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Abstract
In today’s world, agricultural production and operation activities generate a lot of data. As a result, computer-aided

agriculture applications have become a hot topic in the study, with various machine learning (ML) algorithms being used to

classify agricultural data. This paper presents a comparative study consisting of a combination of ML algorithms with

meta-heuristic algorithms for feature selection to improve the classification capability of ML algorithms by finding the

features that significantly impact accuracy. We have used six different meta-heuristic algorithms for feature selection.

Experiments are conducted on four different agricultural datasets with five classification models. To understand the effect

of proposed models, the selected features are fed into the ML algorithms. The results prove that combining ML and meta-

heuristic algorithms achieves higher classification accuracy with fewer features on agricultural datasets.

Keywords Agricultural data � Machine learning (ML) � Classification � Meta-heuristic optimization � Feature selection

1 Introduction

The science and engineering of making intelligent machi-

nes, especially intelligent computer programs, is defined as

Artificial Intelligence (AI) [1]. In recent years, many

studies have been made on the development of computer-

aided agricultural analysis systems using AI algorithms and

studies in this area continue today [2–5]. Computer-aided

agriculture has increased in importance due to the need for

decision support systems for agricultural data, which are

necessary for increasing productivity, reducing costs,

obtaining fast results, minimizing errors, reducing work-

load, food safety and sustainability. But before addressing

any problems in this area, it is necessary to understand and

analyze its basic requirements [6].

Still today, manual methods are being used to classify

agricultural products by their types within themselves.

However, manual classification poses problems in terms of

cost, labour, and waste of time, and is prone to errors [7].

Thus, automated methods are necessary to cope with these

problems. The automatic classification of agricultural

products minimizes errors arising from manual classifica-

tion and saves cost, labour and time.

Machine learning (ML) [8, 9] and deep learning (DL)

[10] are a subfield of AI that can automatically learn linear

and nonlinear relationships in datasets. Agricultural data,

on the other hand, is divergent, complex and non-standard

[11]. For this reason, ML is predicted to be successful in

automatically classifying agricultural data according to

their types.

There are many studies in the literature on the classifi-

cation of agricultural data. A few of them are as follows:

classification of apple fruit varieties [12, 13], corn seed

[14, 15], wheat varieties [16, 17], pepper seeds [18, 19],

sunflower seeds [20], rice seed varieties [21], apricot fruit

[22], papaya fruit [23], citrus fruit [24], tomato [25], olive

fruit [26, 27], orange varieties [28, 29], jujube fruit [30],

pumpkin seed [31], soybean [32], dry bean [33], pistachio

[34, 35], date fruit [36] etc. ML algorithms are extremely

effective tools for classification of many agricultural

products, including extreme learning machine (ELM),

VGG, Inception, Logistic Regression (LR), Multilayer
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perceptron (MLP), Support Vector Machine (SVM),

k-Nearest Neighbours (kNN), Decision Tree (DT), Ran-

dom Forest (RF), extreme Gradient Boosting (XGB) and

other hybrid networks. In the literature, studies for agri-

cultural classification in Table 1 are summarized by giving

parameters such as dataset, algorithm, results and perfor-

mance criteria (accuracy). As a result, meta-heuristic

algorithms based ML techniques have been widely used in

recent years for agricultural classification. It has recently

been demonstrated that the proposed models are useful for

agricultural classification.

Although ML is an area of study in the classification of

many agricultural products, it can fail due to high-dimen-

sional agricultural datasets and the fact that these datasets

contain many irrelevant and unnecessary features. To solve

this problem, the need arises to lighten the burden of ML

algorithms.

Feature selection is a pre-processing step that improves

the performance of ML algorithms by minimizing com-

plexity, irrelevant features, and unnecessary features in

datasets. However, finding the optimal subset of features in

high-dimensional feature datasets is classified as an NP-

hard problem. Since a dataset with N features contains

2N-1 feature subsets, the search space will expand expo-

nentially as the number of features increases. As a result,

meta-heuristic algorithms were used to determine the

subset of features, as the exact algorithms could not pro-

duce the desired result in a reasonable time [41]. Literature

has developed and used various metaheuristic algorithms to

address feature selection. ABC and PSO [37], Cuckoo

Search (CS) [42], Firefly Algorithm (FA) [43], Moth Flame

Optimization (MFO) [44], Multi Verse Optimizer (MVO)

[45], Whale Optimization Algorithm (WOA) [46], Salp

Swarm Algorithm (SSA) [47], Grasshopper Optimization

Algorithm (GOA) [48], Harris Hawks Optimization (HHO)

[49], Equilibrium Optimizer (EO) [50], Marine Predators

Algorithm (MPA) [51], and Red Deer Algorithm (RDA)

[52] are some of them.

This paper uses WOA, SSA, MFO, MVO, GOA, and

MPA algorithms for feature selection. WOA algorithm has

the minimum number of control parameters, effective

adaptation and simple architecture [46]. The SSA algo-

rithm has few parameters and operators and no control

parameters, thus avoiding high sensitivity to unreasonable

settings [53]. MFO employs several search techniques,

such as attraction, repulsion, and diffusion, to explore the

solution space and identify the objective function’s overall

global optima [54]. MVO algorithm relies on both

exploitation and exploration with randomization [55].

GOA has been shown to be superior for determining the

global best nonlinear functions in multi-dimensional space

[56]. MPA has simplicity, easily adjustable setting

Table 1 Comparison with existing techniques used in agricultural datasets

References Dataset Algorithm Results Performance

criteria (Acc)

(%)

[33] 13,611

Dry bean

samples

MLP, SVM, kNN, DT MLP, SVM, kNN, and DT classification models were

compared on seven different dry bean seeds, and SVM

was the best.

93.19

[35] 2148

Pistachio

samples

kNN kNN model was used to classify the pistachio dataset. 94.18

[37] 33,064

Dry bean

samples

SA-ELM, Artificial Bee Colony (ABC)-

ELM, Particle Swarm Optimization

(PSO)-ELM, HHO-ELM

The effectiveness of standard ELM and optimized ELM

models in the classification of dry beans were

examined. With the SSA-ELM method, the best

classification results were achieved.

91.43

[38] 33,064

Dry bean

samples

InceptionV3, VGG16, VGG19,

InceptionV3 ? SVM,

VGG16 ? SVM

VGG19 ? SVM, InceptionV3 ? LR

VGG16 ? LR, VGG19 ? LR

The InceptionV3, VGG16, and VGG19 CNN models and

SVM and LR were applied for both end-to-end

classification and extraction of features. The

InceptionV3 was determined to be the best

classification model.

84.48

[39] 13,611

Dry bean

samples

XGB with ADASYN The seeds were classified using a genetically varied dry

bean dataset and XGBoost, ADASYN and

XGBoost ? ADASYN algorithms.

95.40

[40] 13,611

Dry bean

samples

RF, SVM, and kNN Three ML algorithms were used for classification and

kNN showed better performance.

95
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parameters and flexibility in the implementation [51].

Within the scope of this study, the positive characteristics

of the above algorithms are why we use these algorithms in

the FS problem.

This study aims to perform feature selection with WOA,

SSA, MFO, MVO, GOA, and MPA algorithms with

improved classification success on pumpkin seeds, pista-

chio, dry bean and date fruit datasets. kNN, Classification

and Regression Trees (CART), MLP, Multinomial Logistic

Regression (MLR), Gaussian Naı̈ve Bayes (GNB) ML

algorithms are applied to the datasets created as a result of

feature selection. Based on these experiments, we will be

answering whether an effective attribute selection can be

made with a metaheuristic algorithm, whether a successful

performance can be achieved with the selected attributes,

and the effect of population size and, therefore, fitness

approximation on attribute selection.

The main contributions are as follows:

• To the best of our knowledge, this is the first study that

compares the effect of population size and number of

iterations on feature selection in the classification of

agricultural data.

• Feature selection algorithms, namely WOA, SSA,

MFO, MVO, GOA, and MPA, have been utilized to

eliminate the irrelevant/redundant features to enhance

the performance of the kNN, CART, MLP, MLR, GNB

ML algorithms.

• Experiment results demonstrate that metaheuristic

algorithms are significantly superior to existing algo-

rithms in fitness, F-score and feature reduction.

The structure of the study is as follows; In the second

section, information about the meta-heuristic and ML

algorithms and details of the proposed model are given.

The third section includes datasets, experimental setup and

evaluation metrics, experimental results and interpretation

of these results. The last section concludes the paper.

2 Background

2.1 Meta-heuristic algorithms

2.1.1 Marine predators algorithm (MPA)

The marine predator’s algorithm was developed by Fara-

marzi et al. inspired by the prey-predator social relation-

ship between marine predators and their prey [57]. MPA is

a heuristic optimization algorithm developed based on the

encounter rate of marine predators and their prey [58]. The

MPA initial solution starts with a random distribution in

the search space. On the basis of MPA, the transition

between phases in the structure of the algorithm is provided

according to the speed ratio between the prey and the

predator [59]. Sea predators complete the step dimension in

three phases when hunting their prey [60]. The most

obvious feature in the first phase of the algorithm is the

great velocity. In other phases, unity and weak ratio come

to the fore.

The initial solution is determined by using the MPA

random and uniform distribution sample space. The num-

ber of hunters n, the number of iterations m, and the

optimization parameter size d indicate the initial position

of the prey. Xmax and Xmin are the maximum and mini-

mum values in Eq. (1); the random vector is given in rand

[0,1].

X0 ¼ Xmin þ r and ðXmax � XminÞ ð1Þ

In this section, the prey matrix holding the positions of

the initial population forms the Elite matrix Elit.with the

best fitness function. Each stage is summarized as follows.

In the stage of phase 1, the prey av has to stop the move-

ment of the predator due to its high speed. This process is

carried out for only a third of the entire iteration. The

behaviour of the prey is determined according to the

Brownian motion. Equation 3 updates the matrices used by

the prey. In Eqs. 2 and 3, P = 0.5 is determined as a vector

containing random numbers with a uniform distribution

between R [0,1], while RB determines the random numbers

based on the normal distribution of the Brownian motion.

adimi
���! ¼ RB

�!� ðElitei
���!� ð RB

�!� Preyi
���!ÞÞ ð2Þ

Preyi
���! ¼ Preyi

���!þ ðP:R~� stepi
��!Þ ð3Þ

In phase 2, predator and prey move at the same speed,

comprising two-thirds of the algorithm. Here, the prey and

the predator use different methods of movement. In this

phase, the predator uses the Brownian motion, and the prey

uses the Levy motion. In this step, the RL, a vector con-

taining random numbers based on the normal distribution

of Levy’s, is multiplied by the prey. In this step, the

movements of the first half of the population are updated

according to Eqs. (4 and 5).

adimi
���! ¼ RL

�!� ðElitei
���!� ð RL

�!� Preyi
���!ÞÞ ð4Þ

Preyi
���! ¼ Prey

��!þ ðP:R~� stepi
��!Þ ð5Þ

The other half of the population is updated according to

Eqs. (6 and 7). The Elite matrix is multiplied by RB. Here

CF is an adaptive parameter for controlling the step size for

predator movement.

stepi
��! ¼ RB

�!� ðð RB
�!� Elitei

���!Þ � Preyi
���!Þ ð6Þ

Preyi
���! ¼ Elitei

���!þ ðP:CF � stepi
��!Þ ð7Þ

CF ¼ ½1 � ðIter:=Max:IterÞ�ð2:Iter:=Max:Iter:Þ ð8Þ

Cluster Computing (2024) 27:3341–3362 3343

123



In Phase 3, it is assumed that the prey moves more

slowly than the predator, and the algorithm uses the Levy

motion of the predator for the rest of the iteration. At this

point, the Elite matrix is multiplied by RL. The Prey Matrix

is being updated to Eq. (10).

stepi
��! ¼ RL

�!� ðð RL
�!� Elitei

���!Þ � Preyi
���!ÞÞ ð9Þ

Preyi
���! ¼ Preyi

���!þ ðP:CF � Preyi
���!Þ ð10Þ

In MPA, after each iteration, the Elite matrix is replaced

by the best solutions. In addition, when the maximum

number of iterations is reached, or the stop criterion of the

algorithm is met, the resulting solution is the final solution.

2.1.2 Whale optimization algorithm (WOA)

WOA was proposed by Jalili and Lewis for use in opti-

mization problems inspired by the hunting behaviour of

humpback whales [61]. The foraging behaviour observed

only in humpback whales is bubble-net feeding. Whales

form bubbles along a circular path when circling prey

during hunting.

2.1.2.1 Encircling prey When hunting, humpback whales

can find the location of their prey and surround the prey.

Since the location of the optimal design in the search space

is not known in advance, the WOA considers the best

current candidate solution to be the target prey or close to

the optimum solution. Once the best search agent is iden-

tified, other search agents will try to update their positions

towards the best search agent. The mathematical model of

the prey surrounding the behaviour of humpback whales is

shown in Eqs. (11 and 12). The in Eqs. (11 and 12) rep-

resent the position of the agent, t is the iteration, is the best

solution, while represent the convergence values in

Eqs. (13 and 14). [0,1] shows the random number, while

shows the linearly decreasing vector from 2 to zero along

the iteration.

D~ ¼ C~ X��! tð Þ � Xð
�!

tÞ
�

�

�

�

�

�
ð11Þ

Xð
�!

t þ 1Þ ¼ X��! tð Þ � A~:D~
�

�

�

�

�

�
ð12Þ

A~¼ 2a~:r~� a~ ð13Þ

C~ ¼ 2:r~ ð14Þ

2.1.2.2 Bubble-net attacking method The bubble-net

attacking method of humpback whales involves shrinking,

encircling and spiral updating position towards the prey.

By lowering the value of in Eq. (8), whales exhibit the

behaviour of catching prey by shrinking their search

environment. Since value also depends on it decreases

linearly from 2 to zero. The mathematical model of the

spiral shape formed by humpback whales when catching

their prey is given in Eqs. (15 and 16).

D0!
¼ X��! tð Þ � Xð

�!
tÞ

�

�

�

�

�

�
ð15Þ

Xð
�!

t þ 1Þ ¼ D0!
:ebl: cos 2plð Þ þ X��! tð Þ ð16Þ

In Eqs. (15 and 16) D0 is the distance between the whale

and the best prey, b is the logarithmic spiral constant, and l

is a random number between [- 1,1]. When moving

towards the prey, humpback whales are 50% likely to

choose either the shrinking movement pattern or the spiral

movement pattern. The parameter p in Eq. (17) is a random

number within the range [0,1].

X~ t þ 1ð Þ ¼ X��! tð Þ � A~: D
�!

p \ 0:5

D0!
:ebl: cos 2plð Þ þ X��! tð Þ p� 0:5

(

ð17Þ

2.1.3 Moth flame algorithm (MFA)

The MFO algorithm was developed by Mirjalili (2015),

inspired by the techniques by which moths navigate around

light sources [62]. Using a technique called transverse

orientation, moths can travel effectively and easily over

long straight distances at a fixed angle relative to the moon.

When moths encounter an artificial light, they try to keep a

fixed angle between themselves and the light. At the same

time, since the light is closer than the moon, the moths

follow the path in a spiral way. The algorithm consists of

the following four parts: It determines the objective func-

tion and produces a random population of moths. It gen-

erates a flame sequence, updates the positions of the moths,

and finally adjusts the dimension of the flames and gets the

best solution [63]. The modelling of the MFO is deter-

mined according to the moths and flames. The moths

represent individuals searching in a specific area, while the

flames show the best positions the moths have obtained so

far. The moths update their spiral path by searching around

the flames for a better solution. At first, there are the same

number of moths and flames. However, to improve

exploitation as the process nears its conclusion, the quan-

tity of flames is adaptively reduced [64]. As the number of

generations increases, the flame size is determined

according to Eq. (18). The moth’s location is updated with

Eq. (19).

FS ¼ roundðFmax � GcðFmax � 1ÞÞ=Gmax ð18Þ

Mi ¼ Fj �Mj

�

�

�

�ebtcos 2ptð Þ þ Fj ð19Þ

FS represents the flame size, Fmax represents the

maximum number of flames, Gc and Gmax represent the

current and maximum production number. M represents the
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moth, F represents the flame, b represents the spiral shape,

and t represents the random number ranging from - 1 to 1.

2.1.4 Salp swarm algorithm (SSA)

SSA was carried out by Mirjalili et al. by modelling the

navigation and foraging characteristics of salp swarms

found in the ocean. For the mathematical modelling of salp

chains, the population is divided into leaders and followers.

In the chain, the salp closest to the food source is deter-

mined as the leader, while the others are considered fol-

lowers [65]. The position of the leader is updated using

Eq. (20).

x1
j ¼

Fj þ c1 ubj � lbj
� �

c2 þ lbj
� �

c3 � 0

Fj � c1 ubj � lbj
� �

c2 þ lbj
� �

c3\0

�

ð20Þ

m1
n ¼

f n þ a1 ubn � lbnð Þa2 þ lbnð Þa3 � v
f n � a1 ubn � lbnð Þa2 þ lbnð Þa3\v

�

The a1 is computed as follows in (21):

a1 ¼ 2e�
4i
lð Þ2

ð21Þ

The positions of the followers are updated according to

the position of the leaders with Eq. (22). The food source is

represented by fn, mn shows the position of the leader, ubn

and lbn are the highest and lowest values in the search field.

The parameters c2 and c3 are selected at random within the

uniform distribution interval [0,1].

mk
n ¼

1

2
mk

n þ mk�1
n

� �

ð22Þ

2.1.5 Multi verse optimizer (MVO)

The MVO algorithm was developed by Mirjalili et al. by

modelling the Multi-Verse theory [66]. The mathematical

model is created by including the basic components, white

hole, black hole and wormhole. The white hole serves as

the primary component in the creation of the cosmos in

which we exist. The wormhole serves as a passageway that

links various regions of the universe together, while the

black hole’s strong gravitational pull makes it possible for

it to draw in any light beams. The MVO algorithm uses the

white hole and black hole in the discovery process, while

the wormhole component is applied in the exploitation

process [67]. When using the MVO algorithm, the universe

symbolizes the solutions, and the components of the uni-

verse are taken to be the variables in the solutions. The

universe inflation rate is also known as the MVO value of

the fitness function [68].

The following regulations are taken into consideration

throughout the optimization process:

1. The probability of a white hole or black hole occurring

and the inflation rate have direct and inverse propor-

tional connections, respectively.

2. Higher inflation rates tend to send items through white

holes, whereas lower inflation rates favour drawing

matter through black holes.

3. Wormholes allow for the random movement of objects

from all universes in the direction of the best universe

[69, 70].

Here are mathematical representations of black holes

and white holes while x is an object of the universe, N is

the number of worlds, and X is the population of universes

[71]. The universes are sorted using the fitness values, and

one of them is chosen to be the object sender using a

roulette wheel mechanism.

xij t þ 1ð Þ ¼ xkj tð Þ; if r1\NI xij tð Þ
� �

xij tð Þ; otherwise

�

ð23Þ

The universe chosen by a roulette wheel is indicated by

kth, where jth stands for a parameter of the ith universe.

NI(xij(t)) is the normalized fitness value (i.e. inflation rate)

of the ith universe at iteration t, and r1 is a random number

in the range [0,1].

By updating the objects of the universe xij, which has

the best rate as described by the following equation, the

wormholes are also used to increase the objects of other

universes and the rate of inflation.

xij t þ 1ð Þ ¼ Zij tð Þ; r2\WEP
xij tð Þ; r2 �WEP

�

ð24Þ

Zij ¼
X�
j þ TDRxð ubj � lbj

� �

xr4 þ lbjÞ; r3\0:5

X�
j � TDRxð ubj � lbj

� �

xr4 þ lbjÞ; r3 � 0:5

(

ð25Þ

where Xj represents the object of the best universe, lbj

stands for lower bounds, ubj for upper limits in the jth

parameter (i.e. variable), and r2, r3, and r4 for random

integers in the range [0,1].

TDR is a coefficient that works to define the distance

needed to send an object via a wormhole to the best uni-

verse. It can be defined as:

TDR ¼ 1 � t1=p

T1=p
ð26Þ

where t stands for the current iteration, T is the maximum

number of iterations, and p is initially set to 6 to indicate

how accurate the exploitation phase should be in the

iterations.

The following equation defines WEP, which stands for

the wormhole existence probability, and shows how it

increases linearly across iterations to maintain the

exploitation phase:
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WEP ¼ WEPmin þ tx
WEPmax �WEPmin

T

� �

ð27Þ

where the default values for WEPmin and WEPmax are 0.2

and 1, respectively.

2.1.6 Grasshopper optimization algorithm (GOA)

GOA was developed by Saremi et al. inspired by the nat-

ural behavior of locust swarms [72]. The grasshopper’s

movement is influenced by three variables: social interac-

tion (Soi), wind advection (Adi), and gravitational force

(Gfi). The behaviour of locust swarms was mathematically

modelled using Eq. (28).

Xi ¼ r1Si þ r2Gi þ r3Ai ð28Þ

Xi in Eq. (28) represents the position of i. locusts, r

represents the randomly changing numbers of variables in

[0,1]. Equation (29) describes the grasshoppers’ social

behaviour (attraction-repulsion). N denotes the number of

grasshoppers. s represents the strength of social forces, l is

the attractive length scale, and f is the intensity of attrac-

tion. dij is the absolute distance between ith and the jth

grasshopper and cdij is a vector between two grasshoppers.

Another variable of Xi is Gi. G stands for the gravitational

constant, and eg for the unity vector pointing toward the

earth’s centre. The final variable of Xi is called Ai. In

Eq. (32), u and cew represent constant drift and a unity

vector in the direction of the wind.

Si ¼
X

N

j¼1

s dij
� �

cdij ; j 6¼ i ð29Þ

sr ¼ fe�
r
l � e�r

� �

; dij ¼ xj � xi
�

�

�

�

� �

; cdij ¼ xj � xi
�

�

�

� = dij

	 


ð30Þ

N denotes the number of grasshoppers. s represents the

strength of social forces, l is the attractive length scale, and

f is the intensity of attraction. dij is the absolute distance

between ith and the jth grasshopper and cdij is a vector

between two grasshoppers. Another variable of Xi is Gi

(gravitational force). G stands for the gravitational con-

stant, and eg for the unity vector pointing toward the earth’s

centre.

Gi ¼ �g beg ð31Þ

The final variable of Xi is called Ai.

Ai ¼ ucew ð32Þ

In Eq. (32), u and cew , respectively, represent constant

drift and a unity vector in the direction of the wind.

2.2 Machine learning algorithms

2.2.1 k-nearest neighbours (kNN)

A supervised ML method known as kNN is used for

classification tasks and is an effective and simple-to-im-

plement algorithm. The algorithm is based on the param-

eter called k, which stands for ‘‘nearest neighbours’’.

Finding the closest data point(s) or neighbour(s) from a

training dataset for a query (data point) from the test set

describes how the kNN works. The closest distances from

the query are used to determine the nearest data points. It

uses a majority vote to determine which class appears the

most frequently after determining the k closest data points.

Out of the k nearest data points, the class that showed up

the most is considered the class label of the query.

This classifier is excellent for classifying feature vectors

with high dimensions [73]. The closest neighbour of a

query can be determined using the Euclidean distance if it

is assumed that data points and query correspond to points

in the n-dimensional space. The Euclidean distance

between a data point and a query of dimension n, such as

DP = [dp1, dp2, …, dpn] and Q = [q1, q2, …,qn] is calcu-

lated as:

d DP;Qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

dpi � qið Þ2

s

ð33Þ

2.2.2 Classification and regression trees (CART)

CART stands for Classification and Regression Trees and

was devised by Breiman et al. in 1984 [74]. Both classi-

fication and regression trees are constructed with CART,

which supports continuous attributes, discrete attributes

and a combination of both. The classification tree structure

constructed by CART is based on the binary division of

attributes. Like other classification trees, namely IS3 and

C4.5, CART is also based on Hunt’s algorithm and can be

applied serially [75]. Because CART uses regression

analysis with the use of regression trees, it differs from

other Hunt’s-based algorithms. When choosing the split-

ting attribute, the Gini index is utilized as the attribute

selection measure.

2.2.3 Multi-layer perceptron (MLP)

Structures called Artificial Neural Networks (ANNs) are

modelled on how the brain operates. By learning from data

and generalizing the unseen situations, these networks can

handle linear and nonlinear problems [76]. MLP is one of

the well-liked ANNs. MLP consists of an input layer, one

or more hidden layers, and an output layer. The hidden
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layer uses weights and biases to connect the input and

output layers. Each layer composes of its own neurons. In

the input layer, there are as many neurons as the number of

features in the input layer. Although there is no exact way

to determine the number of neurons in the hidden layer,

various methods are used to determine it. There are as

many neurons as the class label in the output layer. Neu-

rons in each layer are completely interconnected with the

neurons in the layer next. The input layer of MLP is fed

with input data, and hidden layer(s) is used to learn com-

plex relations between input and output. So with the help of

input data and hidden layers, using summation and acti-

vation, a nonlinear function is created to predict the output

data in MLP [77].

2.2.4 Multinomial logistic regression (MLR)

MLR is an extension of linear logistic regression used to

classify data that has more than two unordered classes. By

measuring each independent variable’s distinct contribu-

tion, MLR is a quick and effective technique to examine

the impact of a group of continuous or categorical inde-

pendent variables on the output. So, independent variables

can be used to predict the value of a dependent variable.

While doing this, the MLR predicts a different logistic

regression model for each dependent variable based on the

reference category [78]. In MLR, one of the classes is

accepted as the reference category. If we are to exemplify

the dry bean dataset, there are 7 classes (y) in this dataset,

namely 0-Seker, 1-Red Bean, 2-Bombay, 3-Cali, 4-Der-

mosan, 5-Horoz and 6-Sira. We assume class 0 (Seker) as

the reference category. For ith data point, the probability of

falling into a category is represented with p sð Þ
i ¼

Pr yi ¼ sð Þ; s ¼ 1,2; . . .; 6 with the reference category p 0ð Þ
i .

A multinomial logistic regression model with a logit link

can thus be depicted as follows for a straightforward model

with a single independent variable, xi [79]:

log
p sð Þ
i

p 0ð Þ
i

 !

¼ b sð Þ
0 þ b sð Þ

1 xi ð34Þ

Each of the s categories in this model contains the same

independent variable, and each contrast’s intercept b sð Þ
0 and

slope b sð Þ
1 are typically calculated separately.

2.2.5 Gaussian naı̈ve bayes (GNB)

With the assumption of conditional independence between

every pair of features given the value of the class variable,

GNB is one of the supervised learning algorithms that

apply Bayes’ theorem in the Naive form. A common

assumption when working with continuous data is that the

continuous values corresponding to each class are dis-

tributed according to the Gaussian distribution. GNB is

Naive Bayes’ extended version of a Gaussian probability.

In order to implement the classification, GNB assumes that

the likelihood of the features is Gaussian [80].

Given a data point X, described by its feature vector

(x11, x12, x13, …, x1n), and a target class y, P(X|y) is cal-

culated as:

P Xjyð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
y

q e
� X�lyð Þ2

2pr2
y

	 


ð35Þ

where ly is the mean, and r2
y is the variance of the data

points that their class label is y.

3 Simulation studies

Feature selection outcomes in the selection of the best

subset of features with minimum redundancy and maxi-

mum recognition power [81]. The FS method removes

unwanted features, which results in improved performance,

reduced complexity time, and smooth execution of the

system with selected subsets from the dataset [82]. The FS

method’s main objective is to simplify the dataset to

remove noisy, irrelevant features that affect the system’s

performance, thereby reducing the features’ dimensionality

reduction [83]. Among the many attributes obtained from

the pumpkin seeds, pistachio, dry bean and date fruit

datasets, it is aimed to achieve a high accuracy rate with

fewer attributes. To accomplish this goal, WOA, SSA,

MFO, MVO, GOA and DA optimization algorithms are

used in attribute selection. The best features obtained are

used to carry out a classification process by increasing the

accuracy of kNN, CART, MLP, MLR, and MNB ML

algorithms. The proposed model is given with Fig. 1.

3.1 Datasets

The datasets used in this study are the pumpkin seeds

dataset [33], pistachio dataset [41], dry bean dataset [35]

and date fruit dataset [42]. The pumpkin seeds dataset

consists of 2500 data points with 12 morphological features

and two classes, namely Çerçevelik and Ürgüp Sivrisi. The

pistachio dataset consists of 2148 data points with 12

morphological features, four shape features, 12 colour

features and two classes, namely Kırmızı Pistachio and

Siirt Pistachio. The dry bean dataset consists of 13,611 data

points with 12 morphological features, four shape features

and seven classes, namely Barbunya, Bombay, Çalı, Der-

mason, Horoz, Şeker and Sıra. The date fruit dataset con-

sists of 898 data points with 12 morphological features,

four shape features, 18 colour features and seven classes,
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namely Berhi, Deglet, Dokol, Iraqi, Rotana, Safavi and

Sokay. The detail of the feature set with the descriptions is

listed in Table 2.

3.2 Experimental setup and evaluation metrics

In order to evaluate the effects of the parameters used in

the WOA, SSA, MFO, MVO, GOA, and MPA algorithms,

the number of population is chosen as 10 and 20, and the

number of iterations is chosen with different values as 10,

50 and 100. To implement meta-heuristic algorithms,

MATLAB is used. ML experiments are performed on

Google Colab on a system configuration; GPU Tesla k80

with 12 GB of GDDR5 VRAM, and Intel Xeon Processor

with two 2.20-GHz cores and 13 GB RAM. We use the

Sklearn library for ML algorithms. To perform experi-

ments, model parameters are determined separately for

each algorithm. Only the k value needs to be decided when

using kNN. Specifying this parameter at random is not a

good strategy. The number of nearest neighbours is fixed to

k = 5 for all datasets based on the Elbow approach. For

CART, in order to select the best splitting attribute for each

node, the Gini Index is used as a splitting criterion. The

maximum depth of the tree for CART is set to ‘‘none’’;

therefore, the nodes are expanded until all leaves are

pruned. Splitting the internal node algorithm requires at

least two samples. For each dataset, the input layer of MLP

contains as many input neurons as the number of features.

In the realized architecture, there are 5 hidden layers and 2

neurons in each layer and one output layer. The strength of

the L2 regularization term alpha value is set to 1e-5. For

MLR, liblinear is used for coordinate descent-based opti-

mization. To prevent overfitting L2 penalty is preferred,

and 1.0 is set to the C parameter. For GNB, the smoothing

value is used as 1e-9.

F-score is used in this work to evaluate parameter set-

tings of metaheuristic algorithms on the representative

algorithms and the algorithms’ performance on the datasets

with 10-fold cross-validation. F-score is the harmonic

mean of the Precision and Recall.

For the confusion matrix of Kırmızı Pistachio from the

Pistachio dataset, true positive (TP) represents correctly

classified Kırmızı Pistachio samples. False positive (FP) is

the number of Siirt Pistachio samples which are classified

as Kırmızı Pistachio. False negative (FN) shows the num-

ber of incorrectly classified Kırmızı Pistachio samples, and

True negative (TN) is the number of correctly classified

Siirt Pistachio samples. The formulas of Precision and

Recall and, depending on these two metrics, F-score is

given in terms of TP, FP, FN, and TN are given as follows:

Precision ¼ TP

TPþ FP
ð36Þ

Recall ¼ TP

TPþ FN
ð37Þ

F � score ¼ 2 � Precision� Recall

Precisionþ Recall
ð38Þ

3.3 Experimental results

The features selected according to the minimum (Min),

mean (Mean) and standard deviation (Std) and minimum

fitness value obtained for each of the meta-heuristic algo-

rithms applied to the Pumpkin Seeds dataset are given in

Table 3.

Analyzing Table 3 according to the minimum fitness

value for population size 10 gives the lowest fitness value

for WOA, SSA, MFO, GOA and DA at iteration 50, and

MVO gave the lowest fitness value at iteration 100.

According to best fitness value, attributes were selected

from 25% of attributes (3 out of 12) with WOA and MVO,

41.67% (5 out of 12) with SSA, 50% (12 out of 12) with

MFO and GOA 6) and 58.33% (7 out of 12) with DA.

When the algorithms are examined in terms of standard

deviation, the lowest standard deviation in population size

10 was obtained in WOA, GOA at 10, DA at 100, SSA, and

MFO at 50 and in MVO at 10 iterations. It is seen that these

algorithms are more stable in terms of the specified pop-

ulation size and the number of iterations compared to other

cases. At population size 20, the minimum fitness value

was achieved with WOA and SSA at 50 iterations, while

with MFO, MVO, GOA and DA, it was achieved at 10

iterations. According to the lowest fitness value, attributes

were selected from 41.67% of attributes (5 out of 12) with

Fig. 1 Proposed model
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Table 2 Detailed description of features for datasets

Morphological Features

No. Feature Description

1. Area (A) The number of pixels in the boundaries of the pumpkin seed/bean.A ¼
P

r;c2R 1where r and c are the sizes of region

R

2. Perimeter (P) Pumpkin seed’s/bean’s circumference in pixels

3. Major axis length

(L)

The longest line between the two ends of a pumpkin seed/bean

4. Minor axis length

(l)

The shortest line between the two ends of a pumpkin seed/bean

5. Eccentricity (Ec) The eccentricity of the ellipse with the same moments as the region

6. Equivalent diameter

(Ed)
Diameter of a circle with the same area as the pumpkin seed/bean area: Ed ¼

ffiffiffiffiffiffi

4�A
p

q

7. Solidity (S) Also referred to as convexity. The proportion of pumpkin seed/bean pixels to those in the convex shell: S ¼ A
C

8. Convex area (C) It gave the pixel count of the smallest convex shell in the region formed by the pumpkin seed/bean

9. Extent (Ex) It gave back the proportion of the pumpkin seed/bean area to the pixels in the bounding

box. Ex ¼ A
AB

where AB Area of bounding rectangle

10. Aspect ratio (K) It gave the pumpkin seeds’/beans’ aspect ratio: K ¼ L
l

11. Roundness (R) Without taking the deformation of the edges into account, it measured the ovality of pumpkin seeds/beans: R ¼ 4pA
P2

12. Compactness (Co) It calculated the ratio between the pumpkin seed’s/bean’s surface area and the surface area of a circle with the same

circumference: Co ¼ Ed
L

Shape features

13. Shape factor 1 (SF1) SF1 ¼ L
A

14. Shape factor 2 (SF2) SF2 ¼ l
A

15. Shape factor 3 (SF3) SF3 ¼ A
L
2
�L

2
�p

16. Shape factor 4 (SF4) SF4 ¼ A
L
2
� l

2
�p

Color features [84]

17. MeanRR Mean density value of red pixels values

18. MeanRG Mean density value of green pixels values

19. MeanRB Mean density value of blue pixels values

20. StdDevRR Standard deviation of red pixel values

21. StdDevRG Standard deviation of green pixel values

22. StdDevRB Standard deviation of blue pixel values

23. SkewRR Skewness value of red pixel values

24. SkewRG Skewness value of green pixel values

25. SkewRB Skewness value of blue pixel values

26. KurtosisRR Kurtosis value of red pixel values

27. KurtosisRG Kurtosis value of green pixel values

28. KurtosisRB Kurtosis value of blue pixel values

29. EntropyRR Entropy value of red pixel values

30. EntropyRG Entropy value of green pixel values

31. EntropyRB Entropy value of blue pixel values

32. ALLdaub4RR Wavelet decomposition level of the matrix from red pixel value using two-dimensional wavelet (wavelet order db4)

33. ALLdaub4RG Wavelet decomposition level of the matrix from green pixel value using two-dimensional wavelet (wavelet order

db4)

34. ALLdaub4RB Wavelet decomposition level of the matrix from blue pixel value using two-dimensional wavelet (wavelet order

db4)
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WOA, MVO, GOA and DA, 50% (6 out of 12) with SSA,

and 25% (2 out of 12) with MFO. Considering the smallest

value of the standard deviation for 20 iterations, it can be

said that WOA and MVO are more stable than others in 10

iterations, SSA and DA in 100, and MFO and GOA in 50

iterations. The F-score value obtained by assigning the

selected features to the ML algorithms and the F-score

value obtained from the original feature set are compared

in Table 4.

For the Pumpkin seed dataset, the F-score values from

the original feature set are lower for kNN, and MLP, while

the performances from CART, MLR and GNB are

comparatively higher. As a result of feature selection, an

increase in performance by 17–21% was observed in kNN.

In comparison, the CART algorithm achieved a maximum

increase of 1%, while for some iterations and populations,

there was a 1% decrease. MLP increased the classification

success of 48% by 34–35% through feature selection. The

datasets created by MLR feature selection did not show an

increase but experienced a 1% decrease. GNB, on the other

hand, provided a performance increase between 2 and 9%

but experienced a 3% decrease in datasets obtained with

WOA (50 iterations, population 10) and MVO (100 itera-

tions, population 10).

Table 3 Results of meta-

heuristic algorithms on pumpkin

seeds dataset

Algorithm Population size Iteration min mean std Selected features

WOA 10 10 0.1080 0.1329 0.0108 2, 3, 6, 7, 8, 10, 11, 12

50 0.1040 0.1266 0.0101 2, 3, 9

100 0.1107 0.1248 0.0076 2, 3, 6, 8, 9, 11

20 10 0.1053 0.1304 0.0106 2, 3, 12

50 0.1013 0.1254 0.0115 2, 3, 7, 8, 12

100 0.1027 0.1223 0.0124 2, 3, 4, 7, 10, 11, 12

SSA 10 10 0.1133 0.1303 0.0101 2, 3, 4, 6, 7, 8, 9, 10, 11

50 0.1067 0.1247 0.0085 2, 3, 4, 6, 9

100 0.1080 0.1272 0.0086 2, 3, 4, 6, 7, 8, 9, 10, 12

20 10 0.1040 0.1286 0.0108 2, 3, 4, 6, 11, 12

50 0.1000 0.1272 0.0093 4, 6, 8, 9, 10, 11

100 0.1040 0.1217 0.0078 2, 3, 7, 9, 11

MFO 10 10 0.1080 0.1264 0.0101 2, 3, 4, 7, 9, 11, 12

50 0.1053 0.1221 0.0069 2, 3, 4, 8, 9, 11

100 0.1080 0.1243 0.0080 2, 3, 8, 10

20 10 0.0960 0.1234 0.0089 2, 3, 9

50 0.1000 0.1244 0.0086 7, 8, 10

100 0.1040 0.1223 0.0087 2, 3, 10, 11, 12

MVO 10 10 0.1133 0.1293 0.0104 7, 10, 11

50 0.1067 0.1274 0.0105 3, 4, 7, 8, 11

100 0.0960 0.1292 0.0308 2, 3, 9

20 10 0.1053 0.1236 0.0070 2, 3, 8, 9, 11

50 0.1147 0.1269 0.0071 2, 3, 8, 10, 12

100 0.1080 0.1254 0.0095 2, 3, 8, 10

GOA 10 10 0.1120 0.1326 0.0120 2, 3, 4, 6, 7, 8, 9, 10, 11, 12

50 0.1067 0.1267 0.0098 2, 3, 4, 7, 9, 11

100 0.1147 0.1267 0.0072 2, 3, 6, 12

20 10 0.1067 0.1252 0.0104 2, 3, 9, 10, 11

50 0.1160 0.1266 0.0073 2, 3, 4, 12

100 0.1080 0.1275 0.0086 2, 3, 4, 6, 7, 8, 9, 10, 12

DA 10 10 0.1067 0.1336 0.0289 2, 3, 8, 10, 11

50 0.0947 0.1310 0.0339 2, 3, 4, 7, 8, 9, 12

100 0.0987 0.1270 0.0118 2, 3, 7, 9, 10, 12

20 10 0.1093 0.1270 0.0109 2, 3, 9, 10, 11

50 0.1133 0.1273 0.0097 2, 3, 4, 6, 11, 12

100 0.1120 0.1250 0.0080 2, 3, 8, 11, 12
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F-score values of pumpkin seed dataset for MLR with

population size 10, are given in Fig. 2, for each feature

selection algorithms.

The features selected for each of the meta-heuristic

algorithms applied to the Pistachio dataset are given in

Table 5.

Analyzing Table 5 according to the minimum fitness

value for population size 10 gives the lowest fitness value

for WOA MVO, GOA and DA at iteration 50. In contrast,

MFO gave the lowest fitness value at iteration 100.

According to best fitness value, attributes were selected

from 57.16% of attributes (16 out of 28) with WOA, 50%

(14 out 28) with SSA and GOA, 64.29% (18 out of 28) with

MFO, 46.43% (13 out of 28) with MVO, and 25% (7 out of

28) with DA. Analyzing algorithms with regard to standard

deviation, it was determined that WOA, SSA and MFO for

Table 4 F-score values for the

pumpkin seed dataset
Algorithm Iteration kNN CART MLP MLR GNB

Original 0.66 0.83 0.48 0.88 0.78

Population size

10 20 10 20 10 20 10 20 10 20

WOA 10 0.87 0.87 0.84 0.82 0.83 0.87 0.87 0.87 0.86 0.84

50 0.87 0.83 0.82 0.83 0.87 0.87 0.87 0.87 0.75 0.86

100 0.87 0.87 0.84 0.83 0.82 0.86 0.87 0.87 0.84 0.87

SSA 10 0.87 0.87 0.84 0.83 0.83 0.82 0.87 0.87 0.86 0.87

50 0.87 0.87 0.84 0.83 0.84 0.86 0.87 0.87 0.8 0.86

100 0.87 0.87 0.82 0.83 0.84 0.84 0.87 0.87 0.86 0.87

MFO 10 0.87 0.87 0.83 0.82 0.86 0.87 0.87 0.87 0.87 0.75

50 0.87 0.87 0.83 0.83 0.82 0.85 0.87 0.85 0.86 0.86

100 0.87 0.87 0.83 0.83 0.85 0.83 0.87 0.87 0.82 0.86

MVO 10 0.87 0.87 0.82 0.84 0.86 0.85 0.87 0.87 0.86 0.85

50 0.86 0.87 0.84 0.83 0.87 0.83 0.87 0.87 0.87 0.82

100 0.87 0.87 0.82 0.83 0.87 0.85 0.87 0.87 0.75 0.82

GOA 10 0.87 0.87 0.84 0.84 0.84 0.85 0.87 0.87 0.87 0.85

50 0.87 0.87 0.82 0.83 0.82 0.84 0.87 0.87 0.87 0.86

100 0.87 0.87 0.82 0.82 0.83 0.84 0.87 0.87 0.84 0.86

DA 10 0.87 0.87 0.83 0.84 0.85 0.85 0.87 0.87 0.87 0.85

50 0.87 0.87 0.83 0.83 0.87 0.82 0.87 0.87 0.87 0.87

100 0.86 0.87 0.83 0.84 0.86 0.83 0.87 0.87 0.86 0.86

Fig. 2 F-score values for

pumpkin seed dataset
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population size 10 were more stable at 50 iterations, while

MVO, GOA and DA were more stable at 100 iterations. At

population size 20, the minimum fitness value was

achieved with WOA, SSA, and MFO at 100 iterations,

while GOA and DA achieved that at 10 iterations.

According to best fitness value, attributes were selected

from 57.16% of attributes (25 out of 28) with WOA, 50%

(15 out 28) with SSA and MVO, 64.29% (13 out of 28)

with MFO, 46.43% (19 out of 28) with GOA, and 25% (5

out of 28) with DA. Considering the smallest value of the

standard deviation for 20 iterations, it can be said that

WOA and MVO are most stable than others 10 iterations,

SSA and DA at 100, and MFO and GOA at 50 iterations.

The F-score value obtained by assigning the selected fea-

tures to the ML algorithms and the F-score value obtained

from the original feature set are given in Table 6.

Table 5 Results of meta-heuristic algorithms on the pistachio dataset

Algorithm Population

size

Iteration Min Mean Std Selected features

WOA 10 10 0.1134 0.1440 0.0249 4, 6, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27

50 0.1025 0.1344 0.0150 4, 6, 9, 10, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 27, 28

100 0.1040 0.1304 0.0183 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28

20 10 0.1040 0.1308 0.0155 3, 4, 5, 6, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28

50 0.1009 0.1220 0.0111 3, 4, 5, 6, 9, 10, 11, 14, 15, 17, 20, 21, 22, 23, 24, 25, 26

100 0.0901 0.1214 0.0114 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28

SSA 10 10 0.1118 0.1364 0.0223 3, 4, 5, 6, 9, 12, 17, 18, 20, 22, 24, 25, 26, 28

50 0.1009 0.1185 0.0078 4, 6, 7, 9, 12, 13, 16, 17, 19, 20, 22, 23, 24, 27, 28

100 0.0901 0.1172 0.0100 3, 4, 6, 12, 15, 16, 17, 20, 21, 22, 23, 24, 26, 28

20 10 0.1009 0.1275 0.0122 4, 6, 9, 10, 13, 14, 17, 19, 20, 22, 24, 25

50 0.0994 0.1160 0.0094 4, 5, 6, 7, 11, 12, 13, 14, 16, 17, 20, 23, 25, 26

100 0.0947 0.1140 0.0108 4, 5, 6, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24

MFO 10 10 0.1087 0.1264 0.0108 3, 4, 6, 7, 11, 12, 17, 18, 19, 21, 22, 24, 25, 26, 28

50 0.0947 0.1170 0.0107 3, 4, 5, 6, 7, 9, 13, 14, 17, 18, 20, 21, 22, 24, 25, 26

100 0.0916 0.1169 0.0110 4, 5, 6, 7, 11, 12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26

20 10 0.0978 0.1219 0.0132 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 20, 21, 22, 23, 28

50 0.0978 0.1134 0.0082 3, 6, 12, 17, 18, 21, 22, 23, 26, 27, 28

100 0.0901 0.1106 0.0104 3, 4, 5, 9, 12, 15, 16, 17, 18, 21, 22, 25, 27

MVO 10 10 0.1056 0.1368 0.0305 4, 5, 7, 10, 13, 14, 17, 18, 19, 20, 22, 23, 24, 26, 28

50 0.0932 0.1258 0.0237 3, 4, 6, 7, 12, 13, 16, 18, 20, 21, 25, 26, 28

100 0.0963 0.1248 0.0124 3, 4, 6, 9, 12, 13, 17, 18, 20, 21, 23, 25, 26, 27

20 10 0.1040 0.1214 0.0092 4, 6, 7, 9, 10, 14, 15, 17, 19, 20, 21, 23, 25

50 0.0994 0.1186 0.0106 3, 6, 7, 11, 12, 13, 17, 18, 19, 21, 22, 25, 26, 27, 28

100 0.0994 0.1179 0.0089 3, 4, 6, 10, 11, 13, 14, 15, 16, 18, 20, 21, 22, 27, 28

GOA 10 10 0.1087 0.1408 0.0292 3, 6, 9, 10, 11, 12, 13, 15, 18, 19, 22, 23, 24, 28

50 0.1009 0.1331 0.0181 3, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28

100 0.1009 0.1266 0.0114 4, 6, 10, 11, 12, 14, 17, 18, 19, 20, 22, 23, 24, 26

20 10 0.0901 0.1281 0.0146 3, 4, 5, 6, 7, 9, 10, 12, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 28

50 0.1056 0.1246 0.0106 3, 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22

100 0.1118 0.1256 0.0083 3, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 23, 25, 28

DA 10 10 0.1080 0.1298 0.0280 2, 3, 6, 7, 9, 10, 12

50 0.1040 0.1309 0.0318 2, 3, 4, 6, 7, 11, 12

100 0.1080 0.1289 0.0113 2, 3, 4, 6, 8, 11

20 10 0.1053 0.1266 0.0096 2, 3, 8, 11, 12

50 0.1093 0.1264 0.0080 2, 3, 6, 9, 11, 12

100 0.1120 0.1248 0.0071 2, 3, 9, 10, 11
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For the Pistachio dataset, the F-score values from the

original feature set were low for MLP, while the remaining

algorithms were found to be relatively successful. Feature

selection has shown that kNN’s performance increases

from 6 to 12%, but in some cases, the DA algorithm has

also experienced a decrease of up to 18%. The CART

algorithm did not provide an increase but a decrease of

1–7%. MLP showed a performance increase between 26

and 30% in feature sets from other algorithms except DA.

Classification with features from the DA algorithm resulted

in a performance increase between 4 and 23% and a

decrease of 5% (Population size 20, iteration 100) at the

same time. MLR achieved the highest classification per-

formance of 90% for the Pistachio dataset with features

from the SSA algorithm (population size 10, iteration 100).

However, some algorithms have experienced decreases of

up to 3%. GNB, on the other hand, provided a performance

increase between 2 and 7% but experienced a 7% decrease

in datasets obtained with DA (10 iterations, population 20).

F-score values of pistachio dataset for MLR with pop-

ulation size 10, are given in Fig. 3, for each feature

selection algorithms.

The features selected for each of the meta-heuristic

algorithms applied to the Dry bean dataset are given in

Table 7.

Analysing Table 7 according to the minimum fitness

value for population size 10 gives the lowest fitness value

for WOA, SSA, MFO and MVO at iteration 50, GOA at

iteration 100, while DA gave the lowest fitness value at

iteration 10. According to best fitness value, attributes were

selected from 81.25% of attributes (13 out of 16) with

WOA, 56.25% (9 out 16) with SSA, 68.75% (11 out of 16)

with MFO, 62.5% (10 out of 16) with MVO, and 37.5% (6

out of 16) with GOA and DA. Analyzing algorithms with

regards to standard deviation, it was determined that WOA,

MFO, MVO and DA for population size 10 were more

stable at 50 iterations, while SSA at iteration 100, and

GOA at iteration 10 were more stable compared to others.

At population size 20, the minimum fitness value was

achieved with WOA and MVO at 50 iterations, while it

was achieved with SSA and GOA at 100 iterations and

with MFO and DA at 10 iterations. According to low fit-

ness value, attributes were selected from 62.5% of attri-

butes (10 out of 16) with WOA, 43.75% (7 out of 16) with

SSA, 50% (8 out of 16) with MFO and MVO, 75% (12 out

of 16) with GOA, and 31.25% (5 out of 16) with DA.

Considering the smallest value of the standard deviation for

20 iterations, it can be said that WOA, MVO and DA are

most stable than others at 50 iterations and SSA and GOA

at 100 iterations. The F-score value obtained by assigning

the selected features to the ML algorithms and the F-score

value obtained from the original feature set are given in

Table 8.

For the Dry bean dataset, the highest F-score value taken

from the original feature set was 0.72, achieved through

GNB. Classification on the original dataset through kNN

with an F-score value of 17% increased success to 77, 78%

Table 6 F-score values for the

pistachio dataset
Algorithm Iteration kNN CART MLP MLR GNB

Original 0.76 0.85 0.56 0.87 0.82

10 20 10 20 10 20 10 20 10 20

WOA 10 0.87 0.88 0.83 0.84 0.84 0.85 0.87 0.88 0.85 0.88

50 0.86 0.87 0.84 0.84 0.85 0.84 0.89 0.89 0.88 0.89

100 0.87 0.87 0.84 0.84 0.85 0.86 0.88 0.88 0.88 0.88

SSA 10 0.87 0.87 0.84 0.83 0.83 0.83 0.88 0.85 0.88 0.88

50 0.87 0.86 0.84 0.83 0.84 0.84 0.89 0.89 0.86 0.88

100 0.87 0.87 0.85 0.83 0.85 0.83 0.9 0.85 0.89 0.88

MFO 10 0.87 0.87 0.84 0.84 0.84 0.85 0.86 0.89 0.85 0.88

50 0.88 0.86 0.83 0.82 0.83 0.84 0.87 0.87 0.86 0.83

100 0.87 0.86 0.83 0.84 0.83 0.82 0.87 0.84 0.88 0.86

MVO 10 0.88 0.86 0.84 0.83 0.86 0.83 0.89 0.87 0.86 0.88

50 0.87 0.86 0.83 0.82 0.83 0.84 0.89 0.86 0.87 0.82

100 0.87 0.88 0.84 0.84 0.83 0.84 0.86 0.88 0.87 0.88

GOA 10 0.86 0.87 0.82 0.84 0.86 0.86 0.89 0.88 0.87 0.88

50 0.88 0.86 0.85 0.84 0.85 0.83 0.89 0.86 0.87 0.87

100 0.86 0.86 0.83 0.84 0.82 0.84 0.88 0.88 0.88 0.86

DA 10 0.82 0.75 0.81 0.8 0.78 0.6 0.86 0.84 0.86 0.75

50 0.84 0.82 0.81 0.8 0.76 0.79 0.87 0.87 0.86 0.85

100 0.75 0.58 0.8 0.78 0.61 0.51 0.86 0.85 0.81 0.81
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after feature selection. However, the DA algorithm showed

no change in performance for population size 20 and 100

iterations, but in some cases, it was able to increase the

success to 22% and in others to 25%. The highest perfor-

mance achieved with DA was calculated as 78% (popula-

tion size 10, iteration 50). While the CART algorithm

experienced a decline in some feature sets, it was able to

increase the performance obtained from the original dataset

from 68 to 78%. As with other algorithms, an increase in

performance from 32 to 88% was observed with MLP,

despite a bumpy performance in success with the feature

sets from DA. 88% was recorded as the highest perfor-

mance value obtained for the Dry bean dataset. MLR

experienced the highest increase and decrease in perfor-

mance in the DA algorithm. MLR’s 68% performance in

the original dataset went up to 81%. It increased its F-score

value in GNB from 72 to 88%.

F-score values of dry bean dataset for MLR with pop-

ulation size 10, are given in Fig. 4, for each feature

selection algorithms.

The features selected for each of the meta-heuristic

algorithms applied to the Date fruit dataset are given in

Table 9.

Analysing Table 9 according to the minimum fitness

value for population size 10 gives the lowest fitness value

for WOA and GOA at 100, for SSA, MFO, MVO and DA

at 50 iterations. According to best fitness value, attributes

were selected from 50% of attributes (17 out of 34) with

WOA and MFO, 41.18% (14 out 34) with SSA, 40.06%

(16 out of 34) with MVO, 26.47% (9 out of 34) with GOA,

and 17.65% (6 out of 34) with DA. Analyzing algorithms

with regards to standard deviation for population size 10, it

was determined that WOA and GOA at iteration 100, SSA,

MFO and MVO at iteration 10, while DA at iteration 10

was more stable compared to others. At population size 20,

the minimum fitness value was achieved with WOA and

MFO at 100 iterations, while it was achieved with SSA and

GOA at 50 iterations and with MVO and DA at 10 itera-

tions. According to the lowest fitness value, attributes were

selected from 59.82% of attributes (20 out of 34) with

WOA and MFO, 41.18% (14 out of 34) with SSA and

GOA, 44.12% (15 out of 34) with MVO and 14.71% (5 out

of 34) with DA. Considering the smallest value of the

standard deviation for 20 iterations, it can be said that

WOA, SSA and DA are most stable than others at 50

iterations, MFO at 10, and GOA at 100 iterations. The

F-score value obtained by assigning the selected features to

the ML algorithms and the F-score value obtained from the

original feature set is given in Table 10.

For the Dry bean dataset, the highest F-score value taken

from the original feature set was 0.84, achieved through

CART. Classification on the original dataset through kNN

with an F-score value of 68% increased success up to 85%

after feature selection. However, for the DA algorithm, the

performance has decreased to 51%. The CART algorithm

was able to classify with a maximum increase of 2% in

performance. Also, this algorithm did not increase the

classification performance in the features obtained with DA

but decreased it. MLP was able to increase classification

success from 43% to a maximum of 72%. MLR was able to

increase performance from 55 to 81%. The highest per-

formance value achieved for the Date fruit dataset with

GNB was 88%. GNB was able to increase the F-score

value from 58 to 88%.

Fig. 3 F-score values for

pistachio dataset
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F-score values of date fruit dataset for MLR with pop-

ulation size 10, are given in Fig. 5, for each feature

selection algorithms.

4 Conclusions

This paper applies meta-heuristic algorithms to improve

the ability of ML algorithms by eliminating non-informa-

tive features for classification problems. To see the

applicability of feature selection algorithms to different

problems with different datasets, different algorithms with

different populations and iteration sizes are used. The

metaheuristic algorithms WOA, SSA, MFO, MVO, GOA

and DA are compared on four different datasets: pumpkin

seeds dataset, pistachio dataset, dry bean dataset and date

fruit dataset. Both the original datasets and the dimension-

reduced datasets are classified with five classification

algorithms (kNN, CART, MLP, MLR and GNB), and the

effect of feature reduction on classification successes is

Table 7 Results of meta-heuristic algorithms on dry bean dataset

Algorithm Population size Iteration Min Mean Std Selected features

WOA 10 10 0.0882 0.1048 0.0215 2, 3, 4, 8, 10, 11, 16

50 0.0838 0.0935 0.0062 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16

100 0.0855 0.0979 0.0117 2, 3, 4, 5, 6, 8, 10, 12, 15, 16

20 10 0.0877 0.1042 0.0216 2, 3, 4, 5, 8, 9, 11, 12, 16

50 0.0855 0.0991 0.0115 2, 3, 4, 6, 8, 9, 11, 14, 15, 16

100 0.0877 0.0968 0.0096 2, 3, 4, 5, 6, 8, 9, 10, 11, 14

SSA 10 10 0.0877 0.0996 0.0140 2, 3, 4, 8, 9, 10, 11, 15, 16

50 0.0852 0.0922 0.0036 2, 3, 4, 6, 8, 9, 11, 12, 16

100 0.0879 0.0939 0.0028 2, 3, 4, 6, 8, 10, 15

20 10 0.0852 0.0954 0.0059 2, 3, 5, 8, 11, 12, 13, 14, 15

50 0.0850 0.0925 0.0035 2, 3, 4, 5, 8, 9, 10, 11, 14

100 0.0838 0.0940 0.0041 2, 3, 4, 8, 11, 13, 16

MFO 10 10 0.0855 0.0954 0.0062 2, 3, 8, 9, 10, 12, 14, 16

50 0.0835 0.0932 0.0037 2, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16

100 0.0869 0.0948 0.0067 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15

20 10 0.0857 0.0928 0.0043 2, 3, 4, 5, 6, 8, 9, 16

50 0.0882 0.0933 0.0029 2, 3, 4, 6, 8, 9, 15, 16

100 0.0887 0.0940 0.0030 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14

MVO 10 10 0.0872 0.0962 0.0072 2, 3, 5, 6, 8, 9, 11, 15, 16

50 0.0850 0.0944 0.0045 2, 3, 4, 5, 6, 8, 10, 13, 15, 16

100 0.0869 0.0967 0.0072 2, 3, 4, 8, 14, 15, 16

20 10 0.0877 0.0940 0.0037 2, 3, 8, 9, 10, 11, 12, 13, 14

50 0.0860 0.0944 0.0041 2, 3, 4, 5, 8, 10, 13, 15

100 0.0882 0.0938 0.0032 2, 3, 4, 6, 8, 11, 12

GOA 10 10 0.0872 0.1043 0.0161 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14

50 0.0869 0.1013 0.0175 2, 3, 4, 6, 8, 12

100 0.0860 0.1041 0.0164 2, 3, 4, 5, 8, 12

20 10 0.0882 0.0991 0.0115 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16

50 0.0877 0.0962 0.0068 2, 3, 4, 9, 10, 15

100 0.0872 0.0972 0.0095 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16

DA 10 10 0.1107 0.1328 0.0298 4, 6, 7, 8, 9, 10

50 0.1160 0.1299 0.0083 2, 3, 10

100 0.1120 0.1303 0.0106 2, 3, 4, 7, 8, 9, 10

20 10 0.1013 0.1241 0.0099 3, 4, 6, 8, 9

50 0.1027 0.1236 0.0097 2, 3, 4, 6, 7, 8, 9, 10, 12

100 0.1120 0.1238 0.0081 8, 10, 11, 12
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examined by using F-score. The experimental results show

that the realized feature selection algorithms have great

advantages for improving the classification accuracy of ML

algorithms with reduced size dimensions. In other words,

the realized feature selection algorithms have successfully

selected the most important features that best represent the

dataset.

Table 8 F-score values for the

dry bean dataset
Algorithm Iteration kNN CART MLP MLR GNB

Original 0.17 0.68 0.32 0.68 0.72

10 20 10 20 10 20 10 20 10 20

WOA 10 0.77 0.77 0.68 0.68 0.82 0.84 0.7 0.7 0.82 0.88

50 0.78 0.77 0.78 0.68 0.86 0.84 0.7 0.7 0.87 0.88

100 0.77 0.77 0.69 0.68 0.85 0.84 0.7 0.7 0.86 0.87

SSA 10 0.77 0.78 0.69 0.64 0.8 0.81 0.7 0.71 0.87 0.87

50 0.77 0.77 0.67 0.67 0.85 0.85 0.7 0.7 0.88 0.87

100 0.77 0.77 0.63 0.68 0.81 0.82 0.7 0.7 0.85 0.82

MFO 10 0.78 0.77 0.68 0.68 0.85 0.84 0.71 0.7 0.84 0.88

50 0.77 0.77 0.69 0.66 0.84 0.86 0.7 0.7 0.88 0.86

100 0.77 0.77 0.66 0.66 0.84 0.8 0.7 0.7 0.87 0.87

MVO 10 0.78 0.78 0.68 0.64 0.83 0.81 0.71 0.71 0.87 0.87

50 0.77 0.77 0.68 0.64 0.82 0.88 0.7 0.7 0.86 0.86

100 0.77 0.77 0.65 0.64 0.81 0.8 0.7 0.7 0.85 0.87

GOA 10 0.77 0.77 0.66 0.66 0.84 0.87 0.7 0.7 0.87 0.86

50 0.77 0.78 0.58 0.77 0.78 0.82 0.7 0.69 0.84 0.86

100 0.77 0.77 0.6 0.68 0.9 0.87 0.7 0.7 0.85 0.87

DA 10 0.22 0.65 0.57 0.55 0.32 0.8 0.77 0.61 0.73 0.85

50 0.78 0.25 0.76 0.63 0.79 0.4 0.55 0.79 0.66 0.74

100 0.25 0.17 0.62 0.61 0.49 0.76 0.81 0.77 0.74 0.88

Fig. 4 F-score values for dry

bean dataset
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Table 9 Results of meta-heuristic algorithms on date fruit dataset

Algorithm Population

size

Iteration Min Mean Std Selected features

WOA 10 10 0.1375 0.2603 0.0695 2, 6, 11, 17, 18, 21, 28

50 0.1449 0.2214 0.0736 3, 4, 14, 15, 17, 21, 22, 25, 34

100 0.1190 0.1917 0.0593 4, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 21, 24, 25, 26, 32, 34

20 10 0.1078 0.2216 0.0759 2, 4, 5, 6, 10, 11, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33

50 0.1264 0.1980 0.0533 4, 12, 14, 15, 16, 17, 19, 21, 23, 28

100 0.1078 0.1864 0.0581 4, 11, 14, 15, 17, 19, 20, 21, 24, 25, 27, 28, 32, 34

SSA 10 10 0.1264 0.2803 0.0740 4, 9, 10, 11, 16, 17, 20, 21, 23, 24, 25, 27, 28, 32, 33

50 0.1152 0.2017 0.0817 4, 5, 7, 10, 11, 16, 17, 18, 19, 22, 23, 24, 28, 34,

100 0.1190 0.2024 0.0918 2, 3, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 26, 27, 28, 32

20 10 0.1375 0.2291 0.0836 4, 6, 9, 11, 14, 16, 17, 19, 20, 23, 25, 27, 32, 34

50 0.1227 0.1519 0.0153 2, 4, 5, 6, 11, 14, 17, 19, 22, 23, 25, 26, 27, 28

100 0.1227 0.1496 0.0376 4, 5, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 25, 27, 28, 32, 33, 34

MFO 10 10 0.1450 0.2617 0.0807 4, 6, 7, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 32, 33, 34

50 0.1040 0.2381 0.0939 4, 5, 7, 9, 10, 11, 15, 16, 17, 18, 19, 21, 23, 24, 28, 32, 33

100 0.1227 0.2042 0.0881 4, 5, 6, 7, 12, 13, 14, 18, 20, 21, 24, 26, 27, 28, 32, 33, 34

20 10 0.1338 0.2078 0.0764 3, 6, 7, 12, 13, 14, 17, 18, 19, 20, 24, 27, 28, 33

50 0.1078 0.2001 0.0931 3, 4, 5, 11, 12, 13, 14, 17, 18, 19, 20, 23, 24, 26, 28, 32, 33

100 0.1004 0.1817 0.0848 4, 5, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 28, 32, 33, 34

MVO 10 10 0.1413 0.2874 0.0773 3, 5, 6, 11, 15, 16, 17, 18, 19, 20, 21, 28, 33, 34

50 0.1263 0.2864 0.0859 3, 6, 7, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 33

100 0.1338 0.2766 0.0810 2, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 22, 25, 27, 28, 32, 33, 34

20 10 0.1115 0.2265 0.0878 4, 6, 7, 10, 11, 12, 14, 17, 19, 21, 22, 23, 25, 28, 33

50 0.1338 0.2637 0.0881 4, 5, 9, 11, 12, 14, 17, 21, 25, 26, 32

100 0.1152 0.2259 0.0948 6, 9, 10, 12, 15, 17, 18, 19, 21, 22, 23, 24, 32, 33

GOA 10 10 0.1413 0.2669 0.0746 2, 4, 7, 9, 13, 14, 16, 17, 18, 20, 22, 25, 26, 27, 33

50 0.1338 0.2402 0.0755 3, 4, 15, 17, 19, 26, 27, 28, 32, 33, 34

100 0.1338 0.1967 0.0587 3, 6, 9, 17, 19, 24, 25, 27, 32

20 10 0.1375 0.2266 0.0703 4, 7, 10, 14, 16, 20, 23, 25, 32, 33

50 0.1264 0.1776 0.0517 2, 3, 6, 7, 10, 11, 13, 15, 17, 18, 21, 25, 26, 32

100 0.1301 0.1869 0.0495 2, 4, 9, 10, 12, 14, 15, 17, 18, 19, 23, 25, 26, 27, 33, 34

DA 10 10 0.1080 0.1326 0.0321 7, 8, 10, 12

50 0.1053 0.1259 0.0106 2, 3, 4, 6, 7, 11

100 0.1053 0.1344 0.0355 2, 3, 6, 7, 8

20 10 0.1027 0.1253 0.0107 2, 3, 4, 7, 8

50 0.1080 0.1264 0.0091 2, 3, 7, 8, 10, 11, 12

100 0.1107 0.1256 0.0111 3, 4, 8, 11
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Table 10 F-score values for

date fruit dataset
Algorithm Iteration kNN CART MLP MLR GNB

Original 0.68 0.84 0.43 0.55 0.58

10 20 10 20 10 20 10 20 10 20

WOA 10 0.84 0.84 0.83 0.84 0.53 0.58 0.77 0.8 0.86 0.88

50 0.83 0.85 0.84 0.83 0.68 0.68 0.78 0.77 0.88 0.86

100 0.83 0.85 0.85 0.85 0.72 0.69 0.78 0.8 0.88 0.86

SSA 10 0.83 0.83 0.84 0.84 0.67 0.68 0.78 0.8 0.86 0.87

50 0.84 0.82 0.84 0.83 0.71 0.59 0.79 0.78 0.84 0.88

100 0.52 0.85 0.83 0.84 0.19 0.65 0.76 0.81 0.82 0.84

MFO 10 0.84 0.84 0.85 0.84 0.72 0.68 0.8 0.79 0.86 0.84

50 0.85 0.83 0.84 0.81 0.62 0.64 0.8 0.78 0.83 0.84

100 0.82 0.85 0.84 0.83 0.7 0.71 0.8 0.81 0.87 0.79

MVO 10 0.84 0.84 0.82 0.84 0.65 0.71 0.78 0.81 0.85 0.89

50 0.84 0.83 0.81 0.83 0.73 0.65 0.8 0.71 0.83 0.88

100 0.82 0.84 0.83 0.81 0.48 0.62 0.76 0.79 0.87 0.8

GOA 10 0.82 0.81 0.84 0.84 0.63 0.6 0.76 0.73 0.87 0.86

50 0.83 0.83 0.83 0.86 0.71 0.55 0.76 0.8 0.85 0.88

100 0.82 0.83 0.83 0.84 0.65 0.59 0.75 0.75 0.83 0.85

DA 10 0.51 0.52 0.7 0.71 0.17 0.22 0.22 0.69 0.53 0.68

50 0.73 0.52 0.71 0.73 0.36 0.18 0.6 0.65 0.75 0.53

100 0.51 0.52 0.67 0.69 0.18 0.22 0.66 0.7 0.63 0.69

Fig. 5 F-score values for date

fruit dataset
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