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Abstract
Obstructive sleep apnea is a disease that occurs in connection to pauses in respiration during sleep. Detection of the disease 
is achieved using a polysomnography device, which is the gold standard in diagnosis. Diagnosis is made by the steps of 
sleep staging and respiration scoring. Respiration scoring is performed with at least four signals. Technical knowledge is 
required for attaching the electrodes. Additionally, the electrodes are disturbing to an extent that will delay the patient’s 
sleep. It is needed to have systems as alternatives for polysomnography devices that will bring a solution to these issues. This 
study proposes a new approach for the process of respiration scoring which is one of the diagnostic steps for the disease. 
A machine-learning-based apnea detection algorithm was developed for the process of respiration scoring. The study used 
Photoplethysmography (PPG) signal and Heart Rate Variability (HRV) that is derived from this signal. The PPG records 
obtained from the patient and control groups were cleaned out using a digital filter. Then, the HRV parameter was derived 
from the PPG signal. Later, 46 features were derived from the PPG signal and 40 features were derived from the HRV. The 
derived features were classified with reduced machine-learning techniques using the F-score feature-selection algorithm. The 
evaluation was made in a multifaceted manner. Besides, Principal Component Analysis was performed to reduce system input 
(features). According to the results, if a real-time embedded system is designed, the system can operate with 16 PPG feature 
95%, four PPG feature 93.81% accuracy rate. These success rates are highly sufficient for the system to work. Considering 
all these values, it is possible to realize a practical respiration scoring system. With this study, it was agreed upon that PPG 
signal may be used in the diagnosis of this disease by processing it with machine learning and signal processing techniques.

Keywords  Biomedical signal processing · Respiratory arrests · Photoplethysmography · Obstructive sleep apnea · 
Automatic respiratory staging · Apnea detection · Heart rate variability · Ensemble classification

Introduction

Obstructive sleep apnea (OSA) is a respiratory disorder that 
occurs in connection to pauses of respiration during sleep. 
Diagnosis of the disease is made with the help of a polysom-
nography (PSG) device which collects bioelectric signals, 
with the steps of sleep staging and respiration scoring based 

on the guide by the American Academia of Sleep Medicine 
(AASM) [1]. Sleep staging is for detection of the time the 
patient spends asleep, and respiration scoring is for detection 
of the number and duration of abnormal respiratory events 
that occur in sleep. Sleep staging can only be carried out 
by a specialist doctor using Electroencephalography (EEG), 
Electrooculogram (EOG) and Electromyogram (EMG) sig-
nals with at least 16 channels [1, 2]. Respiration scoring 
is achieved with at least 4 channels of signals using blood 
oxygen saturation, oral-nasal air flow signals, thorax and 
abdominal respiration movement signals [1]. As a result of 
these steps, diagnosis of the disease is made by calculation 
of the Apnea Hypopnea Index (AHI) by dividing the number 
of abnormal respiratory events by the time spent in sleep. 
If AHI < 5 , the individual is considered to be normal. If 
AHI > 5 , the individual has OSA and the severity of the 
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disease is determined based on the value of AHI. In gen-
eral, sleep staging and respiration scoring has crucial value 
for diagnosis. Several disadvantages of the system such as 
the inconvenient diagnosis process, unsuitable nature of the 
device for home usage, prevention of the patients from their 
natural sleep environment due to the high number of elec-
trodes, the need for a technician to connect the patient to the 
system and the necessity of a specialist doctor to examine 
the data, trigger development of new systems [3, 4].

Respiration scoring is still carried out in practice by 
interpretation of PSG records by a specialist doctor based 
on the guide by AASM. However, in order to improve the 
current systems, studies have been conducted in the litera-
ture using new signals such as respiration signal, peripheral 
oxygen saturation (SpO2 ), electrocardiogram (ECG), photo-
plethysmography (PPG) and Heart Rate Variability (HRV) 
[3, 5–13]. Signals may be ranked based on ease of obtaining 
them as PPG, SpO2 , HRV, ECG and respiration signal. If the 
diagnosis of OSA is achieved by disturbing the patient less, 
the discomfort created by the PSG device may be minimize.

There are many approaches in the literature on OSA diag-
nosis with ECG [6, 14–16]. A recent study on diagnosing 
OSA using ECG records for the entire period the patient 
spends in bed [6]. However, based on the definition of OSA, 
it is required to detect the abnormal respiratory events that 
occur during sleep. While even ECG signals differ between 
the states of being awake and asleep, usage of all records 
affects the reliability of the system negatively. A different 
study analyzed OSA records minute by minute [16]. How-
ever, more than one 10 s respiratory pauses may occur in a 
minute. As the number of apneas would change in this case, 
accurate OSA diagnosis would not be possible. The most 
noticeable shortcoming in other OSA diagnosis studies in 
the literature is that they are far from the criteria of AASM 
[3, 8, 11]. The most important reason for this issue is that 
engineers are not familiar with the OSA diagnosis process, 
they do not work in a multidisciplinary nature, and studies 
are far from a doctor’s supervision.

Different studies emphasized that PPG signal may be used 
in OSA diagnosis [8, 11, 17]. However, a clear system using 
PPG was developed only recently [5]. This system also has 
shortcomings. The study not only distributed the data of 

the apnea and control groups unevenly, but the number of 
patients was low. Thus, accuracy rates could be distorted. 
Additionally, the study used to many PPG features. It is very 
difficult to realize a system in practice with so many features. 
Usability of the system may be increased by increasing the 
number of features even more and making selections later. 
Despite all this research, there is still a need for more practi-
cal systems [5, 18]. In addition to these studies, the OSA res-
piration rate determination method based on Characteristic 
Moment Waveform has been developed [19].

Another method developed in the literature for the sepa-
ration of respiratory signals is the Voice Activity Detection 
(VAD) algorithm [20]. According to this method, breath-
holding and regular breath exchange are determined by the 
energy of the acoustic breathing signal.

This study developed a machine-learning-based apnea 
detection algorithm for the process of respiration scoring, 
which is an important step of OSA diagnosis. Apnea is 
generally defined as the stoppage of air flow from the nose 
and the mouth for at least 10 h [21]. PPG signal and HRV 
that is derived from this signal was used for diagnosis. The 
PPG records taken from the patient and control groups were 
cleaned with a digital filter. Then, features were derived 
from PPG and HRV in the domain of time and frequency. 
The derived features were reduced using feature selection 
algorithms and classified using machine learning techniques.

The flow of the article is as follows: the 2nd section 
defines the database used in the study, explains the signal 
processing and feature derivation steps for PPG signals and 
introduces the machine learning methods used in the study. 
The 3rd section provides simulation results, and the 4th sec-
tion interprets the results.

Materials and methods

The signal processing steps in the study were carried out 
based on the stages shown in Fig. 1. Based on these steps, 
firstly, a database was established with the PPG records of 
the individuals. Then digital filtering was done for cleaning 
the noise on the PPG signals, and HRV values were created 
from the PPG signals. Later, feature derivation was carried 

Fig. 1   General signal process-
ing flow diagram



Australasian Physical & Engineering Sciences in Medicine	

1 3

Ta
bl

e 
1  

D
em

og
ra

ph
ic

 in
fo

rm
at

io
n 

of
 a

pn
ea

 a
nd

 c
on

tro
l g

ro
up

s, 
an

d 
da

ta
 d

ist
rib

ut
io

ns

D
ist

rib
ut

io
ns

 a
re

 sh
ow

n 
as

 th
e 

m
ea

n 
±

 st
an

da
rd

 d
ev

ia
tio

n
BM

I B
od

y 
M

as
s I

nd
ex

, A
H
I A

pn
ea

 H
yp

op
ne

a 
In

de
x,

 IN
 in

di
vi

du
al

 n
um

be
r

In
fo

rm
at

io
n

Fe
m

al
e

M
al

e
A

ll 
in

di
vi

du
al

s

n
1
=
5

n
2
=
5

n
=
n
1
+
n
2
=
1
0

A
ge

 (y
ea

r)
5
9
±
5

5
3
±
1
1
.3
1

5
6
±
8
.7
9

W
ei

hg
t (

kg
)

1
0
3
.6
±
1
0

1
0
2
.0
2
±
6
.8

1
0
2
.8
1
±
8
.2
8

H
ei

gh
t (

cm
)

1
6
2
±
3

1
7
3
±
2
.8
3

1
6
7
.5
±
6
.4
3

B
M

I (
kg

/m
2
)

3
9
.4
6
±
3

3
4
.1
4
±
3
.0
6

3
6
.8
±
4
.0
5

A
H

I
9
.5
2
±
6

2
4
.3
8
±
1
3
.2
1

1
6
.9
5
±
1
2
.5
2

IN
1

2
3

4
5

6
7

12
19

27
Se

x
Fe

m
al

e
M

al
e

M
al

e
M

al
e

M
al

e
M

al
e

Fe
m

al
e

Fe
m

al
e

Fe
m

al
e

Fe
m

al
e

A
pn

ea
12

2
23

4
19

1
26

8
19

57
10

0
78

48
8

C
on

tro
l

31
48

59
21

49
25

6
72

23
4

18
7

27
6

G
ro

up
Ep

oc
h 

nu
m

be
rs

 a
nd

 d
ur

at
io

ns

A
pn

ea
Ep

oc
h

35
6

76
9

11
25

D
ur

at
io

n
3
2
.0
2
1
9
±
1
4
.3
4
5
9

2
3
.8
9
3
4
±
1
0
.2
0
1
1

2
6
.4
6
5
6
±
1
2
.2
6
4
1

N
or

m
al

Ep
oc

h
80

0
43

3
12

33
D

ur
at

io
n

2
4
.8
7
0
3
±
1
1
.8
5
8

2
5
.9
8
7
±
1
2
.6
8
3
2

2
5
.2
6
2
5
±
1
2
.1
6
0
7



	 Australasian Physical & Engineering Sciences in Medicine

1 3

Fig. 2   Feature extraction flow 
diagram

Fig. 3   Determining the local 
minimum and maximum points 
and a single period PPG signal

Fig. 4   Characteristic features of 
the PPG signal
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out on the PPG and HRV values. Based on the relationship 
between the derived features and apnea, features that were in 
harmony with the feature selection algorithm were selected. 

They were then classified with machine learning techniques 
and the system performance was tested.

Receiving records

The data in the scope of the study were recorded using a 
SOMNOscreen Plus PSG device at the Sleep Laboratory 
of the Department of Pulmonary Diseases at Sakarya Hen-
dek State Hospital. The study was conducted using PPG 
signals with a sampling frequency of 128 Hz. The demo-
graphic information for the individuals is given in Table 1. 
The records were examined by a specialist doctor, respira-
tion scoring and sleep staging steps were carried out. At the 
stage after this, PPG records during respiration pauses were 
recorded. The study used the records of respiration pauses 
that were labeled as obstructive apnea and hypopnea. As a 
study found that there was no significant difference between 
apnea and hypopnea, this study used apnea as an umbrella 
term for both apnea and hypopnea [22]. As correspond-
ence to apnea records, control group records were created. 
The statistical information regarding the records collected 
from the individuals for apnea and control groups is given 
in Table 1. Individual number is a unique number given to 
the patients by the system. The apnea and control labels 
provide the numbers of records obtained from the patient. 
For example, 122 apnea epochs determined by the doctor 
were obtained from the patient with the number 1. Addi-
tionally, 31 epochs were taken from this patient where they 
were asleep, and their respiration was regular. Each epoch 
contains a minimum 10 s of PPG record as necessitated by 
the definition of apnea.

Signal pre‑processing

In order to clean the noise on the PPG signals, the signals 
were treated with a 0.1–20 Hz IIR-Chebyshev Type II band 

Table 2   Equation for time domain features

IQR interquartile range, DK coefficient of variation
*The property was computed using MATLAB

No Feature Equation No

8 Mean x =
1

n

∑n

i=1
=

1

n
(x1 +⋯ + xn) 1

9 Standard deviation
S =

�
1

n

∑n

i=1
(xi − x)

2

10 Average curve length CL =
1

n

∑n

i=2
�xi − xi−1� 3

11 Average energy E =
1

n

∑n

i=1
x2
i

4

12 Average teager energy TE =
1

n

∑n

i=3
(x2

i−1
− xixi−2) 5

13 Activity—Hjort parameters A = S2 6
14 Mobility—Hjort parameters M = S2

1
∕S2 7

15 Complexity—Hjort param-
eters

C =
√

(S2
2
∕S2

1
)2 − (S2

1
∕S2)2

8

– * Maximum xmax = max(xi) 9
16 Skewness xske =

∑n

i=1
(xi−x)

3

(n−1)S3
10

17 Kurtosis xkur =
∑n

i=1
(x(i)−x)4

(n−1)S4
11

18 Shape factor
SF = Xrms

��
1

n

n∑
i=1

�
��xi��

�
12

19 * Minimum xmin = min(xi) 13
20 Root mean squared

Xrms =

�
1

n

∑n

i=1
�xi�2

14

21 * Singular value decomposi-
tion

SVD = svd(x) 15

22 Median ∼
x =

{
x n+1

2

: x odd

1

2
(x n

2

+ x n

2
+1) : x even

16

23 Geometric mean G = n
√
x1 +⋯ + xn 17

24 Harmonic mean H = n
/(

1

x1
+⋯ +

1

xn

)
18

25 * 25% trimmed mean T25 = trimmean (x, 25) 19
26 * 50% trimmed mean T50 = trimmean (x, 50) 20
27 Range R = xn − x1 21
28 * IQR IQR = iqr(x) 22
29 * Mean absolute deviation MAD = mad(x) 23
30 * Central moments CM = moment(x, 10) 24
31 DK DK = (S∕x)100 25
– * Normality test p [p, h] = kstest(x) 26
– * Normality test h1,0 27
32 * Sign test p [p, h] = signtest(x) 28
33 * Sign test h1,0 29
34 Standard error Sx̄ = S

�√
n 30

35 Count of maximum YMaks –
36 Count of minimum YMin –

Table 3   Formulas for features in frequency domain

NF number of features, S sensitivity, Sp specificity, A accuracy

No Equation Feature Equation No

37 EPPG Energy rate EHRV 31
– – EHRVVLF

32
38 EPPGLF

EHRVLF
33

39 EPPGMF
– –

40 EPPGHF
EHRVHF

34
41 EPPGLF

∕EPPG EHRVVLF
∕EHRV 35

42 EPPGMF
∕EPPG EHRVLF

∕EHRV 36
43 EPPGHF

∕EPPG EHRVHF
∕EHRV 37

44 EPPGLF
∕EPPGMF

EHRVVLF
∕EHRVLF

38
45 EPPGLF

∕EPPGHF
EHRVVLF

∕EHRVHF
39

46 EPPGMF
∕EPPGHF

EHRVLF
∕EHRVHF

40
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Fig. 5   F-score feature selection 
processing steps

Fig. 6   Classification flow 
diagram
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pass moving average filter. Filters are designed and applied 
in Matlab environment. Later, HRV parameters were cre-
ated by using the cleaned PPG signals. While obtaining 
each HRV parameters from PPG signal, peak points of the 
PPG signal are determined. Corresponding to N peak points 
detected, N − 1 HRV parameters are calculated. A HRV 
parameter corresponds to the time interval between PPG’s 
two subsequent peak points.

Feature extraction for signal processing

46 (Time domain 36, frequency domain 10) features from 
the PPG and 40 (Time domain 30, frequency domain 10) 
from the HRV were excluded.

To get a feature (Fig.  2), first, we divided the signal 
into periods. The number of periods is T = LOCMIN − 1 . 
The number of the periods in the signal is calculated by 
T = LOCMIN − 1 , where T is the number of periods, and 

LOCMIN is the number of minima. Figure 3 shows determi-
nation of the minimum and maximum points for a 30-s PPG 
signal.

The desired feature was derived from each period of the 
PPG signal, its average value was taken, and recorded as the 
feature of the relevant epoch. This way, it is ensured that the 
features are obtained with minimum error. For example, while 
computing the feature of standard deviation, the standard devi-
ation values are computed separately in each period obtained, 
their average is taken, and a single standard deviation value 
is obtained for the epoch. The steps were repeated for all the 
features derived.

In the study the first 7 features among the 46 features 
derived from the PPG signal were characteristic features, and 
they are shown on Fig. 4 as numbered.

In the time domain, 29 and 30 statistical properties were 
derived from the PPG signal and HRV respectively (Table 2). 

Fig. 7   General network struc-
ture for MLFFNN and PNN

Table 4   Network operation 
parameters

Training algorithm Number of neurons Iteration

Levenberg–Marquardt trainlm 1 10
BFGS Quasi-Newton trainbfg 2
Resilient backpropagation trainrp 3
Scaled conjugate gradient trainscg 4
Conjugate gradient with Powell/Beale restarts traincgb 5
Fletcher–Powell conjugate gradient traincgf 6
Polak–Ribiére conjugate gradient traincgp 7
One step secant trainoss –
Variable learning rate gradient descent traingdx 100
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The features marked “*” were calculated using MATLAB 
library [23]. The x shown in formulae represents the signal.

In addition to the statistical features, the study also deter-
mined the energy amounts in the frequency bands of signal and 
used these as features of the frequency domain. While deriving 
the frequency domain features, firstly the sub-frequency bands 
of the signals were derived. The PPG signal has three different 
sub-frequency bands as the low frequency band at 0.04–0.15 
Hz (LF), the medium frequency band at 0.09–0.15 Hz (MF) 
and the high frequency band at 0.15–0.6 Hz (HF) [24, 25]. 
PPG

LF
 , PPG

MF
 and PPG

HF
 are the PPG signals in LF, MF 

and HF bands respectively. HRV was divided into three bands 
as the very low frequency band at 0.0033–0.04 Hz (VLF), 
the low frequency band at 0.04–0.15 Hz (LF) and the high 
frequency band at 0.15–0.4 Hz [24, 25]. HRV represents HRV, 
HRV

VLF
 represents the VLF band, HRV

LF
 represents the LF 

band, and HRV
HF

 represents the HF band.
In order to obtain the PPG and HRV sub-frequency 

bands, a IIR Chebyshev Type II filter was used. As a result 
of the application, three sub-frequency bands were acquired. 
With the six frequency bands, a total of eight vectors were 
obtained. In order to calculate frequency features, the ener-
gies of these signals were calculated. Energy calculation was 
made with Eq. 1. Here, x represents the signal whose energy 
is calculated.

The energy of the signal was calculated (Table 3). E
PPG

 , 
E
PPGLF

 , E
PPGMF

 , E
PPGHF

 , E
HRV

 , E
HRVVLF

 , E
HRVLF

 and E
HRVHF

 are 
energy of the PPG signal, the LF band, the MF band, the HF 
band, the HRV, the VLF band, LF band and the HF band 
respectively.

Property selection algorithm

F-score is a feature selection algorithm that can be used 
to reduce the number of features and select important 
features (Fig. 5) [26]. The F-score value is calculated for 

(1)E =

+∞∑

i=−∞

|x[i]|2

each property according to the method 2 [26]. The thresh-
old value for the feature selection is the average of the 
F-score of all properties. Properties on the threshold value 
are selected.

In Eq.  2, x
k,i is the feature vector, k = 1, 2… ,m and 

m = n+ + n− are the total numbers elements in the positive 
(+) and negative (−) classes, i is the number of features. n− 
and n+ are the number of samples in the negative (−) class 
and the positive (+) class respectively.

x̄
i
 , x̄(−)

i
 and x̄(+)

i
 are the average value, the average value 

in the negative class and positive class respectively. x(+)
k,i

 
and x(−)

k,i
 are kth positive and negative sample for ith feature 

respectively.

Classification stage

The purpose in the process of classification is to achieve the 
respiration scoring process based on machine learning with 
the help of PPG signal and HRV features. Classification was 
made in two steps as seen in Fig. 6. In the first stage, the fea-
tures were classified without subjecting them to any process. 
Later, they were treated with the F-score feature selection 
algorithm two times, and classified in each step.

(2)

F(i) =
(x̄

(+)

i
− x̄

i
)2 + (x̄

(−)

i
− x̄

i
)2

1

n+−1

∑n+

k=1
(x

(+)

k,i
− x̄

(+)

i
)2 +

1

n−1

∑n−

k=1
(x

(−)

k,i
− x̄

(−)

i
)2

Fig. 8   Separation of classes by 
a linear and b nonlinear lines

Table 5   Three different kernel functions in SVM classifier

Kernel function BoxConstraint Stand-
ardized

Gaussian or radial basis 
function (RBF) kernel

rbf 1 1 True
2

Linear kernel Linear 3
4 0 False

Polynomial kernel Polynomial –
100
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Four different machine learning techniques were used for 
the classification operation. These are the k-nearest neighbor 
algorithm (kNN), the multilayer feed forward artificial neu-
ral networks (MLFFNN), probabilistic artificial neural net-
works (PNN) and support vector machines (SVMs). Addi-
tionally, the study used an ensemble classifier which worked 
based on the common decision of all these classifiers.

In order to interfere with machine learning parameters, 
algorithms are prepared without using Matlab toolbox.

k‑Nearest neighbors classification

kNN is a controller learning method which solves the 
problem of classification [27]. The important thing in the 
method is that the features of each class have been clearly 
determined beforehand. The performance of the method is 
influenced by k nearest neighbors, similarity measurement 
and sufficient sample in the datasets. The k value is selected 
at the start. Selecting a high k value may result in gathering 
groups of data that are not similar to each other. Studies 
usually prefer k values of 3, 5 or 7 [28].

The kNN classifier works as the following. A k value 
is determined at the start. k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 were 
used here. Then, the distance between the data with known 
class label and those without known class label is calcu-
lated. Distance calculation may be made using various 
distance calculation formulae. This study used 11 different 
distance calculation formulae. These were: Chebychev, City-
block, Correlation, Cosine, Euclidean, Hamming, Jaccard, 
Mahalanobis, Minkowski, Seuclidean and Spearman. Using 
the distance formulae, the k nearest neighbors are found. The 
majority is determined using the k nearest neighbors. The 
majority label is determined as the label for the data without 
previously known label. The study used 10 different k values 
and 11 different distance calculation formulae. This way, 
110 different structures of kNN networks were established 
for classification of a single data set, and the most efficient 
result was determined.

Multi‑layer feed forward artificial neural networks

Artificial neural networks are architectures that are formed 
by connecting artificial neurons [29]. This architecture con-
sists of one-way channels and interconnected elements for 
processing data [30]. There are three types of networks as 
feed forward networks, cascade networks and back-propa-
gation networks. A feed forward network consists of three 
fundamental layers for a certain task as the input layer, the 
hidden layer and the output layer as seen in Fig. 7. The data 
start at the input layer and follow the order of the hidden 
layer and finally the output layer in one direction.

There are various initial parameters for the MLFFNN 
classifier. These are summarized in Table 4. The study 
used nine different training algorithms and neuron number 
(1–100) parameters for MLFFNN. A MLFFNN with any 
parameter does not produce the same result two times in 
a row. In order to produce better results in the study, the 
MLFFNN was run ten times with the same parameters. 
For example, a total of 9 × 100 × 10 = 9000 different net-
works were run for classification of the PPG data, and the 
best network results were selected. Considering there were 
nine different data sets, the study formed 81000 different 
MLFFNNs.

Fig. 9   Ensemble classifier 
working algorithm

Table 6   Data distribution in training and test phases in the classifiers

Class (%) Respiratory scoring

Apnea (%) Control (%) Total (%)

Training 562 617 1179
(50) (47.67) (52.33) (100)
Test 563 616 1179
(50) (47.75) (52.25) (100)
Total 1125 1233
(100) (100) (100)
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Probabilistic artificial neural networks

PNN is the application of a statistical algorithm for ideal 
classification problems [31]. In classification processes, a 
PNN is a network that is based on consideration of all points 
[32]. For a point to be used for classification, distances to 
all other points are calculated. As the basis of the function 
is the radius distance, it was named a radial-based function.

PNN is similar to the structure of multi-layer artificial 
neural networks. Figure 7 shows the general structure of 
the network. In this structure, the number of neurons in the 
input layer is equal to the number of features assigned to the 
network. The study used numbers of features that could be 
used as network input as the numbers of features selected 
(4, 5, 11, 16 and 28) as summarized in Table 7. The network 
structure had two hidden layers. The number of neurons in 
the first one was same as the number of samples fed to the 
network. The second one had two neurons. As the study had 
two different output values (Apnea/Control), the output layer 
had two neurons.

For the PNN classifier, it is possible to manipulate the 
spread starting parameter only. As the spread parameter 
approaches zero, it starts to behave like the nearest neighbor 
classifier [33]. As this value get further away from zero, the 
classifier makes a classification by considering a few vec-
tors that separate classifying data from each other [33]. This 
value was designed with a total of 5000 different values in 
the range of 0.001–5 with increments of 0.001. At the end of 
the study, the network parameters and performance criteria 
that provided the best performance were calculated.

Support vector machines

SVMs were proposed by Cortes [34]. In addition to clas-
sification problems, SVMs are also effectively used in 

regression analyses. SVMs, in general, aim to divide two 
classes with linear or non-linear lines. As an example, 
Fig. 8 shows how the data are divided as (a) linear and (b) 
non-linear.

SVMs are a training algorithm for classification opera-
tions. The purpose of the algorithm is to be able to separate 
the data sets on the hyperplane in the most suitable way 
and classify the data with maximum accuracy rate [35]. 
The learning data that are the nearest to the hyperplane are 
named support vectors. Figure 8a shows support vectors. 
Curves is solution that divides the datasets into two parts 
(Fig. 8).

The network parameters used in the SVMs designed in 
the study are summarized in Table 5. As the network param-
eters, there were three different kernel functions, BoxCon-
straint parameter in the range of 1–100, and the parameters 
of whether the data were standardized (normalized) or not 
(two different states). Considering these parameters, at total 
of 3 × 100 × 2 = 600 different networks were defined in the 
study for classification, the best-performing network was 
determined, and performance evaluation criteria for the net-
work were calculated.

Ensemble classifier

The community classifier consists of many classifiers. The 
aim of the community classifier is to have better perfor-
mance than single classifiers [36]. The working structure and 
flow chart of the ensemble classifier are presented in Fig. 9. 
The system is formed with N classifiers. N may be odd or 
even. While making classification based on the features vec-
tor, each classifier produces an output value for the 1st fea-
ture vector. The output values are counted. In the following 
stage, with majority of votes, the decision of the ensemble 
classifier is reached. If the number of classifiers is even, the 

Table 7   Feature selection 
results for respiratory scoring 
with F-score

FSN feature selection number, FS feature selection, NSF number of selected features, SFN selected feature 
numbers

FSN 1st FS 2nd FS

Signal NF NSF SFN NSF SFN

PPG 46 16 1 9 10 15 18 19 20 4 18 32 33
21 23 27 28 29 32 33 43
34 43

HRV 40 11 2 5 7 8 9 13 21 5 2 9 21
22 23 25 30 23 25

PPG HRV 86 13 + 15 = 28 PPG 1 9 15 18 19 20 3 + 8 = 11 18 32 33
21 27 29 32 33 34
43

HRV 2 5 6 7 8 9 2 7 8
13 14 16 20 21 22 9 21 23
23 25 28 25 28
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Table 8   Classifier results of PPG features for respiration scoring

k-Nearest neighbor algorithm (kNN)

NP k = 3, distance function = ‘cosine’ k = 5, distance function= ‘cityblock’ k = 9, distance function = ‘seu-
clidean’

Class WoFSI WFSI WFSI

NF = 46 NF = 16 NF = 4

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.80 0.84 82.27 0.74 0.83 79.13 0.69 0.77 73.11
Control 0.84 0.80 0.83 0.74 0.77 0.69
AUC​ 0.82 0.79 0.73
Kappa 0.64 0.58 0.46
F-measure 0.82 0.79 0.73
k(10)-fold (%) 79.30 75.83 68.96

Multi-layer artificial neural networks (MLFFNN)

NP NN = 92, TA = ‘trainlm’ NN = 92, TA = ‘trainlm’ NN = 79, TA = ‘trainlm’

Class WoFSI WFSI WFSI

NF = 46 NF = 16 NF = 4

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.80 0.88 83.80 0.80 0.83 82.02 0.68 0.79 73.79
Control 0.88 0.80 0.83 0.80 0.79 0.68
AUC​ 0.84 0.82 0.74
Kappa 0.67 0.64 0.47
F-measure 0.83 0.82 0.73
k(10)-fold (%) – – –

Probabilistic artificial neural networks (PNN)

NP Spread = 0.3410 Spread = 0.0910 Spread = 0.0980

Class WoFSI WFSI WFSI

NF = 46 NF = 16 NF = 4

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.71 0.88 80.24 0.73 0.81 77.18 0.67 0.76 71.93
Control 0.88 0.71 0.81 0.73 0.76 0.67
AUC​ 0.80 0.77 0.72
Kappa 0.60 0.54 0.44
F-measure 0.79 0.77 0.71
k(10)-fold (%) – – –

Support vector machines (SMVs)

NP Kernel = ‘rbf’, BC = 70 Kernel = ‘rbf’, BC = 1 Kernel = ‘rbf’, BC = 1

Class WoFSI WFSI WFSI

NF = 46 NF = 16 NF = 4

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.82 0.86 83.80 0.79 0.80 79.64 0.73 0.70 71.67
Control 0.86 0.82 0.80 0.79 0.70 0.73
AUC​ 0.84 0.80 0.72
Kappa 0.67 0.59 0.43
F-measure 0.84 0.80 0.72
k(10)-fold (%) 76.68 76.84 69.80
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average of the decision values of the classifiers is calcu-
lated, rounded and the decision of the ensemble classifier is 
determined. This operation is applied on all feature vectors.

Let us assume that the output values of an ensemble clas-
sifier with four classifiers are 1: Normal and 2: Apnea. If 
the four classifiers have produced the outputs of 1 1 2 1 in 
order, the decision of the ensemble classifier would be 1 by 
majority vote. If the outputs are 1 1 2 2 in order, the average 
is calculated as 1.5. When this number is rounded up, the 
output value of the ensemble classifier becomes 2.

The ensemble classifier was prepared in MATLAB envi-
ronment using four different classifiers as kNN, MLFFNN, 
PNN, SVMs [23].

In each classifier, network training is done with training 
and test sets. Sets are created according to systematic sam-
pling theory (Table  6) [37].

The used performance criteria

The performance of the developed systems was evaluated 
with the following parameters. There were k-fold cross-val-
idation accuracy rate, sensitivity, specificity, accuracy rates, 
ROC—Receiver Operating Characteristic, kappa coefficient 
and AUC—Area Under ROC [38, 39].

Principal component analysis

Principal Component Analysis (PCA) was used to validate 
the data in this study. This process was performed differently 
from the normal process. PCA analyzed the entire property 
matrix, and the key components were identified. 86 features 
are described in 100% with only one essential component.

An essential component obtained as a result of PCA has 
been classified. The data set for the classification process 
has three parts: Training (70%), Test (20%) and Verification 

(10%). In order to evaluate the results of PCA, all data (86 
features) were divided into three parts and re-classified as 
Training (70%), Test (20%) and Verification (10%) as in 
PCA.

Results

This section presents the results obtained in the study. The 
study developed a new approach alternative to the respira-
tion scoring process which is one of the diagnosis steps of 
the disease OSA.

For the respiration scoring process, a machine-learning-
based system was developed using features derived from 
PPG and HRV. Moreover, in order to increase the perfor-
mances of the classifier, the ones that were effective on the 
result among the 86 features derived from PPG and HRV 
were selected by the F-score method and utilized. The 
features were treated with the F-score method two times, 
classification was made in each step, and the effect of the 
F-score method on different levels was investigated. Table 7 
shows the PPG and HRV features that were selected after 
the F-score method. The numbers of total PPG and HRV 
features are given in the “Number of Features” column in 
Table 7. The derived features were used by combination in 
the “PPG HRV” column. The 46 features derived from PPG 
were reduced to 16 features after the first F-score treatment. 
The feature numbers assigned to these 16 features are shown 
in the “Selected Feature Numbers” column. After the second 
F-score treatment, the 16 features were reduced up to four 
features. The case was the same for HRV. The 40 features 
that were derived were reduced to 11 after the first F-score 
treatment and to five after the second. The total of 86 fea-
tures that were found when PPG and HRV were combined, 

Table 8   (continued)

Ensemble classifier

Class WoFSI WFSI WFSI

NF = 46 NF = 16 NF = 4

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.84 0.97 90.67 0.93 0.96 95.00 0.89 0.98 93.81
Control 0.97 0.84 0.96 0.93 0.98 0.89
AUC​ 0.90 0.95 0.93
Kappa 0.81 0.90 0.87
F-measure 0.90 0.95 0.93
k(10)-fold (%) – – –

NP network parameters, WoFSI without feature selection implementation, WFSI with feature selection implementation, NF number of features, S 
sensitivity, Sp specificity, A accuracy, NN number of neurons, TA training algorithm, BC BoxConstraint
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Table 9   Classifier results of HRV features for respiration scoring

k-nearest neighbors classification algorithm (kNN)

NP k = 3, distance function = ‘cosine’ k = 8, distance function= ‘mahalanobis’ k=10. distance function = 
‘mahalanobis’

Class WoFSI WFSI WFSI

NF = 40 NF = 11 NF = 5

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.75 0.85 80.15 0.77 0.77 76.76 0.74 0.76 75.32
Control 0.85 0.75 0.77 0.77 0.76 0.74
AUC​ 0.80 0.77 0.75
Kappa 0.60 0.53 0.51
F-measure 0.80 0.77 0.75
k(10)-fold (%) 79.05 76.34 72.35

Multi-layer artificial neural networks (MLFFNN)

NP NN = 3, TA = ‘trainlm’ NN = 29, TA = ‘trainlm’ NN = 87, TA = ‘trainlm’

Class WoFSI WFSI WFSI

NF = 40 NF = 11 NF = 5

S Sp A (%) S Sp A (%) S Sp A (%)

Apneaa 0.81 0.84 82.70 0.69 0.84 76.93 0.67 0.79 73.45
Control 0.84 0.81 0.84 0.69 0.79 0.67
AUC​ 0.83 0.77 0.73
Kappa 0.65 0.53 0.47
F-measure 0.83 0.76 0.73
k(10)-fold (%) – – –

Probabilistic artificial neural networks (PNN)

NP Spread = 0.1580 Spread = 0.3440 Spread = 0.2450

Class WoFSI WFSI WFSI

NF = 40 NF = 11 NF = 5

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.55 0.86 71.50 0.48 0.84 67.18 0.51 0.85 69.04
Control 0.86 0.55 0.84 0.48 0.85 0.51
AUC​ 0.71 0.66 0.68
Kappa 0.42 0.33 0.37
F-measure 0.67 0.61 0.64
k(10)-fold (%) – – –

Support vector machines (SMVs)

NP Kernel = ‘rbf’, BoxConstraint = 2 Kernel = ‘rbf’, BoxConstraint = 1 Kernel = ‘rbf’, BoxConstraint = 1

Class WoFSI WFSI WFSI

NF = 40 NF = 11 NF = 5

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.77 0.85 81.00 0.76 0.81 78.29 0.78 0.73 75.66
Control 0.85 0.77 0.81 0.76 0.73 0.78
AUC​ 0.81 0.78 0.76
Kappa 0.62 0.56 0.51
F-measure 0.81 0.78 0.76
k(10)-fold (%) 79.90 79.05 73.71
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were reduced to 28 after the first F-score treatment and to 
11 after the second.

In this study, the results of comparison of the newly pro-
posed system to the reference system for respiration scoring 
are shown in different tables for PPG and HRV. A total of 86 
features were derived in the study. However, the difficulty 
of deriving so many features in systems that work in real-
time was considered, and it was aimed to reduce the number 
of features and improve the system. Classification results 
are given for PPG features in Table 8, for HRV features in 
Table 9, and PPG and HRV features in Table 10. Consider-
ing the results in Table 8 for PPG, when all features are used, 
the respiration scoring success rate was 80% or higher for all 
classifiers. Likewise, the classifiers’ specificity and sensitiv-
ity rates, that is, their capacities of distinguishing between 
asleep and awake states were also around 80%. Consider-
ing the results in Table 9 for HRV, the success rates of the 
kNN, MLFFNN, SVMs and ensemble classifiers were 80% 
or higher. When the number of features were reduced, the 
accuracy rates of the classifiers dropped, while on the other 
hand, the success rate of the ensemble classifier was 90.16%. 
This rate was achieved with only five features. It may be 
argued that this was an impressive performance for a system 
that may be used in practice.

In addition to the accuracy rates of the classifiers, their 
F-Measure and AUC values were also around 80 for all 
features. The reliability of the system was reinforced with 
the parameters. Another performance criterion is the ROC 
curve. The ROC curves of the systems developed for respira-
tion scoring are shown in Fig. 10. Nine different ROC curves 
are shown for the nine different data sets that were classified. 
While evaluating the curves, the ideal ROC curve in the plot 
is used as a reference. It may be stated that the classifier that 
is the closest to this curve is the best classifier. The ROC 
curves of the developed classifiers were highly close to the 
ideal. In addition to all these good aspects of the system, 

the Kappa values for the classifiers were very low. In this 
sense, the system may be improved a bit more. To improve 
the system, different features that may represent abnormal 
respiratory events may be derived from PPG and HRV sig-
nals. The database may also be broadened.

After the feature selection process was completed, clas-
sification was made. Classification operations were made 
separately for PPG and HRV, followed by a combined opera-
tion. This way, all the features were utilized.

The results were provided in the Table in detail for each 
classifier (Tables 8, 9, 10). The classification operations were 
carried out in order and the results were as the following. 
Firstly, the 46 PPG features were classified without being 
subjected to any feature selection algorithm, performance 
parameters for measuring the performance of the classifier 
were calculated, and recorded in the relevant column. Later, 
46 features were reduced to 16 with the first selection algo-
rithm and the same process was repeated. The second feature 
selection algorithm reduced 21 features to four and clas-
sification was made again. The performance criteria for the 
classifiers were calculated and are shown in the Table. The 
numbers of features obtained after each F-score treatment 
are also included. In the tab named “Network Parameters” 
for each classifier, their network parameters were calculated. 
Additionally, the ROC curves for the classifiers were pre-
pared and are shown in Fig. 10. An ROC curve may be inter-
preted as the following: if the curve is closer to the left axis, 
it is able to diagnose apnea better; if the curve is closer to 
the upper axis, it is able to identify the control group better.  

PCA analysis was performed to reduce the number of fea-
tures (Table 11). The table has two columns. The first shows 
the classification results for all properties, and the second 
shows the classification results for PCA analysis. Consider-
ing all the features, system performance (Test or Validation) 
varies between 79.83 and 86.92%. As a result of PCA analy-
sis, performance (Test or Validation) ranged from 46.35 to 

Table 9   (continued)

Ensemble classifier

Class WoFSI WFSI WFSI

NF = 40 NF = 11 NF = 5

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.86 0.97 92.28 0.78 0.98 88.04 0.82 0.98 90.16
Control 0.97 0.86 0.98 0.78 0.98 0.82
AUC​ 0.92 0.88 0.90
Kappa 0.84 0.76 0.80
F-measure 0.91 0.87 0.89
k(10)-fold (%) – – –

NP network parameters, WoFSI without feature selection implementation, WFSI with feature selection implementation, NF number of features, S 
sensitivity, Sp specificity, A accuracy, NN number of neurons, TA training algorithm, BC BoxConstraint
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Table 10   Classifier results of PPG and HRV features for respiration scoring

k-nearest neighbors classification algorithm (kNN)

NP k = 1, distance function = ‘cosine’ k = 3, distance function = ‘cosine’ k = 8, distance function = 
‘mahalanobis’

Class WoFSI WFSI WFSI

NF = 86 NF = 28 NF = 11

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.80 0.89 84.56 0.80 0.84 82.02 0.78 0.77 77.27
Control 0.89 0.80 0.84 0.80 0.77 0.78
AUC​ 0.84 0.82 0.77
Kappa 0.69 0.64 0.55
F-measure 0.84 0.82 0.77
k(10)-fold (%) 81.59 78.88 76.51

Multi-layer artificial neural networks (MLFFNN)

NP NN = 14, TA = ‘trainlm’ NN = 63, TA = ‘trainlm’ NN = 4, TA = ‘trainlm’

Class WoFSI WFSI WFSI

NF = 86 NF = 28 NF = 11

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.81 0.90 85.41 0.81 0.84 82.44 0.72 0.83 77.69
Control 0.90 0.81 0.84 0.81 0.83 0.72
AUC​ 0.85 0.82 0.77
Kappa 0.71 0.65 0.55
F-measure 0.85 0.82 0.77
k(10)-fold (%) – – –

Probabilistic artificial neural networks (PNN)

NP Spread = 0.4500 Spread = 0.2700 Spread = 0.1030

Class WoFSI WFSI WFSI

NF = 86 NF = 28 NF = 11

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.74 0.89 81.51 0.69 0.86 77.69 0.73 0.80 76.51
Control 0.89 0.74 0.86 0.69 0.80 0.73
AUC​ 0.81 0.77 0.76
Kappa 0.63 0.55 0.53
F-measure 0.80 0.76 0.76
k(10)-fold (%) – – –

Support vector machines (SMVs)

NP Kernel = ‘rbf’, BoxConstraint = 2 Kernel = ‘rbf’, BoxConstraint = 3 Kernel = ‘rbf’, BoxConstraint = 2

Class WoFSI WFSI WFSI

NF = 86 NF = 28 NF = 11

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.86 0.88 87.36 0.83 0.84 83.97 0.75 0.80 77.35
Control 0.88 0.86 0.84 0.83 0.80 0.75
AUC​ 0.87 0.84 0.77
Kappa 0.75 0.68 0.55
F-measure 0.87 0.84 0.77
k(10)-fold (%) 81.17 81.26 76.42
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64.77%. As a result of both analyzes, the Ensemble classifier 
was able to tolerate the weaknesses of weak classifiers.

The general assessment of classification results is given 
in Table 12 and their plot is given in Fig. 11.

In the graph, the x axis represents the performance cri-
teria, and the y axis represents the performance values. The 
best performance value is 1. The graph with red marking 
shows the performance values of the system with four PPG 
features, and the graph with blue marking shows the perfor-
mance values of the system with 16 PPG features.

According to Table 11, the best performance for respi-
ration scoring was obtained with the ensemble classifier. 
While HRV may be used for this process by itself, PPG and 
HRV may also be used in combination. Combined usage of 
PPG and HRV not only increased the performance of clas-
sification, but it also provided a decrease in the number of 
features, which is a benefit. The best performance for respi-
ration scoring was achieved by the ensemble classifier using 
PPG signal features. This operation may be carried out using 
either 16 or four PPG features. While using 4 features in the 
system reduces the workload, using 16 features improves the 
performance despite increasing the workload. It is possible 
to develop a physical system based on the respiration scoring 
results obtained here.

Discussion

Studies in the literature which used PPG for respiration scor-
ing are a minute amount [17]. Nevertheless, even this study 
aimed to detect the arousals during apnea, rather than apnea 
itself. In addition to this, the literature frequently reported 
PPG number of respirations and effort tests [17, 24, 40, 41]. 
This study is expected to fill the gap in the literature regard-
ing the process of respiration scoring using PPG.

According to the results obtained in this study, it was 
determined that PPG features and features of HRV, which 
may be obtained through PPG signals, may be used in pro-
cesses of respiration scoring and these will provide signifi-
cant results. Easy acquisition of PPG signals and derivation 
of HRV from PPG signals paves the way for possibility of 
respiration scoring with a single signal. Easy measure-
ment and processing of the signal in real-time systems will 
increase the systems’ practicality. In OSA diagnosis, there 
is a need for at least three channels of signal. Usage of PPG 
instead of these will reduce the workload.

Respiration scoring may be achieved only by PPG records 
at a 93–95% accuracy rate. The system may be realized with 
16 PPG features and 95% accuracy rate. If one wants to be 
economical in code-writing, the number of features may be 
reduced to 4. Which will provide a success rate of 93.81%. 
This success rate is highly sufficient for the system to work. 
Considering all these value, it is possible to create a practical 
respiration scoring system. Figure 11 and Table 12 present the 
graphical summary of the numerical value mentioned above.

In order to reduce the number of features with PCA, we 
found that the performance was not good enough. By PCA 
analysis, 86 properties are explained 100% with only one 
essential component. However, with an essential component, 
a performance value of approximately 40–50% was taken. The 
purpose of PCA is to reduce system input. However, this is not 
available according to performance values.

The ensemble classifier provided a superior performance in 
classification of all groups of data. The reason for this is that, 
while making classifications one by one, the mistake made by 
a classifier is compensated for by another classifier. This way, 
the individual performances were combined, and the power of 
the system was increased. Furthermore, the distribution of the 
data was arranged to prevent differences among the groups. 
The normal and regular distribution of the data provided a 
positive influence of a better operation of the system [42].

Table 10   (continued)

Ensemble classifier

Class WoFSI WFSI WFSI

NF = 86 NF = 28 NF = 11

S Sp A (%) S Sp A (%) S Sp A (%)

Apnea 0.89 0.95 92.54 0.87 0.96 91.69 0.84 0.97 90.59
Control 0.95 0.89 0.96 0.87 0.97 0.84
AUC​ 0.92 0.91 0.91
Kappa 0.85 0.83 0.81
F-measure 0.92 0.91 0.90
k(10)-fold (%) – – –

NP network parameters, WoFSI without feature selection implementation, WFSI with feature selection implementation, NF number of features, S 
sensitivity, Sp specificity, A accuracy, NN number of neurons, TA training algorithm, BC BoxConstraint
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This study reached the conclusion that PPG signals may 
be used in OSA diagnosis by processing them with machine 
learning and signal processing methods. Many different 

signals have been used in the literature to diagnose OSA 
[1]. PPG measurement is easier than other signals. Thus, 
the patient will not be disturbed during the measurement.

Table 11   Classification results for principal component analysis

kNN k-nearest neighbor algorithm, MLFFNN multilayer feed forward artificial neural networks, PNN probabilistic artificial neural networks, 
SVMs support vector machines, S sensitivitiy, Spe specificity, A (%) accuracy, K kappa, FM F-measure

Method All features Using PCA

Train (70%) Train (70%)

Classifier S Spe A (%) K FM S Spe A (%) K FM

kNN 0.816 0.883 85.28 0.702 0.848 1 0.576 76.86 0.552 0.731
MLFFNN 0.793 0.922 86.37 0.723 0.853 0.024 0.991 55.18 0.016 0.047
PNN 1 1 100 1 1 0.828 0.693 75.41 0.512 0.754
SVMs 0.897 0.927 91.34 0.825 0.912 0.861 0.155 47.61 0.016 0.263
Ensemble 0.855 0.964 91.46 0.826 0.906 0.7 0.815 76.26 0.518 0.753

Method All features Using PCA

Test (20%) Test (20%)

Classifier S Spe A (%) K FM S Spe A (%) K FM

kNN 0.836 0.871 85.23 0.705 0.853 0.744 0.388 57.59 0.135 0.51
MLFFNN 0.764 0.875 81.65 0.634 0.816 0.036 0.973 47.89 0.009 0.069
PNN 0.848 0.853 85.02 0.7 0.85 0.524 0.786 64.77 0.305 0.629
SVMs 0.848 0.893 86.92 0.738 0.87 0.844 0.188 53.38 0.033 0.307
Ensemble 0.8 0.946 86.92 0.74 0.867 0.464 0.808 62.66 0.266 0.589

Method All features Using PCA

Validation (10%) Validation (10%)

Classifier S Spe A (%) K FM S Spe A (%) K FM

kNN 0.8 0.898 84.55 0.692 0.846 0.768 0.463 62.66 0.235 0.578
MLFFNN 0.752 0.852 79.83 0.598 0.799 0.048 0.944 46.35 − 0.01 0.091
PNN 0.88 0.843 86.27 0.724 0.861 0.496 0.787 63.09 0.276 0.609
SVMs 0.808 0.88 84.12 0.683 0.842 0.848 0.176 53.65 0.025 0.291
Ensemble 0.784 0.926 84.98 0.702 0.849 0.48 0.796 62.66 0.269 0.599

Table 12   Summary classifier 
results of PPG and HRV 
properties

NF number of features, S sensitivity, Sp specificity, A accuracy

Ensemble classifier

Signal PPG

NF = 16 NF = 4

S Sp A (%) S Sp A (%)

Apnea 0.93 0.96 95 0.89 0.98 93.81
Control 0.96 0.93 0.98 0.89
AUC​ 0.95 0.93
Kappa 0.9 0.87
F-measure 0.95 0.93
k(10)-fold (%) – –
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Conclusions

This study suggests that the PPG signal and HRV can be 
used to detection respiratory arrestsby machine learning 
and signal processing techniques. In the literature, quite 
different signals and combinations are used for this pro-
cessing. However, measuring the signal to be used with 
easy and noninvasive methods will reduce the discomfort 
experienced by the patient.

The work is open to improvement. The features derived 
in this study may be used to establish OSA diagnosis sys-
tem. This way, the required workload for diagnosis can be 
reduced. This method can be applied for real-time anal-
ysis. Additionally, the patient can use the device alone. 
Home-usability of the system is a different benefit. Fast 
diagnosis without waiting in line will help faster start of 
the treatment. This way, the harm created by OSA on the 
human body in time will be prevented.

The study has several advantages. The advantages can 
be summarized as follows. The system has an embedded 
system design that can work in real-time. Real-time opera-
tion is the most significant advantage of the system. It has 
advanced signal processing algorithm infrastructure. The 
workload for a real-time system is minimized with 16 PPG 
features. Compared to other signals in the literature, PPG 
can be easily measured. In this way, the system provides 
comfort to the patient. The system can be used at home. 
The patient can make connections without the need for 
technical knowledge. When all advantages are evaluated, 
the system can be used in practice.

Future work

This study can be improved by combining different meth-
ods. The most important methods are advanced signal 
processing methods, feature extraction methods, feature 
selection algorithms and machine learning algorithms.

The studies planned for the future are as follows.

•	 Advanced signal processing and feature extraction tech-
nique design

•	 Detection of respiratory arrest with deep learning
•	 Converting signal into frequency domain and using it in 

image format
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