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Abstract
The demand for lithium-ion batteries has dramatically increased in the last decade. However, the battery life offered by 
suppliers does not the level that can adequately meet the needs of end users. The development of new generation materials 
is so crucial accordingly. The nano-sized silicon with high theoretical capacity as the anode active material is one of the 
most promising sources, however, there are some problems (volume expansion) need to be solved in the use of silicon. In 
this study, a new generation polymer binder containing conjugated anthracene units, which gives conductivity and ethylene 
glycol lateral groups as another segment of the polymer backbone, which allows volumetric expansion with its flexibility has 
been developed. After preparing an electrode with silicon and developed conductive polymer binder (9:1) without adding 
any conductive additive, 800 mAh/g specific capacity is acquired after 400th cycle. It is thought that the obtained results will 
create an important infrastructure for the new generation conductive and flexible polymer binders for LIBs.
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Introduction

Lithium-ion batteries (LIBs) have widespread using areas in 
electric vehicles, stationary applications, mobile devices like 
cell phones, notebooks, tablets, etc., owing to their consider-
able energy density. Graphite carbons are commonly used 
as the anode active material in commercial LIBs thanks to 
their acceptable cyclic performance and low costs. How-
ever, electrochemical performances of conventional graphite 
anodes are hard to meet the requirements of high energy 
batteries. Silicon anodes are one of the promising candidates 
for next-generation batteries, due to its low operating voltage 
(~0.37 V vs Li/Li+), high theoretical capacity (4200 mAh/g 
at Li22Si5), environmental benign and abundant resources. 
Unfortunately, the utilization of silicon for negative elec-
trode active material causes considerable changes in volume 
(>300%). During the lithiation/delithiation process, which 
is highly destructive for cycle stabilization, silicon anodes 
demonstrate rapid capacity fade. The mechanical stress 
caused by this repeated volume change pulverizes the anode 
compound and separates the LIBs components from each 
other as well as constantly increase the fractures that forming 
uncontrollable growth of solid electrolyte interphase (SEI) 
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film, lead to in low Coulombic efficiency. This results in 
poor electrical contact between silicon particles and dread-
ful electrode degradation during the cycle [1–3]. Especially 
when the active material loading on electrodes is high these 
negative impacts become more apparent All these downsides 
could lead displeased cycling performance that hinders the 
practical application of silicon anodes [4, 5].

A silicon-based anode material is generally composed of 
a polymeric binder, silicon and carbon particles as active and 
conductive materials, respectively. Binders are used to con-
nect the electrode components and many studies have been 
explored for enhancing the poor performance of the Si-based 
anode materials due to their abovementioned drawbacks 
[6–9]. Moreover, various alternatives such as carbon-coated 
and nano-sized silicon, porous composites, thin films, etc., 
have been put forward to get over these problems [10–13].

Unlike the graphite anodes composed of a layered 
structure to hold the lithium ions amongst the layers, 
silicon anodes alloy with lithium ions to form different 
phases of lithium silicates (LixSi) [14]. To overcome the 

abovementioned drawbacks of the volume changes in Si, 
various approaches have been developed [15, 16]. In recent 
years, the productivity of Si-Li electrode for developing of 
the polymer binding feature lots of endeavors have been 
conducted, supplying a flexible nature which enables sili-
con particles to spread along with the polymers in the sili-
con buffer medium and preserve the structure morphology. 
Majority of the commercial lithium-ion batteries (LIBs) are 
obtained from wet mixing of electrode active and conductive 
materials, polymer binder [17]. In the structure of the elec-
trode, three factors diminish the volumetric and gravimetric 
energy concentration. After prolonged cycles, the connection 
between the conductive and electrode active materials will 
be broken due to the large volume changes during lithiation 
and the lack of binding strength of the conductive materials. 
Since delocalization of π-electrons and reduced or oxidized 
states, conjugated polymers (CP) have been one of the prom-
ising candidates for the conductive polymers [18–24]. Lat-
est investigations on the features of organic CPs present an 
encouraging effect to tackle numerous issues of CPs thanks 

Fig. 1   Synthesis of PAnth-co-PEG via free radical polymerization (a), 1H-NMR spectrum of PAnth-co-PEG (b), GPC traces of PAnth-co-PEG 
(c), SEM images of PAnth-co-PEG in different magnifications (d)
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to electronics, optics and biological technics [25–28]. Recent 
studies have concentrated on the significance of conductive 
and flexible polymeric binding agents to reduce the defects 
of silicon anodes. Moreover, self-healable polymeric binders 
have also been studied on by researchers over the last five 
years [20, 29–31]. The usage of proper binding agents like 
polyaniline (PANI), polyacrylic acid (PAA), etc., or block 
copolymers and supplementation of extra conductive car-
bon (which has an impact on energy density) silicon-based 
composite electrodes have been widely developed [32–40]. 
Biomass-derived polymers have been investigated to be as 
binders for LIBs in addition to their environmental applica-
tions [41–44]. The development of the conductive and flex-
ible polymer binder has been previously reported by our 
group which is related to conductive fluorene-based main 
chain polymer [27]. Liu et al. indicated that polypyrene as 
a conjugated system and a triethylene group as a building 
block were used as a side group to make a conductive and 
flexible block copolymer [45]. However, pyrene is highly 
expensive and the low-chain part of ethylene glycol has a 
drawback for cycle life as well.

The drawbacks of the above-stated investigations can 
be resolved with longer chain poly(ethylene glycol) (PEG) 
as another segment of the main chain polymer. Here, the 
repeating ethylene oxide units in the side chains of PEG 
will considerably increase the polarity of the polymers, 
and the absorption of the electrolyte improves accordingly. 
Besides, the other advantage of the copolymer is that the 
binding strength and durability are improved to decrease 
stress-induced cracks. Briefly, the structural texture of the 
PAnth-co-PEG has great conjugation and conductivity char-
acteristics and provides Si-based anode stability designed 
to append high levels of electronic conductivity, electrolyte 
absorption, and mechanical flexibility.

Results and discussion

According to our previous studies, it seemed appropriate 
to combine conjugated polymer structures with PEG units. 
Generally, conjugated polymers with benzene groups are 
obtained by free radical polymerization. 1H-NMR spectral 

Fig. 2   Cycling data and coulombic efficiency of silicon electrode at C/3 (a), SEM images of electrodes at different magnification before cycling 
after 400th cycle (b), Voltage profile of Si electrode for 1st, 100th and 400th cycle (c), Cycling data of Si electrodes at different C-rates (d)
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analysis of the construct proved the presence of both PEG 
repeating and benzene units. Picoammeter/Voltage Source 
and two ultra-pure platinum electrodes were used for the 
conductivity tests. The maximum conductivity of the PAnth-
co-PEG was calculated as 1.33x10-4 S cm-1.

The synthesis protocol of PAnth-co-PEG has been given 
in Fig. 1a. The structure of the copolymer was confirmed by 
1H NMR analysis as characteristic protons of both segments 
clearly were detected (Fig. 1b). The signal of aromatic pro-
tons at 7.3-7.9 ppm and the peak corresponding to etheric 
protons appearing at 3.66 ppm evidences the expected 
structure. Figure 1c shows the GPC trace of the PAnth-co-
PEG. The GPC chromatogram of the copolymer displayed 
a unimodal distribution, showing no side reactions occurred 
during the reaction and proves the success of the coupling 
process. SEM images of PAnth-co-PEG which can be seen 
in Fig. 1d clearly display the PEG units as different size fiber 
in the polymer backbone.

Si nanoparticles pulverize during the lithiation-delithiation  
process due to the huge (300%) volume expansion of silicon. 
Si anode showed a specific capacity of 2485 mAh/g in the 
first cycle at C/3. After 400 cycles at the C/3 rate, the spe-
cific capacity decreased to 800 mAh/g, which equals 32.2% 
retention of the electrode capacity (Fig. 2a). The irreversible 
capacity loss of the electrode can be ascribed to pulverization 
of the active material and formation of SEI layers 40,41. SEM 
images of the Si anode electrode before/after the 400th cycle 
is shown in Fig. 2b. It can be seen in SEM images that Si 
particles are about lower than 50 nm before cycling, however, 
the particles expanded to 150-200 nm after cycling. The pres-
ence of the polymeric binder should support the formation 
of uniform Silicon/electrode coating on the copper foil, and 
the attained porous electrode may accommodate the volume 
change through the cycling process. With the help of poly 

(anthracene-polyethylene glycol) copolymer, it is clearly seen 
that some Si nanoparticles are prevented from being pulver-
ized after 400 cycles. The loss of some of the Si particles 
causes a shortening of the lithiation-delithiation process and 
a decrease in the specific capacity of the electrode. Figure 2C 
demonstrates the characteristic discharge-charge curves of 
silicon anode at different cycles. The long plateaus beneath 
the 0.3 V through discharging of cell proposes continuous 
alloying reaction among Li and Si to form amorphous LixSiy. 
The voltage plateau of the anode electrode shrank from cycle 
to cycle due to the pulverization of active materials (Fig. 2c). 
The capacitance of the Si anode at different C-rates showed 
in Fig. 2d and the initial cycle activated with C/25. From the 
electrochemical perspective, rate performance is implied to 
mean that a particular amount of specific charge is trans-
ferred while keeping a certain cell voltage limit. Under load, 
any resistance in the cell causes to a subsequent overvoltage, 
which reduces the operational voltage gap and decreases the 
attainable specific capacity 42. Therefore, while the current 
density gradually ascended from C/25 to 10C, the Si anode 
with (PAnth-co-PEG) binder displayed low capacity with 
high C-rates (>1C). The Si anode continued to operate nor-
mally after returning from high C rates to low C rate (C/10). 
The C-rates of the Si anode demonstrated that the synthesized 

Fig. 3   The EIS results of cell at 1.2V with different cycles (a), CV curves of the electrode at a scan rate of 0.03 mV s-1 (b)

Table 1   Rs, Rsf and Rct calculation of the electrode at 1st, 10th, 50th 
and 150th cycle on an equivalent circuit of the cell

Cycle no Rs (Ω cm2) Rsf (Ω cm2) Rct (Ω cm2)

1st 2.46 79 32.2
10th 3.68 70.6 32.98
50th 2.97 67.4 36
150th 3.21 98.56 35.58
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(PAnth-co-PEG) binder was stable at operating voltage with 
different charging rates and maintains good integrity of the 
anode even at high current densities (Fig. 2d).

To get a better understanding of internal structure with 
ascending cycle numbers EIS analyses are carried out after 
first, 10th, 50th and 150th cycles at 1.2 V over a frequency 

Fig. 4   XPS spectra of pristine and cycled Si/PAnth-co-PEG electrodes
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range from 1 mHz to 100 kHz. Nyquist plots of the Si/PAnth-
co-PEG are given in Fig. 3. The shift of impedance at Z0 
axis implies the solvent resistance (Rs). The semicircle at 
high frequency region is ascribed to resistance of the sur-
face including SEI and Si particles (Rsf). The slope in low 
frequency regions is associated to the solid-state diffusion 
of lithium-ion in the active material and charge transfer 
resistance (Rct). The equivalent circuit that fits the EIS plot 
of Si/PAnth-co-PEG electrode and its parameters are listed 
in Table 1. The EIS results indicate that impedance did not 
increase drastically within 50 cycles, demonstrating the for-
mation of stable SEI layer. However, after 150 cycles Rsf and 
Rct value significantly increased due to the deterioration of 
SEI layer, leading the increased electrochemical impedance. 
The cyclic voltammetry curves at a scan speed of 0.3 mV 
s-1 also demonstrate the lithium insertion and desertion pro-
cess. Two pairs of well-defined anodic peaks can be clearly 
observed at 0,36 V and 0,52 V and two cathodic peaks at 
0,196 V and 0.06 V The two anodic peaks are ascribed to the 
disintegration of the lithiated phase Li4.2Si12 and to the com-
plete extraction of lithium from the silicon 40. First anodic 
peak detected in the CV measurements related to the phase 
transition from Phase-3 (Li3.16Si) to Phase-2 (Li7Si3) and the 
second one is corresponded to the phase transition from the 
Phase-2 to the Phase-1 (LiSi) 43. Regarding the cathodic side, 
there is no peak observed at 0.28 V which is related to the 
irreversible reaction of SiO2 reduction 44. The peaks at 0.21 
V and at 0.06 V are commonly attributed to the insertion of 
lithium into the amorphous silicon structure.

Figures 4 shows the spectra corresponding respectively 
to C1s, Si2p, Li1s, O1s, and F1s core peaks at the surface 
of the pristine and cycled Si/PAnth-co-PEG electrodes. The 
presented XPS data has been compared with the results 
obtained by similar studies from the literature [3, 6]. Con-
cerning silicon, the spectrum displays a first Si2p peak 
assigned to bulk silicon (~99.4eV red and black curves) 
before the cycle test and another one assigned to surface 
oxide SiO2 (~103.5 eV, blue) after the cycle.

C1s spectrum shows several components. The narrow 
peak at ~287 eV (blue curve) corresponds to C-O bonds 
associated here with the carbon atoms. The main peak at 285 
eV (red and black curves) is assigned to hydrocarbon sur-
face contamination. O1s spectrum is composed of one major 
component at ~533 eV (red and black curves) associated 
with O environments in the C in the component for the pris-
tine samples. This peak is observed to shift to lower binding 
energy due to the formation of carbonates (blue curves) in 
the SEI for the cycled samples.

The results indicate that no P is present in the pristine 
samples. LiF was detected in both cycled samples which 
resulted from the electrolyte. Particularly, in the cycled 
sample, a small peak at ~51.5eV (red and black curves) 
was observed associated with Li in an oxidized form after 

the cycle. The increase of the peak attributed to Li2O both 
on O1s spectrum at ~533 eV (blue curve) as well as on 
Li1s spectrum at ~51.5 eV which is clearly visible for 
cycled electrodes. The absence of any other significant 
peak can be interpreted as the absence of the presence of 
Li compounds including Li2CO3 and lithium alkyl car-
bonates at the electrode surface. F1s spectra shows two 
F-containing components. LiF at ~684.5 eV (black curve) 
and another one at ~686 eV (black curve).

Conclusion

In a nutshell, PAnth-co-PEG was used as a conductive binder 
for high-capacity silicon anode for Li-ion battery applica-
tion. The structural and electronic properties were investi-
gated by spectroscopic and electrochemical techniques and 
the polymer/Si composite electrode exhibited excellent per-
formance which is 800 mAh/g specific capacity after 400th 
cycle without using any conductive additive. The obtained 
results will be developed to higher capacities and capacity 
retentions. Electrical and binding properties are enhanced 
without any effect to each other. Conductive and flexible 
polymer binders for LIBs will be one of the most promising 
materials as a crucial anode component in near future.
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