.6183 0.0017

Min error 0.0000

Max. error 9.8706

Mean error 1.0412

Table 5. Experimental Validations and Model Results

Sample
num.

Casting temperature
(�C)

Ti addition level
(wt%)

Holding time
(min)

Experimental grain size
(lm)

Predicted grain size
(lm)

MAPE
(%)

26 680.00 0.05 15.00 1301.97 1301.975 0.0006

27 690.00 0.15 20.00 819.22 819.2617 0.0051

28 700.00 0.20 30.00 1159.85 1159.849 0.0001

29 710.00 0.20 25.00 802.90 772.3373 3.8065

30 720.00 0.10 60.00 1349.07 1349.074 0.0005

Min Error 0.0001

Max. Error 3.8065

Mean Error 0.7626
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grain size is the addition of Ti content, and the least

effective parameter is the casting temperature. This situa-

tion is also compatible with the literature.

Besides, another parameter controlled in ANN studies is

also regression curves. It is concluded that the relationship

between output and inputs is significant as the value of R2

calculated in the curve approaches 1 and that there is a

random relationship when it approaches 0. As illustrated in

Figure 10, the R2 value obtained in this study was calcu-

lated as 0.992.

Conclusions

In this study, the effects of parameters such as casting

temperature, grain refiner addition level and holding time

on grain size and modeling with the ANN technique in

AlSi10Mg aluminum alloys were investigated. The results

obtained are as follows:

The best results were obtained at 680 �C casting

temperature, 0.25 wt % Ti addition, 25-min hold-

ing time. Furthermore, after 25 min, grain size

increase was observed. This is due to the sedimen-

tation of TiB2 particles in the liquid over time,

called the fading effect.

Experimental parameters used in grain refining give

linear results in some instances, but in some cases

seem to be meaningless. This case reveals that the

grain refining process is a dynamic process that is

dependent on multiple parameters that can vary at

the same time.

As a result of the sensitivity analysis, it was

determined that the amount of grain refiner is the

most effective parameter in grain refining pro-

cesses. However, it was determined that the

parameter that has the least effect on grain refining

is the casting temperature.

As a result of ANN, an average difference of 0.99%

was found between experimental measurements

and model estimation. The R2 value was calculated

as 99.2%. This rate is quite good. This shows that

the ANN approach can be used effectively in

solving complex problems in which the effect of

multiple parameters on the result will be examined.

Both the amount of grain refiner, addition temper-

ature and holding time are critical for foundry

operations. At this point, the use of ANN in today’s

competitive industry is undoubtedly the fact that it

will save time and economy for the enterprise.
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