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ABSTRACT
In this study, AC/Fe3O4 adsorbent was first synthesized by modifying activated carbon with Fe3O4.

The structure of the adsorbent was then characterized using analysis techniques specific surface
area (BET), Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX),
and Fourier Transform Infrared Spectroscopy (FTIR). Equilibrium, thermodynamic and kinetic stud-
ies were carried out on the removal of methylene blue (MB) dyestuff from aqueous solutions
AC/Fe3O4 adsorbent. The Langmuir maximum adsorption capacity of AC/Fe3O4 was 312.8mg g�1,
and the best fitness was observed with the pseudo-second-order kinetics model, with an endo-
thermic adsorption process. In the final stage of the study, the adsorption process of MB on
AC/Fe3O4 was modeled using artificial neural network modeling (ANN). Considering the smallest
mean square error (MSE), The backpropagation neural network was configured as a three-layer
ANN with a tangent sigmoid transfer function (Tansig) at the hidden layer with 10 neurons, linear
transfer function (Purelin) the at output layer and Levenberg-Marquardt backpropagation training
algorithm (LMA). Input parameters included initial solution pH (2.0–9.0), amount (0.05–0.5 g L�1),
temperature (298–318K), contact time (5–180min), and concentration (50–500mg L�1). The effect
of each parameter on the removal and adsorption percentages was evaluated. The performance
of the ANN model was adjusted by changing parameters such as the number of neurons in the
middle layer, the number of inputs, and the learning coefficient. The mean absolute percentage
error (MAPE) was used to evaluate the model’s accuracy for the removal and adsorption percent-
age output parameters. The absolute fraction of variance (R2) values were 99.83, 99.36, and
98.26% for the dyestuff training, validation, and test sets, respectively.

NOVELTY STATEMENT
The aspect of the study, which is expected to contribute to the literature, firstly, we performed
the characterization process of the iron-coated activated carbon with analytical measurements.
Then, we verified the adsorption process by performing pH effect, equilibrium, kinetic and thermo-
dynamic studies. Our primary goal is to statistically demonstrate that efficiency estimation can be
made in a shorter time with smart methods, especially by comparing real experimental results
with ANN estimation results obtained from modern artificial intelligence techniques. We believe
that this aim will provide a different perspective to the literature in terms of obtaining results with
minimum cost and effort for these processes with high accuracy and consistency.
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Introduction

Chemical pollutants released directly or indirectly into the
environment, especially from industrial facilities, adversely
affect water systems (Mahmoodi et al. 2006; Mahmoodi,
Arami, et al. 2007; Mahmoodi, Limaee, et al. 2007; Hamd
et al. 2021). Among these industrial sectors, the textile sec-
tor is one of the most rapidly developing sectors in
Turkey and throughout the world, and contributes a large
share to the Turkish economy (Mahmoodi et al. 2014;
Yaseen and Scholz 2019; Ghaedi and Vafaei 2017).
However, the unwanted dyestuffs and chemicals that the
textile industry industry produces as biproducts spreads to
the environment cause environmental pollution. The dyes
consists of soluble organic compounds, in particular those
classified as reactive, direct, basic, and acidic (Mahmoodi,
Arami, et al. 2007; Gharanjig et al. 2008). They exhibit a
high solubility in water, making it difficult to remove
them by conventional methods (Hamd et al. 2021). One of
the properties of such dyes is the ability to impart color
to a particular substrate due to the presence of chromo-
phoric groups in their molecular structure (Shamey and
Zhao 2014). However, this ability to fix the color of the
material is related to the auxotrophic groups, which are
polar and can bind to the polar groups of the textile
fibers. Dyes are one of the most dangerous industrial pol-
lutants in that can cause skin diseases and allergies and
provoke cancer and mutation in humans (Mahmoodi and
Arami 2009; Rahdar et al. 2021). The accumulation of
such dyes in organisms create toxic and carcinogenic prod-
ucts, and this causes the direct destruction of aquatic
organisms. Moreover, hampering light transmittance causes
significant environmental issues because this reduces
photosynthetic activity in the aquatic life. Therefore, it is
vital to remove dyestuffs from industrial wastewater
(Khedr et al. 2013). Millions of tons of dyestuffs are
released from various textile industries every year,
(Boguniewicz-Zablocka et al. 2020; Hynes et al. 2020) and
the discharge of large amounts of colored dyestuffs and
pigments poses a real environmental threat (Fernandes
et al. 2020; Mokhtari et al. 2020). Colorants enter the
water body and, due to their complex molecular structure
do not decompose readily. This affects environmental pol-
lution (Mahmoodi 2013b; Jawad et al. 2022). Water pollu-
tion is one of the consequences of this effect, with 17–
20% of water pollution being due to textile dyeing and
processing (Yuan et al. 2017; Hussain et al. 2022). One of
the popular thiazine redox cationic dyes that is environ-
mentally persistent, toxic, carcinogenic, and mutagenic is
methylene blue (MB) dye (Teow et al. 2019). It is widely
applied as a synthetic dye for dyeing fabrics in the cloth-
ing and textile industries and dyeing paper and leather. In
line with the magnitude of industrial use, large quantities of
MB dye-containing wastewater are discharged into ground-
water and surface waters. At doses greater than 5mg kg�1,
the monoamine oxidase inhibitory properties of MB dye
can cause fatal serotonin toxicity in humans, as well as a
threat to fauna in the aquatic ecosystem (Oladoye et al.
2022). Although MB dyestuff is not considered acutely

toxic, it has many harmful effects on human health when
humans are exposed to excessive amounts. For example,
inhalation can cause short-term, rapid, and difficult breath-
ing (Rehman et al. 2012; Balarak et al. 2015). Ingestion
with food causes a burning sensation and sometimes, results
in vomiting, diarrhea, nausea, gastritis, abdominal and chest
pain, severe headache, mental confusion, excessive sweating,
urinary tract infection, and methemoglobin anemia in severe
cases (Sen et al. 2011; Abdurrahman et al. 2013). Therefore,
the removal of MB from the effluent is essential due to its
harmful impacts (Rehman et al. 2012). Many different
methods can be used to remove such dyestuffs from water,
including biological treatment, precipitation, ion exchange
(Joseph et al. 2020), filtration (Ahmad et al. 2018), chemical
oxidation (Rajkumar et al. 2007), adsorption (Mahmoodi
et al. 2007; Altintig, Kabadayi, et al. 2022; Pandey et al.
2023), ozone treatment (Bianco et al. 2020), advanced oxi-
dation (Dehghani and Mahdavi 2015). Biological dye
removal methods incorporate some form of the living
organism in its process. The use of enzymes to remove dye
is becoming common these days as it is believed a range of
biological dye removal methods are the cheapest as well as
safest methods of remedying the situation (Karami et al.
2017). Since these method deal with living things, their
major disadvantage is its growth rate (Katheresan et al.
2018). System instability is common in biological dye
removal processes in that predicting its growth rate and
reactions can be tricky at times (Sharafi et al. 2015).
However, these processes are expensive to operate are rela-
tively inefficient and generate large volumes of sludge as a
result of the processes. The most preferred method is the
adsorption method in terms of ease of use and cost
(Mahmoodi and Shourijeh 2015; Sharafi et al. 2015;
Altintig, Kabadayi, et al. 2022). In this process, natural or
modified minerals such as bentonite, zeolite, red mud,
montmorillonite, pumice, and activated carbon (AC)
obtained from agricultural wastes are used (Shayesteh et al.
2016). Among the various adsorbents used, AC material is
frequently applied for wastewater decontamination due to
its porous structure, and its functional properties such as
easy design and modification (Qu et al. 2019). There are
many studies in the literature on the preparation of AC
from different agricultural wastes as a low-cost and renew-
able precursor. In this context, various agricultural wastes
and by-products such as coconut shells (Dibi et al. 2021),
coffee shells (Altintig et al. 2021), dragon fruit shells (Jawad
et al., 2021), Fruit peel (Yousef et al. 2022), carrot juice
pulp and pomegranate peel (Suhaimi et al. 2022), cherry
kernels (Angin 2014), soy meal hull (Mahmoodi 2014b),
Mango Peels and Seeds Wastes (Razali et al. 2022) have
been successfully used for the preparation of porous AC
with potential application for MB removal. However, the
most critical problem in using AC as an adsorbent is the
removal of carbon from the solution after the adsorption
process, and using costly and time-consuming methods
such as filtration (D’Cruz et al. 2020). In the literature,
purified lignocellulosic biomass wastes supported by
FeCl3/Zn (NO3)2 are used in dye removal. It takes the form
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of an effective composite. In recent studies, AC has been
modified with the addition of metal oxides due to its reus-
ability and high surface area. This modification is also very
advantageous for removing organic contaminants from
aqueous solutions (Agarwal et al. 2016). Recently, iron-
enriched AC has been used as an alternative due to its
advantage over other AC enrichment methods (Saleh et al.
2017). Various applications for removal of organic pollu-
tants with materials coated with metal oxides on the AC
surface are available. Metal oxides are added to the adsorb-
ent surfaces via chemical modification that lead to an
increase in the adsorption capacity of natural adsorbents
(Mahmoodi et al. 2006). Chemical modification is done
using the precipitation method, and as a result, adsorption
occurs over a wide range of pH values and lower concen-
trations (Kant et al. 2014). Magnetic adsorbents are an
especially attractive solution for metallic and organic aque-
ous contaminants because of the simple magnetic separation
process (Mahmoodi et al. 2006). In recent years, different
studies on metal oxide adsorbents have become very popu-
lar in the literature. In a study by Rahdar et al. MgO-sup-
ported Fe–Co–Mn nanoparticles were synthesized and used
as adsorbents for successful removal of RhB dye from aque-
ous media (Rahdar et al. 2019). In the study of Ahmadi
et al. Nd2O3 nanoparticles were synthesized and character-
ized by means of XRD, FTIR, and SEM. The main aim of
their research was to tune/model and optimize the removal
of Acid Blue 92 (AB92) dye from synthetic wastes (aqueous
solutions) using the adsorption process based on Nd2O3

nanoparticles. Central compound design based on response
surface methodology was applied to optimize the adsorption
conditions. They investigated the effects of pH (3–9),
adsorbent dose (0.1–1 g L�1), initial concentration of AB92
(100–300mg L�1), and contact time (10–100min) on the
adsorption process (Ahmadi et al. 2020). In the year 2022,
Pandey and his friends in their study, magnetic iron oxide
mineralization in place of iron ions through the hydrogel
matrix (IO) integrated with Locust gum-cl-hydrogel nano-
composites of polyacrylonitrile (LBG-cl-PAN/IONP) basic
method for the design and synthesis is presented. LBG-cl-
PAN/IONP NC was used as an adsorbent to adsorb MB
and MV dyes. In the study, a large number of study
parameters were investigated, including the amount of
adsorbent, contact time, pH, temperature, dye concentra-
tion, and co-existing ion concentration. Due to their prop-
erties, these materials are said to be promising in
supercapacitors and environmental cleaning processes
(Pandey, Son, and Kang et al. 2022). In the study of
Mahmoodi (2015), a zinc ferrite nanoparticle was synthe-
sized and its surface was modified using SDS. The modified
nanoparticle was used as an adsorbent. Dyes were extracted
from single and triple systems using ZFN–SDS (Mahmoodi
2015). In the year 2022, Pandey et al. in their study, a basic
method for designing and synthesizing magnetic iron oxide
(IO)-integrated locust bean gum-cl-polyacrylonitrile hydrogel
nanocomposites (LBG-cl-PAN/IONP) via in situ mineraliza-
tion of iron ions in a hydrogel matrix is presented. LBG-cl-
PAN/IONP HNC is expressed as a promising sorbent or

composite material for removing toxic dyes from water and
is therefore applicable to improving water and wastewater
treatment technology. Due to their properties, these materials
are said to be promising in supercapacitors and environmen-
tal cleaning processes (Pandey, Son, and Kang 2022). In their
2019 study, Pandey et al. focused on HNCs as sustainable
materials and investigated the impact of nanoparticles used
the n hydrogel, with a potential future perspective to over-
come the current global water pollution crisis (Pandey, Son,
and Kang 2022). Abdulhameed et al., in their study in 2022,
applied an environmentally friendly and efficient microalgae
adsorbent (MAG) for the removal of crystal violet and
methylene blue dyes from aqueous solutions. Multivariate
modeling and optimization of CV and MB dyes removal
were applied to MAG via the Box-Behnken design (BBD)
based on three variables: MAG dosage, initial pH, and
adsorption time studied. The maximum adsorption capacity
of MAG produced from the Langmuir equation was calcu-
lated as 243.0mg g�1 for CV and 297.1mg g�1 for MB
(Abdulhameed et al. 2022). In his study in 2019, Jawad car-
bonized the rubber (Hevea brasiliensis) seed coat, which is an
agricultural waste, with H2SO4 as a potential biochar adsorb-
ent for MB adsorption from aqueous solution with one-step
liquid phase activation. Equilibrium data correlated well with
the Langmuir isotherm compared to the Freundlich and
Temkin models, and the maximum adsorption capacity of
CRSS for MB adsorption, qmax, was 208.3mg g�1 at optimum
pH 8 and 303K temperature. All stated results revealed that
CRSS can be used appropriately for the removal of MB from
an aqueous solution (Jawad 2018). Jawad et al. obtained a
potential biochar adsorbent for MB adsorption from an aque-
ous solution by activating rubber (Hevea brasiliensis) leaf with
H2SO4 in 2018. Various analytical techniques were used for
its characterization. By performing equilibrium, kinetic and
thermodynamic studies, they demonstrated that ATRL could
be used in a viable manner for the removal of MB from an
aqueous solution (Jawad et al. 2018).

Advances in computer technologies in recent years have
increased the interest in studies on artificial intelligence.
Observing the information-processing principles of humans
and imitating the functioning of biological nervous systems
are the main goals of artificial intelligence research (Zeng
et al. 2016). Artificial intelligence research (ANNs), on the
other hand, is a logical programming form developed by
imitating the working mechanism of the human brain. ANN
is a learning algorithm that can work with the human brain
in the computer environment, make decisions, and reach the
result by using the available data in case of insufficient data
(Qi et al. 2020). Mathematical computational models are
ANN, an input layer, hidden layers, and an output layer.
They are often used to model complex systems and find rela-
tionships between inputs and outputs. The model considered
in this work is represented by a three-layer feed-forward
multilayer perceptron ANNs. The version used in this work
is represented by a variant proposed, the main reason for its
selection being good performance, flexibility, and easiness of
use (Sharafi et al. 2019). ANNs are now used in many areas
of science and engineering and are considered a promising
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tool because of their simplicity toward simulation, prediction,
and modeling. The advantages of ANN are that the mathem-
atical description of the phenomena involved in the process is
not required; less time is required for model development
than the traditional mathematical models and prediction abil-
ity, with limited numbers of experiments (Arabameri et al.
2015). The percent removal is an important parameter for the
adsorption process, but these data are quite difficult due to
the time-consuming nature of data collection. Inspired by
biological neural processes, an ANN can be applied to the
adsorption process (Chowdhury and Saha 2013). Modeling
and simulation of the adsorption process are very important
as they can predict the adsorption process and complex func-
tional relationships (Ghaedi and Vafaei 2017). With kinetic
modeling, it is possible to determine the step controlling the
adsorption process (€Ozt€urk et al. 2020; Qi et al. 2020). While
there are many ANN models in the literature, it can be said
that the most widely used one, especially in engineering, is
the multilayer model (Fan et al. 2018). ANN is beneficial
when there is no mathematical relationship to describe a phe-
nomenon to be modeled. ANN has reliable, robust, and
remarkable features in finding nonlinear relationships of vari-
ables in complex systems. Due to these features, ANN is used
in many applications. It is an essential model as it makes it
possible to obtain more accessible and accurate numerical val-
ues at the stages where very complex and challenging model-
ing techniques are needed (Kwon et al. 2017). In this context,
ANN draws much attention to modeling chemical and bio-
chemical processes with complex input-output relationships
(Chu 2003). In recent years, ANN models have been success-
fully applied in processes such as dye removal, adsorption,
fermentation, filtration, and drying (Fan et al. 2018). In dye
removal studies, ANN gives researchers essential clues using
nonlinear regression data from the experimental system
(Veeraragavan et al. 2021). In studies where ANN is applied
to the adsorption system, the adsorption process is tried to be
improved by choosing the %removal value as the estimation
parameter (Erdem 2019). When the applications of ANN in
the adsorption system were examined in the literature,
Amouei et al. used sunflower seed powder as an adsorbent in
Cd removal. In the study, they investigated pH, initial dye-
stuff concentration, and contact time and showed that the
theoretical data obtained using the ANN approach were com-
patible with the experimental results (Amouei et al. 2013).
Bingol et al. used ANN for copper removal with black cumin
and determined the R2 values as 0.89 and 0.93 for the train-
ing and test data sets, respectively (Bing€ol et al. 2016). Garza-
Gonz�alez et al., used 3 input data, 2 hidden layers, and 20
neurons in their study by examining methylene blue removal
with the genetic algorithm ANN (Garza-Gonz�alez et al.
2011). Çoruh et al., investigated parameters such as waste
adsorbent amount, initial dyestuff concentration, temperature,
and contact time in batch system dyes removal. With the
ANN approach, they defined three-layer, 4-neuron input
data, 12-neuron hidden layer, and 1-neuron output data and
found that the model they obtained was compatible with the
system (Çoruh et al. 2014). €Ozt€urk et al. 2020 investigated
the adsorption of methylene blue in drinking water treatment

plant waste sludge with ANN. They also stated that the sys-
tem is well-modeled (€Ozt€urk et al. 2020). The complex func-
tional processes in the adsorption of environmental samples
are predicted by modeling and simulating the adsorption pro-
cess (Ghaedi and Vafaei 2017). The artificial intelligence tech-
nique, which is frequently preferred in the modeling of
chemical and biochemical processes involving complex input-
output relations, is a successful method in terms of obtaining
easier and more accurate numerical values compared to
very complex stages (Chu 2003; Kardam et al. 2013; Altintig,
Balta, et al. 2022).

In the first stage of this study, the magnetic property of
AC was gained by using the co-precipitation method.
Physicochemical and morphological characterizations of the
produced AC and the synthesized magnetic AC were per-
formed using XRD, SEM/EDS, FT-IR, and BET analysis
techniques. In the second stage, the developed magnetic AC
was used in MB removal and the equilibrium data were
evaluated with the adsorption isotherm model and thermo-
dynamic equations. The third phase of the study aims to
estimate the percentage removal and adsorption capacity in
terms of multiple parameters using artificial intelligence
based on real experimental results by establishing an ANN-
based model. Then, using the experimental data obtained
from the adsorption study of the magnetically coated acti-
vated carbon methylene blue dyestuff, the adsorption effi-
ciency was estimated with the help of the ANN model. The
adsorption study used a multi-layered structure as the ANN
model. The ANN model data obtained with the data
obtained from each adsorption experiment were evaluated
by various statistical methods. The ANN model data
obtained as a result of the study were compared with the
experimental data.

Materials and methods

Chemicals

Pure water was used in all experimental studies. The chemicals,
NaOH, HCI, Methylene Blue (MB)(M.F.¼C16H18ClN3S3�H2O,
M.W.¼ 319.86 g/mol), ethanol, FeSO4�7H2O, and FeCl3�6H2O
with analytic grade were purchased from Merck (Merck Co.
Darmstadt, Germany). All chemicals used in the study are of
analytical grade and no further purification process has been
performed.

Preparation of magnetic activated carbon

AC/Fe3O4 obtained using the co-precipitation method was
synthesized using a mixture of Fe3þ and Fe2þ and activated
carbon. To synthesize AC/Fe3O4, 7.8 g FeCl3�6H2O was
weighed, and 100mL of deionized water was added to it. A
few drops of concentrated Fe(OH)3 were added to prevent pre-
cipitation, then fish were thrown into it and placed on a mag-
netic stirrer, and 3.9 g of it was added. It was heated by adding
FeSO4�7H2O. At 70 �C, 3.3 g of AC and 100mL of 5mol L�1

NaOH were added rapidly. After stirring for 120min at 80 �C,
this black mixture brought to room temperature was collected

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 1717



with the help of a magnet. The obtained magnetic adsorbent
was washed with distilled deionized water and filtered with
blue band filter paper. After washing with distilled water and
ethanol first, it was dried in an oven at 60 �C.

Characterization

The surface morphologies of the samples were carried out
using JEOL-JSM-6060LV Scanning Electron Microscope
(SEM). To take SEM images, the powdered samples were
gold-plated to ensure conductivity. Surface functional groups
were determined using SHIMADZU IR Prestige 21 brand
Fourier transform infrared spectra (FTIR). The functional
groups’ molecular structure absorbance values were analyzed
in the wavelength range of 400–4000 cm�1. The crystal
structure of the samples was determined using a RIGAKU
D/Max2200 brand X-Ray diffractometer (XRD). Samples
were analyzed in the range of 10–80� at points located
between 2h angles. Multi-point Brunauer–Emmett–Teller
(BET) surface area (m2g�1), pore size (nm), micropore and
Meso-macropore volumes (cm3g�1) using surface and pore
characterization device (Micromeritics ASAP 2020) (SBET)
analysis was determined by the nitrogen (N2) gas adsorption
technique in a liquid nitrogen environment at 77K. Before
the BET analysis, the temperature in the degassing treatment
applied to the sample was 300 �C and the time was 360min.

Adsorption studies

Adsorption experiments were carried out in a batch bath
system. An MB stock solution was prepared at 1000mg L�1

concentration. Standard solutions (1–5mg L�1) and working
solutions (50–500mg L�1) were prepared by diluting the
stock solutions with deionized water (chemical resistance: 18
MX cm). 0.1M NaOH or 0.1M HCl solutions were used for
the pH adjustment of MB solutions. After the adsorption pro-
cess, the MB concentration in the solution was measured in 3
repetitions with a spectrophotometer (Shimadzu UV-Vis
1240) at the wavelength of 665 nm. In experimental studies,
contact time (5–150min), initial MB concentration (50–
500mg L�1), adsorbent dose (0.05–0.5 g L�1), initial pH val-
ues (2–9), temperature (298–318K), contact time (5–180min)
the effects of parameters such as were measured and opti-
mum values were determined. The MB adsorption efficiency
of the AC/Fe3O4 composite was calculated by Equation (1):

qe ¼ ðC0 � CeÞV
m

(1)

where qe (mg g�1) is the adsorption capacity of MB, C0 (mg
L�1) is the initial MB concentration, Ce (mg L�1) is the
equilibrium concentration of adsorbate, V is the volume of
solution (L) and m is the weight of adsorbent (g).

The paint removal percentage (MB) was calculated
according to the following Equation (2):

Removal %ð Þ ¼ ðC0 � CeÞ
C0

� 100 (2)

Modeling of MB adsorption on AC/Fe3O4 with ANN

This study used the ANN approach for the dyestuff removal
problem. The target is to estimate how much % of the dye-
stuffs in the wastewater are removed with specific parameters.
The higher the %removal value, the better the removal
results. This way, pollution in aquatic communities such as
seawater, lake water, and streams will be prevented, and the
negative impact on the ecosystem will be eliminated. For this
purpose, initial solution pH, temperature, amount, contact
time, and initial solution concentration parameters were used
as input, %removal parameter, and adsorption capacity as an
output parameter. Three distinct hidden input layers serve as
the foundation for the ANN model, and the output layers,
also known as neurons, are depicted in Figure 1. Inputs and
outputs are used to estimate the relationship between layers.

Problem-solving was carried out using the MATLAB pro-
gram and ANN method. The ANN model was compared
using three different statistical criteria. These criteria are
statistical parameters such as root mean square error
(RMSE), mean absolute error (MAE), and correlation coeffi-
cient (R). In this study, 99% removal and 99 adsorption cap-
acity data sets were taken, and 69 of them were used in
training artificial neural networks, 15 in validation, and the
remaining 15 in testing ANNs. Normalized data at 0–1. For
the data to be processed in the Matlab program, it is neces-
sary to perform the normalization process. Therefore data
(Xi) are converted to normalized value (Xnormal) as follows
(Rene et al. 2009).

Xnormal ¼ xi � xmin

xmax � xmin
(3)

In this equation; Xnormal ¼ stands for normalized data,
xi¼ for input value, xmin¼ for the least input value, and,
xmax¼ is used for the maximum input value.

The estimation process was carried out with 99 pieces
of data. Levenberg–Marquardt Algorithm (LMA), a widely
used neural network method, is generally used. The LMA
algorithm contains multi-layer neural networks and has
an input layer, hidden layers, and an output layer. There
are many different types of training algorithms. ANNs
are generally used to solve complex problems encountered
in application areas such as model recognition, identifica-
tion, classification, speech, vision, and control systems. It
contains at least one or more layers, including an input
layer, an output layer, and multiple hidden layers. There
is no link between the units of the same layer; each
neuron in a layer is connected to the neurons in the
layer above and below it. Depending on the issue, the
number of neurons in each layer may change (Arabameri
et al. 2015)

Model validation

For the Validation of the Model, the following statistical
indices such as mean squared error (MSE) are used to evalu-
ate the integrity of the experimental data’s fit and the mod-
el’s predictive accuracy, respectively (Kalaivani and
Ananthalakshmi 2018). MSE Equation (4) is presented
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below

MSE ¼ 1
n

Xn

t¼1
ðyi � xiÞ2 (4)

The network was tested with different numbers of neu-
rons to find the optimum number of neurons in the hidden
layer by observing the MSE. The lowest MSE was shown for
6 neurons, and the maximum R2 was obtained for 6 neu-
rons. Table 7 shows the experimental situation for the
neural network where pH, initial concentration,
contact time, and dosage are input variables for the network.
Table 8 displays the outcomes of a neural network’s estima-
tion (MSE and R2) for training, validation, and testing.

Results and discussion

Characterization of AC/Fe3O4

Surface morphology of AC/Fe3O4 before and after adsorp-
tion SEM. To examine the surface morphology, the AC, and
AC/Fe3O4 were subjected to SEM before and after the
adsorption process. Figure 2a–c shows the SEM images
(1000xmagnification).

Figure 2 shows SEM photographs of (a) AC (b) before
MB adsorption AC/Fe3O4 and (c) AC/Fe3O4 after adsorp-
tion. Since AC has a porous structure when the SEM image
is examined, it is thought that the cavities on the surface
were previously filled by the chemical reagent, and these
cavities on the surface of the activated carbon were formed
by the evaporation of the activated carbon (Wang et al.
2005; Hadoun et al. 2013). When Fe3O4 loading occurs on
AC, it is seen that the recesses and protrusions on the AC
keep the particles on the surface. It is seen that MB adheres
to the porous surface of AC/Fe3O4 and inside the crevices,
while its surface has a more homogeneous appearance (c).
As a result, adsorbents with small particle size, large surface
area, and porous increased the adsorption capacity. Similar
results have also been reported in the literature (Giri et al.
2011; Wannahari et al. 2018)

Figure 3 in (a–c), FT-IR spectra of activated carbon
obtained from chestnut shells, AC/Fe3O4 samples before

adsorption, and AC/Fe3O4 samples after adsorption is
observed, respectively.

FT-IR analysis was performed to determine the structural
groups of activated carbon, AC/Fe3O4 before adsorption,
and AC/Fe3O4 samples after adsorption (Figure 3). The pri-
mary and secondary hydroxyl OH vibrations in Figure 3a
show the overall spectral shape of AC exhibiting a band-
width close to 3400 cm�1 represented by y (–CH–OH) and
y (–CH2–OH) (Pandey, Son, Kim, et al. 2022). The peaks
between 1000 and 1150 cm�1 of activated carbon show the
C–OH and C–O–H groups. The region between 1600 and
1800 cm�1 is the specific region of pectin and is the region
used in Deciphering pectin and determining its quality
(Altintig et al. 2022). The peaks seen around 1750 cm�1

are from olefinic C¼C vibrations and C¼O vibrations
(Cao et al. 2014). While the peaks were sharp and promin-
ent on the shell in activated carbon, the intensity of the
OH-peak decreased, as can be seen in Figures 3b and c.
Peaks between 500 and 600 cm�1 in Figure 3b indicate
metal-oxygen vibration. The sharpness of this peak
decreased in Figure 3c. While the peaks were sharp and
prominent on the shell in activated carbon, the intensity of
the OH-peak decreased, as can be seen in Figure 3b and c.
It is visible that there are changes in the functional groups
of raw materials. There are similar studies in the literature
(Mahmoodi 2013a; Jawad et al. 2022).

The XRD patterns of AC/Fe3O4 samples before and after
AC and MB adsorption are shown in Figure 4.

XRD test was performed to determine whether the
AC/Fe3O4 surface was crystalline or amorphous before and
after AC adsorption. It is seen from the XRD patterns
shown in Figure 4 that AC has an amorphous structure.
However, after AC is converted to AC/Fe3O4, the amorph-
ous nature of crude AC is minimized. Two broad peaks are
observed in the AC XRD model at 2h¼ 25� and 2h¼ 43�.
Examining the X-ray diffraction profile of AC in Figure 4,
the peaks shown at 25� and 43� confirm the carbonaceous
structure in AC (Jawad et al. 2022). Figure 4 also shows the
XRD results of AC/Fe3O4 and AC/Fe3O4/MB samples.
Figure 4b, 30.3 (220) in the XRD spectrum; 35.5 (311); 43.3
(400); 54.1 (511); The characteristic peaks at 57.3 (511) and

Figure 1. Schematic diagram of the ANN model.
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62.9 (440) indicate that the magnetic AC is Fe3O4 (magnet-
ite) and has a cubic spinel structure (Ai et al. 2011;
Foroutan et al. 2019; Kheradmand et al. 2022). In Figure 4c,
it is seen that the intensity of the peaks decreases after MB
adsorption.

The surface treatment of adsorption and the extent of
adsorption depend on the specific surface area. Adsorbents
with small particle sizes, large surface areas, and porous struc-
ture increase adsorption (Dı�az-Ter�an et al. 2003). Textural
properties for AC and AC/Fe3O4 are given in Table 1.

Figure 2. SEM results of (a) activated carbon (b) before MB adsorption AC/Fe3O4 (c) after MB adsorption AC/Fe3O4.
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In our study, BET surface area was 960.57m2g�1 and
micropore volume 0.26 cm3g�1 for AC, while it was
990.35m2g�1 and 0.24 cm3 for AC/Fe3O4 adsorbent, respect-
ively. As can be seen in Table 1, the average pore diameter
and surface area for iron oxide-coated AC/Fe3O4 are higher
than for AC. In addition, as the micropores decreased, the
pore diameter increased, but a more porous structure was
obtained. Findings of mean pore diameter indicate the por-
ous nature of AC and AC/Fe3O4 (2.0 nm< pore size range
< 50 nm). This result explains that the increase in the pore
diameter is due to the AC/Fe3O4 adsorption capacity.

Adsorption studies

pH is considered one of the most important factors affecting
the surface charge density of the adsorbent and the diluted
ion concentration in the solution. Thus, it implicitly affects
the adsorption capacity (Pandey, Son, and Kang 2022). The
influence of pH on MB adsorption on AC/Fe3O4 composite
was studied with 0.1 g L�1 dose at 298K for 100mg L�1 dye
concentrations. The dependency of the MB removal yield of
AC/Fe3O4 on the pH of the solution is demonstrated in
Figure 5a.

MB removal under acidic conditions is relatively lower
(range of 66.36–92.6%) than under basic conditions. This
difference may be due to the higher concentration of Hþ

ions on the adsorbent surface and thus a reduction inMB
retention (Jawad et al. 2018). Highest adsorption yields
(92.65–99.82%) for initial concentrations were obtained at a
pH value of 7. Therefore, pH 7.0 was chosen as the opti-
mum pH value and used for all subsequent experiments.
Similar results for MB removal have been reportedin the lit-
erature (Jawad et al. 2018; Jawad 2018). pHpzc is the change
in pH values, pH end–pH start (DpH) when the pH is
measured starting at zero. The point of zero charges (pHpzc)
on the surface of AC/Fe3O4. was found to be 6.10 as illustrated
in Figure 5b, signifying that the AC/Fe3O4 surface may gain a
positive charge when pH is less than pHpzc. In turn, the sur-
face charge of AC/Fe3O4 acquires negative charges at
pH> pHpzc indicating that cationic MB dye can be adsorbed
onto AC/Fe3O4. Considering the adsorption between the

negatively charged surface and the cationic dyestuff, the excess
Hþ ions in the environment at acidic pH values settle in sites
suitable for adsorption on the AC/Fe3O4and prevent the
adsorption of cationic dyestuffs. At a specific pH level, the
surface charge of an adsorbent determines the type of inter-
action between the binding sites and the adsorbate molecules,
and the zero charge point can accurately predicts the adsorp-
tion mechanism. In the case of cationic impurities, adsorption
occurs if pH> pHpzc, conversely, adsorption of anionic
impurities occurs if pH< pHpzc.

Adsorption kinetics

Adsorption kinetics is used to determine which mechanisms
play a role during the adsorption of the adsorbed substance
onto the adsorbent surface (Sharafi et al. 2015). Examining the
kinetic curves provides data on AC/Fe3O4 stability, the decisive
key step in the adsorption mechanism, and the time required
to reach equilibrium (Jawad et al. 2022). Our study used
pseudo-first- and pseudo-second-order models to understand
the kinetics behind MB subtraction and to analyze kinetic data.
The experiment was carried out in a 250mL bottle by incorpo-
rating a mass of 0.1 g L�1 of AC/Fe3O4 in 100mL of the aque-
ous solution of MB with an initial concentration of 100mg
L�1. The pH was adjusted to 7.0 with constant stirring of the
sample at 500 rpm and room temperature (25± 2 �C). To deter-
mine the effect of contact time on adsorption, AC/Fe3O4

(0.1 g) samples were made with 100mL MB 100mg L�1 solu-
tion. The samples were taken at defined time intervals, filtered
with a 0.22mm PTFE syringe filter, and then analyzed by spec-
trophotometer. The so-called first-order and pseudo-second-
order equations are shown in equations 5 and 6 respectively.

ln qe � qtð Þ ¼ logqe � k1
k2

t (5)
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Figure 3. FTIR spectrum of (a) activated carbon (b) before MB adsorption
AC/Fe3O4 (c)after MB adsorption AC/Fe3O4.
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Figure 4. Powder XRD patterns, (a) activated carbon (b) before MB adsorption
AC/Fe3O4 (c) after MB adsorption AC/Fe3O4.

Table 1. Textural properties of AC and AC/Fe3O4.

Adsorbents SBET (m
2 g�1) Pore volume cm3g�1 Pore diameter (nm)

AC 960.57 0.26 20.07
AC/Fe3O4 990.35 0.24 22.31
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t
qt

¼ 1
k2q2e

þ t
qe

(6)

Here qe and qt are the amounts of adsorbed material (mg
g�1) at equilibrium time (min), respectively; k1 (h�1) is the
first-order kinetic constant, and k2 is that of the pseudo-
second-order kinetics (g mg�1).

Pseudo-first-order and Pseudo second order profiles
(Figures 6a and b) and kinetic properties (Table 2) are
shown. It reflects that the adsorption of MB dye on
AC/Fe3O4 fits the Pseudo first-order model because the R2

value calculated from the Pseudo second-order was higher
than the other applied model. Moreover, the experimental qe
values agreed satisfactorily with the calculated qecal
values obtained.

Pseudo 1 and pseudo 2 results of AC/Fe3O4 were given
in Table 2. The adsorption capacity (qeexp) value pro-
pounded experimentally in Table 2 under ideal conditions
should be close to the calculated adsorption capacity (qecal)
value. In Table 2, the adsorption process does not comply
with the velocity requirements of pseudo 1st order due to
the difference between qeexp and qecal, and the correlation
coefficient value not being close to 1 (Shayesteh et al. 2021;
Jawad et al. 2022). On the other hand, a very high correl-
ation coefficient was achieved by the pseudo 2nd order kin-
etic model.

Adsorption thermodynamics

In the thermodynamic study, changes in Gibbs free energy
(DG�), enthalpy (DH�), and entropy (DS�) parameters were
calculated using Equations (7)–(9). In addition, the DG� par-
ameter is calculated by considering the equilibrium time dis-
tribution constant (KL).

DGo ¼ �RTln KD (7)

In the equation, R is the gas constant (8.314 J mol�1K�1),
T is the temperature, and KL is the thermodynamic equilib-
rium constant reflecting the dye distribution in the equilib-
rium between solid and liquid phases. The equilibrium
constant (KD) is calculated as in equation 8.

KL ¼ qe
Ce

(8)

The van’t Hoff equation is given in 9.

ln KL ¼ DSo

R
� DHo

RT
(9)

The values of DH�(kj mol�1) and DS� (J/mol K) were cal-
culated from the intersection and slope of the van’t Hoff plots
ln KD versus 1/T, (Jawad et al. 2018; Jawad et al. 2020) as
shown in Figure 7. The parameters calculated through the
values of thermodynamics Figure 7 are presented in Table 3.

Table 3 shows the computed thermodynamic parameters.
Table 3 shows that the negative values of DG� were
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belonging to the MB dye adsorption by AC/Fe3O4 in the
temperature ranges (298–318) K.

As seen from Table 3, the positive value of DS� indicates
increased randomness at the solid/liquid interface of the
adsorption process of MB. The calculated negative values of
DG� indicate that the adsorption of MB on the AC/Fe3O4

system is spontaneous and thermodynamically favorable. In
the MB adsorption study performed with AC/Fe3O4, the
DH� value was found to be 20.40 kj mol�1. In this case, it is
thought that the adsorption mechanism using AC/Fe3O4

may be chemical. Similar results for methylene blue dye
adsorption have been reported in the literature (Jawad et al.
2018; Yousef et al. 2022).

Adsorption isotherm models

Adsorption isotherms are used to investigate the interactions
between adsorbents and adsorbates and the distribution of sol-
utes between solid and liquid phases (Mahmoodi 2014c). The
reaction mechanism of the adsorption system can be deduced
by some theoretical or empirical models. Langmuir and
Freundlich’isotherms are widely used to study the relationship
between adsorption capacity and the equilibrium concentration
of adsorbate at a given temperature. In this study, using 0.1 g
L�1 AC/Fe3O4 activated carbon and 100mL of different initial
MB concentrations (50–500mg L�1), isotherms should be used
by demonstrating the relationship between the equilibrium
concentrations reached and the amount of adsorbed substance
per unit adsorbate. Modeling was done using Langmuir and
Freundlich isotherm model to show the relationship between
MB amounts per adsorbent unit (Abdulhameed et al. 2022).
The linear formula of this model is presented in (10).

Ce

qe
¼ 1

qmKL
þ 1
qm

Ce (10)

Ce is the adsorbate concentration in the solution after
adsorption (mg L�1), qe is the amount adsorbed on the
adsorbent (mg g�1), KL is the isotherm coefficient (L
mg�1), qmax (mg g�1) is the maximum adsorption capacity
of the adsorbent.

The Freundlich isotherm model assumes that the adsorb-
ent surface is multilayered by adsorbent molecules. This lin-
ear formula is presented in Equation (11).

lnqe ¼ lnKf þ 1
n
Ce (11)

In the formula, Kf and n stand for Freundlich constants.
Modeling was done using Langmuir and Freundlich iso-
therm model to show the relationship between MB amounts
per adsorbent unit. These models are shown in Figures 8
and b.

In this study, using 0.1 g L�1AC/Fe3O4 activated carbon
and 100mL different initial MB concentrations (50–500mg
L�1), isotherms should be used by revealing the relationship
between the equilibrium concentrations reached and the
amount of adsorbed substance per unit adsorbent. Modeling
was done using Langmuir and Freundlich isotherm model
to show the relationship between MB amounts per adsorb-
ent unit. The Langmuir and Freundlich isotherm constant
obtained by the calculations is presented in Table 4 as
follows.

As can be seen in Table 4, the maximum adsorption cap-
acity of AC/Fe3O4 was calculated according to the slope and
intersection points of the qmax graphs and was calculated as
277.77mg g�1. Considering the experimental data obtained,
it can be said that the correlation coefficient (R2) value of
0.99 is compatible with the Langmuir isotherm.

A value of 1/n< 1 indicates strong adsorption bonding as
a result of strong intermolecular attraction within the
adsorbent layers. A value of n between 2 and 10 indicates
good adsorption. However, in this case, when the value falls
between 1 and 2, it indicates medium adsorption capacity,
and n value less than 1 indicates undesired adsorption cap-
acity (Jawad et al. 2018). In our study, the 1/n value was cal-
culated as 0.47. The n¼ 2.10 value obtained from this study
indicates beneficial adsorption. According to the results of
Table 4, it is clear that MB has the potential to be an effect-
ive and economical adsorbent for removal of water.

Reusability study

Both anionic and cationic dyes can be removed from
aqueous solutions using adsorbent materials. However, the
use of such materials may be limited due to some envir-
onmental concerns due to the tdisposal of the adsorbent
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Figure 7. Van’t Hoff plot for MB dye adsorption onto AC/Fe3O4 (adsorbent dose
0.1 g L�1, pH of 7 volume of solution 100mL, and agitation speed 250 rpm).

Table 2. Kinetic results determined based on pseudo 1st and 2nd-order kin-
etic models.

Pseudo 1st order Pseudo 2nd order

qe exp k1, min�1 qecal(mg g�1) R2 k2 (g.mg�1.min�1) qecal (mg g�1) R2

97.96 0.1402 119.46 0.76 0.03 101.01 0.99

Table 3. Thermodynamic parameters for MB dye adsorption onto AC/Fe3O4.

Sample T (K) DG� (kJ mol�1) DS� (kJ mol�1 K�1) DH� (kJ mol�1)

298 �9.74
AC/Fe3O4 308 �10.60 0.101 20.40

318 �11.77
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after saturation. Desorbing dye molecules and regenerating
adsorbents are alternative approaches for the disposal of
spent adsorbents (Alakhras et al. 2022). MB desorption
efficiency was investigated using four different concen-
trated eluents: 0.1M NaOH, 0.2M NaOH, 0.1M HCl, and
0.2 HCl. Desorption efficiency was determined as being
73.42, 78.7, 89.16, and 98.56%, respectively. As can be
seen from these results, the maximum desorption efficiency
was achieved by using 0.2M HCI solution and, was there-
fore was selected as the optimum eluent. Reusability per-
formance is one of the important criteria for cleaning
processes. For the 0.2M HCl eluent, the adsorption-
desorption process was followed and checked. Considering
this important feature, an eight-cycle adsorption/desorption
process was performed to determine the reusable perform-
ance of the Fe3O4/AC adsorbent for the removal of MB
from the aquatic environment. The reusability yield (%)
for each cycle is shown in Figure 9.

Only about a 15% reduction in adsorption efficiency
occurred during the first four cycles, and although the
desorption efficiency was almost constant, it reached about
27% after the 8th cycle. The decrease in the capacity of the
adsorbent we produced may be due to the partial deactiva-
tion of the adsorption sites during the cycling process. As a
result, it is clearly seen that the developed Fe3O4/AC adsorb-
ent exhibits a favorable reuse performance during the
removal of MB from the aqueous medium.

It is also shown that it is suitable for the adsorption and
removal of MB from aqueous solutions. Table 5 shows the
comparison of MB adsorption capacities with different
adsorbents in the literature.

Proposal of the possible adsorption mechanisms

The binding of MB dye to AC/Fe3O4 was mainly investi-
gated from the results of pHpzc studies, and the possible

adsorption mechanism is graphically illustrated in Figure 10.
The possible adsorption mechanism of MB cationic dye on
AC/Fe3O4 can occur in 3 ways: (1) electrostatic attraction,
(2) hydrogen bonding and (3) pi–pi interactions.

Performance graph

The data set was used to determine the optimal architecture
of the ANN model, the maximum R2 value and minimum
MSE value of the test. The training process was carried out
using the standard backpropagation algorithm as the opti-
mization procedure. Figure 11 shows the error performance
graph of the training and test sets obtained from the experi-
mental results.

Figure 11 shows how the error values of the training and
test data at each step changed as a result of the training. The
best performance value indicates the point at which the min-
imum error is reached. As seen in the graph, the training of
the network reached an optimum result in the 12th step.

Comparison of actual value and estimated values

Figure 12 (a) comparison of actual and estimated %removal
values, (b) compares graphics of actual and estimated
adsorption capacities are shown.

In comparison to the normalized data collected from the
experiment, Figures 12a and b show the estimated values of
the normalized removal data for the training and test data-
sets using the ANN model. As can be seen from Figure13,
the actual and estimated values are quite close to each other.
Chowdhury and Saha, in their study in 2013, defined the
optimal topology for MB removal using the 3-13-1 process
with R2 0.9951. (Chowdhury and Saha 2013). As a result, it
was determined that the predicted results of the ANN model
we applied and the experimental results were in harmony
and that the developed ANN model represented the experi-
ments. Figure 13 shows the histogram graph of the experi-
mental data we used in our study.

When the histogram graph in Figure 13 is examined, it
shows a normal distribution which supports the use of linear
regression. Based on this idea, our experimental data set was
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Table 4. Langmuir and Freundlich isotherms equation parameters.

Sample qm(mg/g) b(l/mg) R2 Kf n(l/mg) R2

AC/Fe3O4 277.77 0.43 0.996 33.15 2.10 0.961
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analyzed using multiple linear regression, since the inde-
pendent variable used was more than one.

Modeling of dye adsorption with artificial neural
networks approach

In the study, which was carried out by changing the number
of neurons in the hidden layer for dye adsorption, it was
determined that the best ANN model was a network with 10
neurons. ANN modeling graph is shown in Figure 14.

As can be seen in Figure 14, the ANN model successfully
predicted the optimal structure from the training data (a).

Although there is significant data scatter, it also performed rea-
sonably well during testing and validation (Figures 8b and c).
According to Figure 14, the ANN model performed well overall
for the batch adsorption experimental dataset (d). In the ANN
model shown in Figure 14, with the help of the mean square
error (MSE), a value of 13.20127e�0 for the training data is
obtained for the validation dataset, but 0.9983 for the training
data, 0.9939 for the validation dataset, and 0.9939 for the test
dataset. There are similar findings in studies in the literature.

In this study, % removal and adsorption capacity were
performed with the use of ANN and regression analysis in
dyestuff removal. The Mean Absolute Percent Error (MAPE)
method statistically evaluated experimental and estimation
values. Equation (12) was used to calculate the error with
MATLAB Outputs.

MAPE ¼ 100�
Pn

i¼1 j Reali�Estimated
Reali

j
n

(12)

MAPE ¼ 0.0248 0.0845 is displayed as.
Plotting experimental and prognostic data yields the R-

value utilized in ANN investigations. On the other hand, the
R2 value is a statistical technique used to assess the degree of
linearity between two variables or the link between a variable
and two or more other variables. In our investigation, the neu-
ron in the hidden layer was chosen, and it was selected based
on the R2 value achieved through a method of trial and error.

Normality assumption

The normal distribution of the data is important for mul-
tiple linear regression analysis. In this study, normality ana-
lysis was performed in the SPSS program and the results are
given Table 6.

Figure 9. Reusability yield (%) for eight adsorption/desorption cycles (298 K, adsorbent dose: 0.10 g 0.1 L-1, pH: 7).

Figure 10. The possible mechanism between the dyestuff and the adsorbent.

Table 5. Comparison of MB adsorption capacity of different kinds of adsorbents reported in the literature.

Adsorbent qmax (mg /g) Isotherm Adsorption kinetic Ref.

Microalgae 297.1 Langmuir Pseudo-second order Abdulhameed et al. 2022
Mangosteen peels activated carbon (MSPAC) 163.6 Langmuir Pseudo-second order Jawad et al. 2022
Watermelon peel (WMP) 312.8 Langmuir Pseudo- second order –
Activated carbon (MSMPAC) 232.8 Langmuir Pseudo-second order Razali et al. 2022
Pumice powder 35.71 Langmuir Pseudo second order Sharafi et al. 2015
Pomelo fruit peel 218.5 Langmuir Pseudo-second order Dinh et al. 2019
AC/Fe3O4 277.77 Langmuir Pseudo-second order This study

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 1725



The hypotheses are set up as follows:

H0: data are normally distributed with 95% confidence.
H1: data are not normally distributed with 95% confidence.

As seen in Table 6, “Kolmogorov–Smirnov” and
“Shapira–Wilk” tests were applied in the analysis of normal-
ity. All H0 hypotheses were accepted since the “Sig” values
were greater than 0.05. The data are normally distributed at
the 95% confidence interval. In this context, the p value was

accepted as 5%. The p value is usually “Sig.” in packaged
programs, expressed by abbreviation. “Sig.” “significance is
the abbreviation of the word ”significance.

Normality analysis can also be checked by looking at the
Skewness and Kurtosis values. If these values are between
�1.5 and þ 1.5, it is assumed that they are normally distrib-
uted. (Jani et al. 2022) Since the values marked in Table 7
are between �1.5 and þ1.5, it has been proven that the data
used complies with the normality assumption.

Figure 11. Error performance graph for training and test data.

Figure 12. (a) Comparison of percent removal estimation output with actual output, (b) comparison of qe (adsorption capacity) estimated output with actual
output.
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Figure 15a shows the % removal Normality Test Graph
and Figure 15b shows the Adsorption Capacity) Normality
Test Graph.

Looking at the graphs in Figure 14a and b, it is seen that
the data is in line with the curve. This shows that the data
fit the normality distribution graphically.

Regression and statistics tests

Regression and statistical tests were performed in SPSS and
their outputs are given in Table 8) below.

a. Dependent variable:%Removal
b. All requested variables entered.

Figure 14. ANN modeling graph.

Figure 13. Histogram graph.
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Since the most used method is the ”Enter” method, this
method was used in the selection of variables. The feature of
the “Enter” method is that it simultaneously includes the
arguments in the system. As an output, the effect of each
independent variable on the model was evaluated. A model
summary of % removal and qe (Adsorption capacity) is
given in Table 9.

Tables 9 give the % removal and qe (Adsorption capacity)
summaries of the models. When these summaries are exam-
ined, the R2 value for the % reduction was found to be
0.801. However, since the model fits multiple regression, the
adjusted R2 value should be taken into account. It is seen
that this value is 0.790. Therefore, the effect of 5 independ-
ent variables on the dependent variable is 80%. The remain-
ing 20% are other parameters that are not included in the
system. For qe (Adsorption capacity), the R2 value was found
to be 0.944. However, since the model fits multiple regres-
sion, the adjusted R2 value should be taken into account. It
is seen that this value is 0.941. Therefore, the effect of 5
independent variables on the dependent variable is 94%. The
remaining 6% are other parameters that are not included in
the system. As can be seen from Table 9 the values of
adjusted R2 is lower than R2, which reflects the good quality
of the model. Similar results are seen in the literat€ure
(Jaafari et al. 2020).

In Table 10, the % removal coefficients and significance
values for the regression model are given, and in Table 10,
the qe (Adsorption Capacity) coefficients and significance
values are given.

Table 10 show the coefficients and significance values for
the regression model. The coefficient of the constant term
was calculated as 67.221 qe (Adsorption Capacity) 57.913 for
%removal and its value was specified as less than 0.001 for

%removal. 0.002 was found for qe Since both are less than
0.05, they have a 5% significance level. It was concluded that
the variables were significant.

ANOVA test results for % removal and qe are given in
Table 11.

The F test results in Table 11 are for use for y our model.
It is therefore not intended for the F test.

Although artificial intelligence and ANN studies are close
to real experimental results, they are also very important in
terms of sustainability. It is an indicator of sustainability, as
it is environmentally and cost-effective. In our study, the
fact that the results of real experiments are approximate to
the results of ANN experiments shows that this study is
appropriate in terms of feasibility analysis.

Figure 15. (a) %Reduction Normality Test Graph, (b) qe (adsorption capacity) Normality Test Graph.

Table 6. Test of normality.

Kolmogorow-Smirnova Shapiro-Wilk

Sitatistic df Sig. Sitatistic df Sig.

%Removal 0.212 99 0.073 0.824 99 0.164
qe 0.214 99 0.074 0.844 99 0.164
aPredictors (Concentration, temperature, time, pH, dosage).

Table 7. Kurtosis and skewness values.

Descriptives

Statistic Std. error

%Removal Mean 90.842 1.006
95%Confidence interval for mean
Lower bound

88.846

Upper bound 92.840
5% Trimmed mean 91.640
Median 95.285
Variance 100.250
Std. deviation 10.012
Minimum 66.190
Maximum 99.952
Range 33.762
Interquartile range 15.821
Skewness �1.020 0.243
Kurtosis �0.196 0.481
Mean 127.553 10.139

qe 95%Confidence interval for mean
Lower bound

107.433

Upper bound 147.673
5% Trimmed mean 119.350
Median 98.495
Variance 10.176
Std. deviation 100.878
Minimum 9.995
Maximum 426.647
Range 416.652
Interquartile range 96.125
Skewness 1.282 0.243
Kurtosis 0.821 0.481
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Conclusion

An AC/Fe3O4 adsorbent has been effectively employed to
remove MB cationic dye from aqueous solutions. SEM/EDS,
FTIR, and XRD results showed that the composite was suc-
cessfully prepared. Adsorption experiments showed that the
pseudo-second-order model provided the best description of
the kinetic uptake properties, while the adsorption results at
equilibrium were explained by the Langmuir model, where
the maximum adsorption capacity (qmax) was 277.7mg g�1.
Thermodynamic parameters show that the adsorption pro-
cess is endothermic in nature and is a spontaneous adsorp-
tion process. The % removal rate and adsorption were
estimated using the simplest possible architecture built on
the ANN architecture and taking into account the values of
the other variables at a time “t” and the values before this
time at a certain time “t”. The Levenberg–Marquardt algo-
rithm was used, and the number of neurons was determined
as 10. The results found that the predictive values were 2%
and 8%, respectively, and the R2 value was 99%. For the
training, validation, and test datasets, it was seen that the R2

values were very close to 1, the MSE values were very small,
and the output data predicted by the models was in har-
mony with the experimental data. These ANN models repre-
sent the adsorption of dyestuffs. In addition, the results of
the F tests are shown for the whole model. Therefore, when
the F test values were examined, it was concluded that the
model is completely statistically significant. As a final result,
the regression model and statistical tests were found to be

significant. The results showed that neural network model-
ing could effectively predict MB removal from AC/Fe3O4. In
future studies, modeling studies for the removal of other
water pollutant categories such as heavy metals, pesticides,
herbicides and antibiotics can be investigated with the
AC/Fe3O4 adsorbent.
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Table 9. Model summary.

Model R R square Adjusted R square Std. The error in the estimate R square change F change df1 df2 Sig. F change

%Removal 1 0.895a 0.801 0.790 4.585985415 0.801 74.827 5 93 ˂.001
qe 1 0.972a 0.944 0.941 24.45371117 0.944 314.950 5 93 ˂.001
aPredictors (Concentration, temperature, time, pH, dosage).

Table 10. % Removal and qe coefficients and significance values.

Coefficients

Unstandardized coefficients Standardized coefficients

Model B Std.Error Beta t Sig

1(Constant) 67.221 3.388 19.842 ˂.001
pH �0.049 0.364 �0.006 �0.134 0.033

%Removal Time 0.300 0.013 0.788 16.681 ˂0.001
Concentration �0.39 0.005 �0.462 �8.624 ˂0.001
Dosage 17.013 5.192 0.156 3.277 0.001
Temperature 0.098 0.083 0.063 1.180 0.241
1(Constant) 57.913 18.064 3.206 0.002

qe pH 1.083 1.939 0.014 0.559 0.048
Time 0.286 0.096 0.075 2.989 0.004
Concentration 0.815 0.024 0.0956 33.746 ˂0.001
Dosage �256.061 27.686 �0.233 �9.249 ˂0.001
Temperature 1.894 0.444 �0.121 �4.269 ˂0.001

Table 11. %Removal and ANOVA.

ANOVA

Model Sum of squares df Mean square F Sig.

1 Regression 7.868 5 1.573711 74.827 ˂.001a

%Removal Residual 1.955464 93 21.031
Total 9.824464 98

1 Regression 941.676499 5 188.3353 74.827 ˂.001b

qe Residual 55.612511 93 597.984
Total 997.289010 98

aDependent Variable:%Removal.
bDependent Variable qe. Predictors: (Constant), temperature, time, pH, dosage,
concentration.

Table 8. Input data for %removal and qe.

Variables entered/Removed

Model Variables entered Variables removed Method

%Removal 1 Temperature, time, pH, adsorbent dosage, concentrationa Enter
qe 1 Temperature, time, pH, adsorbent dosage, concentrationb Enter
aDependent Variable: %Removal.
bDependent Variable qe.
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