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Abstract
Surface defect detection in industrial processes is crucial for ensuring product quality and reducingmaterial waste. Automated
defect identification using deep learning techniques has become a vital aspect of the automated surface defect detection field.
However, achieving accurate and automatic defect segmentation remains a significant challenge, especially for fine precision
segmentation required in high-quality products. The traditional approaches for defect segmentation have several limitations,
such as difficulty in preservingfine details and contextual information, leading to poor segmentation performance. To overcome
these limitations, newsegmentation algorithms that canpreservefineprecision and contextual informationneed to be evaluated.
Therefore, there is a need for novel segmentation algorithms that can accurately identify and segment defects in industrial
processes, incorporating multi-scale contextual information, preserving fine details, and handling complex and subtle defects.
In this paper, we propose a novel approach for steel defect segmentation called multi-scale cross-patch attention with dilated
convolution (MCPAD-UNet). This approach employs a subsampled module that achieves the same dimensionality reduction
asmax-pooling while preserving the fine precision of the features. Additionally,MCPAD-UNet utilizes a cross-patch attention
module with dilated convolution, simultaneously collecting channel–spatial data and integrating relevant multi-scale features
to reduce the semantic gap and enhance detailed information. To prevent overfitting, we apply dropout after each hybrid dilated
convolution block. Extensive testing on the public Severstal: Steel Defect Detection dataset demonstrates the effectiveness
of our approach, achieving Dice scores of 95.3%, outperforming the competition’s overall score by 5.2%. Our proposed
method has the potential to significantly improve defect detection in industrial processes, thereby reducing material waste
and improving product quality.
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1 Introduction

Machine vision algorithms for surface defect analysis, espe-
cially for non-metallic surfaces, have garnered significant
attention in recent years. Two main types of approaches
have been studied: conventional computer vision and pat-
tern recognition methods employing superficial learning or
unique features [1]. Conventional image analysis techniques
for detecting and segmenting abnormalities rely on basic
local abnormality characteristics, categorized as structural,
threshold, spectral, ormodel-based techniques [2]. Structural
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techniques include edge identification, skeletonization, tem-
plate matching, and morphological procedures [3–5].

Several CNN-based techniques for surface defect detec-
tion have been developed, each with its own advantages
and disadvantages [6]. In the literature, various approaches,
such as multi-scale pyramidal pooling networks, adaptable
multi-layered deep feature extraction frameworks, and auto-
mated quality visual assessment procedures using conven-
tional CNNs with sliding windows, have been proposed [7].
While many deep convolutional neural network (DCNN)-
based detection systems and methods for structural damage
detection have been introduced, some of these techniques
suffer from using bounding boxes, leading to imprecise
defect boundary localization. To address these limitations,
researchers have proposed deep learning-based approaches
that employ pre-trained networks to classify defect image
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patches and subsequently use segmentation methods for
pixel-wise defect predictions [8, 9].

One commonly used segmentation method is the U-Net, a
novel U-shaped architecture with a symmetric topology [10].
However, the U-Net faces challenges in handling the seman-
tic gap between coarse-grained features, making it difficult to
separate tiny defects. Additionally, the U-Net’s subsampled
operation reduces segmentation accuracy by losing infor-
mation [11]. To overcome these issues, modifications to the
U-Net architecture have been proposed, including the Chan-
nel Attention SE block, SA-UNet, attention gates, Channel-
UNet, and multiscale feature fusion. Recently, UNet++,
composed of UNets of various depths and utilizing dense
connections, has shown improved segmentation performance
[12]. Nevertheless, it still struggles with retrieving coarse-
grained characteristics while considering the semantic gap,
leading to difficulties in separating small defects. Addressing
these challenges, researchers have introduced various U-Net
modifications [13], such as the Channel Attention SE block,
SA-UNet, bottleneck feature-driven U-Net, attention gate,
Channel-UNet, multiscale feature fusion, Res2Net module,
MS-UNet, andResDUNet [14]. To tackle the issue of contex-
tual fusion data scarcity, the CPAD-Net: Contextual Parallel
Attention and Dilated Network was proposed for liver tumor
segmentation, demonstrating accurate segmentation with
highprecision [15]. Similarly, theCPAM:Cross-PatchAtten-
tion Module employs a multi-scale attention mechanism and
cross-patch attention mechanism for detecting tile defects
with object detection algorithms [16], showing potential for
segmenting metal defects using hybrid mechanisms.

In this research, we propose a new technique, MCPAD-
UNet, for accurately segmenting steel defects, incorporating
multi-scale contextual cross-patch attentionwith dilated con-
volution.

We evaluated our method on the Severstal: Steel Defect
Detection dataset, part of a Kaggle competition, achieving
Dice scores of 95.3%, outperforming the competition’s over-
all score by 5.2%. Our proposed technique demonstrates
computational efficiency and robustness, making it suitable
for real-time and accurate detection of steel defects in indus-
trial applications.Moreover, our approach can be extended to
various industrial settings that require precise and automatic
defect segmentation, not limited to steel defects.

2 Materials andmethods

In this section, we explain a novel multi-scale contextual
cross-patch attention with dilated convolution (MCPAD-
UNET) approach.Weprovide an overviewof several relevant
studies in Supplementary Table 1, summarizing the general
literature and key findings briefly. Various key factors need
to be taken into consideration.

The studies have demonstrated that deep learning-based
algorithms, such as CNNs, Mask RCNN, and UNET, can
accurately detect surface defects in metallic parts. The
model’s performance and accuracy can be enhanced by uti-
lizing methods such as transfer learning, GAN-based data
augmentation, attentionmechanisms, ensemble learning, and
feature fusion.

Frequently utilized in image segmentation, the UNet
architecture employs a contracting path to capture context
and a symmetric expanding path to achieve precise local-
ization. CPAD-Net utilizes dilated convolutions to broaden
the network’s receptive area [15] and collect contextual data
at various sizes. In contrast, for complex texture tile block
defect identification, CPAM improves the characteristics per-
tinent to defects by collecting contextual information through
its spatial and channel attention techniques [16]. The incor-
poration of these modules into the UNet architecture can
improve the model’s ability to detect complex texture defects
in images and capture long-range correlations. It is crucial
to note that the success of our hybrid strategy for detecting
metallic surface defects depends on the precise image seg-
mentation objective we decide to utilize. The computational
cost of integrating these extra modules into the UNet design
must also be considered.

The integration of CPAM and CPAD-Net with the UNet
model has the potential to enhance image segmentation tasks
by capturingmore contextual information anddetecting com-
plex texture defects. Ablation experiments are conducted
to determine the optimal architecture for a specific image
segmentation task, such as metallic surface defect detec-
tion (using the Severstal: Metallic Surface Defect Detection
Dataset [27]).

2.1 Surface defect dataset

The Severstal Metallic Surface Defect Detection dataset is a
computer vision dataset containing images of metallic sur-
faces with various types of defects [27]. Severstal, one of
the top mining firms for steel and related products, created
the dataset to enhance quality control procedures and lower
production costs.

The dataset comprises nearly 5000 high-quality images
of metallic surfaces, each with a resolution of 1600 × 256
pixels. It is divided into two sections: a training set with 4000
images and a test set with 1000 images. Each image in the
dataset is labeled at the pixel level to indicate imperfections
such as cracks, scratches, and other surface abnormalities.

The Severstal Metallic Surface Defect Detection dataset
has become the foundation for several research articles and
machine learning contests aimed at creating more precise
and effectivemodels for surface defect detection in industrial
settings. Supplementary Figure 1 demonstrates examples of
images from the dataset used in these studies.
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2.2 MCPAD-UNet

Convolutional neural networks (CNNs) of the U-Net variety
are frequently employed for image segmentation tasks. U-
Net was initially created to segment medical images, but it
has since found applications in various domains, including
industrial image segmentation [23–25].

According to the literature, “CPAM: Cross-Patch Atten-
tion Module for Complex Texture Tile Block Defect Detec-
tion” provides an attention technique to improve the detection
of complex texture tile block defects [16]. The authors
describe the Cross-Patch Attention Module (CPAM), which
combines channel attentionwith spatial attention. To develop
a novel MCPAD-UNet model for multiclass surface defect
detection, the authors integrate CPAM [16] and CPAD-Net
[15] modules and make some optimizations.

A novel deep-learning architecture for segmenting metal-
lic defects is proposed by MCPAD-Net. The suggested
architecture comprises a contextual parallel attention mod-
ule and a dilated convolutional network. The study evaluates
MCPAD-UNet’s performance and compares it to cutting-
edge techniques using a public Severstal Metallic Surface
Segmentation dataset.

The MCPAD-UNet architecture is visually demonstrated
in Fig. 1.

The U-Net utilizes 2 × 2 max pooling for subsampled
data with a stride of 2. However, this approach may hinder
the localization of tiny surface defects due to reduced image
quality and loss of small-volume defect information caused
by max pooling. In contrast, our study adopts a practical sub-
sampled module [15], as illustrated in Supplementary Fig. 3,
which effectively reduces the feature map size by half with-
out losing information. This reduction is achieved by setting
both the convolution kernel size and stride to 2× 2. To accel-
erate training and convergence, Batch Normalization (BN) is
applied after convolution. Additionally, the ReLU function
is employed to introduce non-linearity and prevent vanishing
gradients, as it is commonly known to enhance the transfor-
mation of networks.

2.3 Hyperparameter optimization

Deep learning model training must include hyperparameter
adjustment, and a dataset’s performance may be assessed
using a variety of methods. In this work, we evaluated the
performance of the dataset using AdamW, Random Sampler,
Focal Loss, Noam Scheduler, and Fine Tuning [28, 29].

In binary classification tasks, the binary cross-entropy
(BCE) loss function is frequently employed, which is deter-
mined by taking the negative logarithm of the projected
probability of the positive class [30].

To address this issue, the Focal Loss function was sug-
gested [31].

The BCE + Focal loss function combines the BCE and
Focal loss functions, using the former to calculate the loss
for low-level features and the latter for high-level features.

Mathematically, the BCE loss + Focal loss can be stated
as follows: Let p be the expected probability of the positive
class, and let y represent the ground truth label, which can
take the values 0 or 1 (i.e., class 1). The loss due to binary
cross-entropy (BCE) is provided by:

BCE(y, p) � −y ∗ log(p) − (1 − y) ∗ log(1 − p) (1)

The Focal loss, which de-weights the loss allocated to
samples with proper classification, was created to solve the
problem of class imbalance. The Focal Loss is stated as fol-
lows:

(2)

FL(y, p) � −α ∗ (1 − p)∧γ ∗ y ∗ log(p) − (1 − α)

∗ p∧γ ∗ (1 − y) ∗ log(1 − p)

Here, the focusing parameter enhances the contribution
of high-level characteristics while down-weighting the con-
tribution of low-level features. The balancing parameter
governs the trade-off between positive and negative samples.

As a result, the total BCE loss + Focal loss may be
expressed as:

BCE + FL(y, p) � λ ∗ BCE(y, p) + (1 − λ) ∗ FL(y, p)
(3)

Here, λ is a hyperparameter that regulates the compromise
between BCE and FL. The hyperparameter optimization pro-
cess can be utilized to determine the optimal value of λ.

2.4 Performancemetrics

The effectiveness of semantic segmentation models like
UNET is often evaluated using the F1 score and the Intersec-
tion overUnion (IoU)metric [25]. TheF1 score calculates the
harmonicmean of accuracy and recall using the projected and
ground-truth segmentation masks [26]. To elaborate, recall
evaluates the proportion of real positive pixels to the total
number of projected positive pixels, while precision evalu-
ates the proportion of real positive pixels to the total number
of real positive pixels. A higher F1 score indicates better
segmentation performance.

The IoU, also known as the Jaccard index [27], measures
the overlap between the expected and actual segmentation
masks.

For binary classification models like the UNET used for
picture segmentation, the F1 and IoU scores are popular
statistics, and they are determined by taking the harmonic
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Fig. 1 A novel MCPAD-UNET architecture

mean of recall and precision.

F1 score � 2 ∗ (
precision ∗ recall

)
/
(
precision + recall

)
,

IOU � intersection/union

In the context of image segmentation, recall represents the
percentage of correctly predicted positive instances among
all positive cases.

2.5 Pre-processing and data augmentation

Augmentations are techniques used to increase the size and
diversity of a machine learning model’s training dataset. By
applying various modifications to the input data, augmenta-
tions create additional training instances from the existing
data. This process aids in enhancing the model’s general-
ization to new examples by exposing it to a wider range of
input data during training. It is essential to select appropriate
augmentations based on the likelihood of their occurrence.
Augmentations such as horizontal flip, vertical flip, rotation,
translation, and scaling may occur depending on the camera
angle, while GaussNoise, ElasticTransform, and Random-
BrightnessContrastmight be present due to camera situations
and environmental conditions. In this study, augmentation
techniques were applied accordingly [32]. In surface defect
detection tasks, data with such variations are commonly

encountered [33], making augmentations highly valuable, as
depicted in Supplementary Fig. 4.

3 Results and discussion

Severstal is a dataset released as part of a Kaggle competition
in 2019, consisting of images of steel sheets. The objective of
the competition was to develop artificial intelligence models
capable of identifying defects in steel sheets. The dataset
provides labeled images,with annotations specifying the type
and location of any defects present. Firstly, exploratory data
analysis was conducted and is presented in Supplementary
Fig. 1 and Fig. 1.

Prior to feeding the dataset into deep learning models,
pre-processing is performed to eliminate noise. The dataset,
compiled from various sources, may contain unwanted dis-
tortions, making the analysis impractical. Additionally, the
data comprise properties with varying scales. Rescaling the
characteristics is beneficial for deep learning algorithms, as
it aids in a faster learning process. Consequently, to ensure
uniform sizes and resolutions across all images, the images
must be appropriately rescaled. For image classification,
rescaling the input images to an appropriate size is crucial
[7], as images that are too small might lead to overlapping,
while excessively large images prolong the training process.
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OpenCV (Open Source Computer Vision) is used for the pre-
processing stage.

For multi-class analysis of surface defect images,
MCPAD-UNet is employed. To utilize the BCE + Focal loss
function with MCPAD-UNet, the final layer of the network
needs to be modified to output probabilities for each class,
followed by the application of the loss function to these prob-
abilities.

To compute the overall loss for the entire image, you can
simply average the BCE + Focal loss values for all pixels in
the image. Backpropagate the error and update the weights.
Once you have calculated the overall loss for the image, you
can backpropagate the error through the network and update
the weights.

MCPAD-UNet architecture: Input Image → MCPAD-
UNet → Softmax Activation → Sigmoid Activation →
Probability Maps → BCE + Focal Loss → Average Loss
→ Backpropagation → Update Weights.

In Supplementary Fig. 3 and the architecture diagram, the
MCPAD-UNet architecture processes the input image, pro-
ducing a collection of probability maps for each class.

The Severstal dataset, comprising labeled images of steel
sheets annotated with the type and location of defects, was
used in this study. The exploratory data analysis of the dataset
is presented in Supplementary Figs. 5 and 6.

Several possible outcomes can be derived from the Sev-
erstal dataset:

• A large number of samples belong to class 3, resulting in a
highly imbalanced dataset where almost 73% of all defects
are from class 3.

• Class 4 defects account for 11.3% of all defects, but they
cover nearly 17% of the total defect area. This suggests
that class 4 defects often have larger sizes.

• Classes 1 and 2 exhibit relatively smaller defects, with
12.6% and 3.48% of all defects falling into classes 1 and
2, respectively. However, they only account for 2.39% and
0.51% of the total number of pixels in the defect mask,
respectively.

• Deep learning models encounter challenges in identifying
class 1 and class 2 data due to their small sizes.

• The box plot further confirms the previous observation
that class 4 defects are generally larger in size compared
to class 3, as well as class 1 and 2.

• Defect class 3 showsmany outliers. Despite class 4 defects
being generally larger in size, the outlier values in class 3
can be much larger than those in class 4.

Class 1 is often tiny in size, composed of several compo-
nents, and has the largest percentage of segments with more
than five segments, as well as the smallest total defect area.
The mask size and threshold correlation are shown in Sup-
plementary Fig. 7.

The possibility of many fault classes was explored using a
method known as FP (Frequent Pattern) growth to determine
the kinds of defects that frequently occur together:

• The frequency chart above shows that a picture with a
single defect of class 3, 1, or 4 is the most common case.

• Classes 3 and 4 appear more frequently together than class
2 alone. This observation is intriguing, especially consider-
ing that classes 3 and 1make up themost common samples
in the dataset.

• To increase the number of examples for class 2, more aug-
mentation is needed.

The performance of model training was enhanced using
these augmentation strategies.

3.1 Ablation study for surface defect detection
in steel sheets usingMCPAD-UNet

In this ablation study, we aim to analyze the impact of differ-
ent components and modules in our proposed deep learning
model, MCPAD-UNet, for surface defect detection in steel
sheets. We will gradually enable or disable specific compo-
nents and measure the performance on the Severstal: Steel
Defect Detection dataset. The components we will focus on
are as follows:

1. Hybrid Dilation Convolution (HDC):

• The HDC block is responsible for enhancing the
encoding stage of the MCPAD-UNet by using dilated
convolutions at different scales for feature extraction.

• We will compare the performance of the model with
and without the HDC block to evaluate its effective-
ness.

2. Double Dilated Convolution (DDC):

• The DDC block is used in the decoding stage of
the MCPAD-UNet to increase the receptive field and
extract multi-scale features.

• We will analyze the impact of DDC on the segmen-
tation performance by enabling or disabling it in the
network.

3. Channel and Spatial Attention (CPAM):

• The CPAM module is integrated into the MCPAD-
UNet to calibrate the fused feature maps at skip
connections, focusing on dominant channel and spatial
information.

• We will evaluate the contribution of CPAM by com-
paring the results with and without this attention
mechanism.

4. Dropout Regularization:
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• Dropout layers are added after each DDC block to pre-
vent overfitting during training.

• We will assess the effect of dropout by varying the
dropout rate and observing its impact on the overall
segmentation performance.

The ablation study will provide valuable insights into the
contributions of each component andmodule in theMCPAD-
UNet architecture for surface defect detection in steel sheets.
It will help us understand which components are crucial for
achieving superior segmentation performance and robust-
ness. The results will guide us in selecting the most effective
configuration of the MCPAD-UNet and shed light on poten-
tial improvements for future research in industrial defect
detection applications.

3.2 Training results comparison

The proposed deep learning network in this study is cre-
ated using the PyTorch framework and trained on an Intel
I7-12700k CPU and an Nvidia GeForce RTX 3070 graphics
cardwith 12GBofRAM.Thenetwork’s hyperparameters are
optimized for maximum performance based on prior knowl-
edge. The setup involves training the network with the Adam
optimizer over 100 epochs using a mini-batch size of 16 and
an initial learning rate of 1e−4. Training is terminated if the
loss value does not decrease after 30 epochs. The network uti-
lizes a hybrid dilation convolution (HDC) and double dilated
convolution (DDC) with dilation rates of 1, 3, 5 and 7 and a
convolution kernel size of 3 × 3.

The experimental results demonstrate that the best seg-
mentation performance is achievedwhenHDC is used during
the encoding stage and DDC during the decoding stage,
resulting in a Dice score of 69.81%, a VOE of 33.3%, and an
RVD of 3.9%. Moreover, the segmentation performance of
the encoder is significantly enhanced by employing dilated
convolutions with four different scales for feature extraction,
resulting in a 2.49% increase in the Dice score, which is
considered a notable improvement.

ADropout layer (also knownasU-Net +Dropout) is added
after the double dilated convolution (DDC) block to improve
the network’s robustness. The impact of the dropout rate (p)
on the network’s performance is evaluated, and the best p is
found to be 0.37 (Dice: 88.28%), producing the best segmen-
tation performance.

Ablation tests are conducted on the proposed network’s
backbone, which includes subsampled (Sb), dilated convolu-
tion (Dc), and channel attention (CPAM) blocks. The results
in Table 1 show that as modules are gradually added to
the backbone, the segmentation performance significantly
improves. The addition of the CPAM block leads to the
largest performance improvement, increasing the Dice score
by 7.78% and providing the best segmentation performance

for theMCPAD-Net configuration. TheCPAMblock is found
to be essential to the proposed network, improving segmen-
tation performance by about 9% compared to the backbone.

The segmentation performance improves as additional
modules are added, but it also results in an increase in network
depth, the number of parameters, and computational com-
plexity (measured inGFLOPs). Specifically, applying the Sb,
Dc, and CPAM blocks to the backbone enhances segmenta-
tion performance by 3.58%, 8%, and 7.58%, respectively (as
shown in Table 1). The use of a large number of dilated con-
volutions by the Dc block, which improves the network’s
perceptual abilities, is found to be the most effective way to
increase segmentation performance.

The proposed network combines dilated convolution,
UNet main portion, and CPAM in several different back-
bones, including UNet, UNet + Sb, UNet + Dc, UNet +
CPAM, CPAD-Net, and MCPAD-UNet. Comparing these
networks to the network outlined in [15], the proposed net-
work achieves a Dice score of 91.78%, a VOE of 31.9%,
and an RVD of only 5.89%. Our findings indicate that
MCPAD-UNet outperforms all rivals, including competition
outcomes [27] (Severstal). The CPAM block in MCPAD-
UNet enhances the potential for gathering channel and
spatial information, in addition to paying attention to con-
textual information between slices. Overall, the experimental
findings demonstrate that all of the suggested modules sig-
nificantly enhance the network’s segmentation performance,
as depicted in Supplementary Fig. 8.

In summary, we proposed a novel hybrid attention mech-
anism U-Net architecture, called MCPAD-UNet, for steel
defect segmentation. The proposed network integrates multi-
scale contextual cross-patch attention with dilated convo-
lution to enhance detailed information while reducing the
semantic gap. We trained our proposed network on the Sev-
erstal: Steel Defect Detection dataset, and achieved a Dice
score of 95.3%, outperforming the competition’s overall
score by 5.2%. The segmentation examples are shown in
Fig. 2, and the heatmap of the MCPAD-UNet attention is
shown in Supplementary Fig. 10.

The proposed approach has significant potential to revolu-
tionize automated defect segmentation in industrial settings,
where it can reduce material waste and enhance product
quality. Future research will concentrate on increasing the
suggested method’s computational effectiveness and assess-
ing overall performance on various datasets and in other
commercial applications.

4 Discussion

MCPAD-UNet is a novel deep learning architecture proposed
for surface defect detection in industrial steel sheets. It builds
upon the classic U-Net architecture by introducing several
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Table 1 Comparison of several
backbone architectures for
MCPAD-UNET on Severstal

BackBone PA (%) MIoU (%) FWIoU (%) DC (%)

ResNet52 90.14 81.14 84.23 90.51

ResNet102 94.17 84.16 88.74 92.36

ResNet152 97.69 90.62 96.52 95.35

VGG16 89.78 80.61 85.74 86.52

DenseNet169 93.56 89.34 92.54 90.50

Xception 92.25 82.12 85.36 83.20

PA, Pixel accuracy; MIoU, Mean IoU; FWIoU, Frequency weighted IoU, DC, dice coefficient

Fig. 2 Detection examples with multiclass defects with MCPAD-UNet

innovative components, including hybrid dilation convolu-
tion (HDC), double dilated convolution (DDC), and channel
and spatial attention (CPAM) modules.

• MCPAD-UNet versus U-Net: U-Net is a widely used
encoder–decoder architecture for image segmentation,
particularly in biomedical applications. While U-Net has
shown good performance in various segmentation tasks,
it may struggle to capture fine-grained details and context
in complex images like industrial steel sheets. In contrast,
MCPAD-UNet addresses these limitations by incorporat-
ing HDC and DDC blocks, enabling the extraction of
multi-scale features and the effective handling of larger
input sizes.

The introduction of the CPAM module further enhances
the performance of MCPAD-UNet by providing attention
calibration and feature refinement. This attentionmechanism
allows the model to focus on relevant information, leading
to more accurate defect segmentation. As a result, MCPAD-
UNet is likely to outperform the traditional U-Net in surface
defect detection tasks, especially when dealing with intricate
defects and varying defect sizes.

• MCPAD-UNet versus SegNet: SegNet is another
encoder–decoder architecture for semantic segmentation
that uses pooling indices for upsampling, making it
computationally efficient. However, this pooling-based
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upsampling may not be ideal for tasks requiring pre-
cise localization and capturing fine details. In contrast,
MCPAD-UNet utilizes dilated convolutions and attention
mechanisms, making it better suited for handling complex
images with large input sizes.

• MCPAD-UNet versus DeepLabv3: DeepLabv3 is a state-
of-the-art deep learning architecture for semantic seg-
mentation, known for its ability to capture fine details
using atrous (dilated) convolutions. While DeepLabv3 has
demonstrated impressive performance in various image
segmentation challenges, it can be computationally expen-
sive, especially with large input sizes.

MCPAD-UNet shares some similarities with DeepLabv3
in leveraging dilated convolutions for multi-scale feature
extraction.

• MCPAD-UNet versus Mixed Supervision: Mixed super-
vision is an approach that combines both fully supervised
and weakly supervised learning for training deep learn-
ing models. In the context of surface defect detection,
mixed supervision uses pixel-level annotations for some
images (fully supervised) and image-level labels for oth-
ers (weakly supervised). This reduces the annotation effort
and allows themodel to leverage a larger amount ofweakly
labeled data [34].

In comparison with traditional U-Net and other architec-
tures, MCPAD-UNet’s design allows it to take full advantage
of mixed supervision. By combining both types of annota-
tions, MCPAD-UNet can achieve competitive performance
with significantly fewer and less complex annotations. This
results in a cost-effective solution for defect detection in
industrial steel sheets.

• MCPAD-UNet versus TLU-Net: TLU-Net (Transfer
Learning U-Net) is a U-Net variant that utilizes trans-
fer learning by initializing the encoder with pre-trained
weights from a different task or dataset, such as ImageNet.
This approach can be advantageouswhendealingwith lim-
ited annotated data, as it allows the network to leverage
pre-learned features from a different domain [35].

While both MCPAD-UNet and TLU-Net leverage dilated
convolutions and attention mechanisms for segmentation
tasks, they differ in their architectures. MCPAD-UNet intro-
duces HDC and DDC blocks, which enhance multi-scale
feature extraction and context capture, making it more effec-
tive in handling complex images with large defect variations.

Comparing the two, MCPAD-UNet’s attention mecha-
nisms and multi-scale feature extraction capabilities make
it well-suited for capturing fine-grained details and complex
defect patterns in industrial steel sheets.

In summary, MCPAD-UNet demonstrates promising
potential in surface defect detection compared to traditional
U-Net, SegNet, and even sophisticated architectures like
DeepLabv3. Its unique combination of hybrid dilation con-
volution, double dilated convolution, and channel and spatial
attention allows it to excel in capturing details and con-
text, making it a strong contender for automated defect
segmentation in industrial settings. However, conducting a
comparative study using the same evaluation metrics and
datasets would provide a more concrete and quantitative
assessment of the models’ performance differences.

5 Conclusion

In the detection and categorization of surface defects in a vari-
ety of materials, including metals, plastics, and composites,
deep learning has demonstrated encouraging results [9–11].
Because they can automatically identify characteristics from
images, convolutional neural networks (CNNs) are the most
often utilized kind of deep learning model for surface defect
identification. Surface defect detection algorithms have per-
formed better thanks to transfer learning [13, 14], which uses
a pre-trained deep learning model as the starting point for
additional training on a new dataset [30].

The limitation ofwidely accessible annotated training data
is one of the major obstacles to surface defect identifica-
tion using deep learning [31]. Researchers have utilized a
variety of methods to create synthetic data or learn from
unannotated data using self-supervised learning to address
this. Surface defects might appear differently depending on
circumstances like illumination, viewing angles, andmaterial
characteristics, which presents another difficulty. The robust-
ness of surface defect detectionmodels to these variations has
been improved by researchers using methods like multi-view
learning and domain adaptation. Overall, using deep learning
to surface defect identification has the potential to increase
inspection procedures’ effectiveness and precision across a
range of sectors, including manufacturing, construction, and
transportation [27–30].

The integration of CPAM and CPAD-Net with the UNet
model can bring several potential benefits for image segmen-
tation tasks in industrial surface defect applications. Firstly,
the UNet model has been proven to be effective in segment-
ing various types of images including medical and industrial
images. By integrating CPAM and CPAD-Net, the UNet
model benefits from the strengths of both models, which has
led to even better performance in detecting surface defects.

The industrial surface defect detection tasks for which
CPAMandCPAD-Net were specifically created have yielded
outstanding results. Whereas CPAD-Net uses a cascade par-
allel dilated convolutional network to capture multi-scale
contextual information, CPAM uses a contextual pyramid
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attention module to enhance the feature representation of the
model. These models can be used in MCPAD-UNet, and the
resulting model can take advantage of their advantages to
enhance feature representation and contextual information
gathering.

Another potential benefit is the ability of the integrated
model to handle complex and variable defect shapes and
sizes. Industrial surface defects can come in a variety of
shapes and sizes, and traditional segmentation models may
struggle to accurately detect them. By integrating CPAM and
CPAD-Net with UNet, the resulting model performed better
at handling complex and variable defect shapes and sizes due
to the improved feature representation and contextual infor-
mation capture.
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34. Božič, J., Tabernik, D., Skočaj, D.: Mixed supervision for surface-
defect detection: fromweakly to fully supervised learning.Comput.
Ind. 129, 103459 (2021)

35. Damacharla, P., Rao, A., Ringenberg, J., Javaid, A. Y.: TLU-Net: a
deep learning approach for automatic steel surface defect detection.
In: 2021 International Conference on Applied Artificial Intelli-
gence (ICAPAI), Halden, Norway (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	A novel multi-scale cross-patch attention with dilated convolution (MCPAD-UNET) for metallic surface defect detection
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Surface defect dataset
	2.2 MCPAD-UNet
	2.3 Hyperparameter optimization
	2.4 Performance metrics
	2.5 Pre-processing and data augmentation

	3 Results and discussion
	3.1 Ablation study for surface defect detection in steel sheets using MCPAD-UNet
	3.2 Training results comparison

	4 Discussion
	5 Conclusion
	References




