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Abstract: In this paper, we introduce a novel 3D chaotic
oscillator which shows megastability without any external
excitation. Some important dynamical properties of the
proposed novel system were derived and investigated.
Data protection application and its security analysis were
realized for electrophysiological signals such as ECG, EEG
and EMG on a microcomputer. This paper includes both
encryption and data hiding processes for high security.
Also a user interface was developed. For the encryption
process, random numbers were generated by the mega-
stable chaotic oscillator. These random numbers were
tested with NIST-800-22 test which is the most widely
accepted statistical test suite. The encrypted electrophysi-
ological signals were analyzed by entropy, differential
attacks, histogram, correlation, initial condition sensi-
tivity, etc. The results of the analysis have shown that the
proposed two level security method can be used in many
fields asmobile. Themost important feature of this paper is
that both encryption and data hiding processes were
implemented for electrophysiological signals. The experi-
mental results verify that the proposed method has high

security and is suitable for the protection of vital electro-
physiological signals.

Keywords: chaos; data security; electrophysiological
signals; microcomputer; nonlinear systems.

1 Introduction

The last two decades have seen a growing trend toward
wired and wireless telecommunications technologies.
They have become an important part of biomedical science
with tele-healthcare. Electrophysiological signals (EEG,
ECG, EEM) obtained from the patient via biopotential
electrodes and converters are often used in the diagnosis.
While, biosignals can be transmitted over public networks,
according to the Health Insurance Portability and
Accountability Act (HIPAA), all bio-signals transmitted
over public networks must be protected [1]. Furthermore,
these signals have recently been used in person recogni-
tion systems. However, the security and protection of
diagnostic data is considered very important and must be
protected when communicating through communication
channels [2]. Since electrophysiological signals contain
both personal and health information, it is very important
to prevent and encrypt unauthorized access before they are
transmitted via public media [3]. In addition, these
encryption anddecryption operations should be performed
with minimal delay in a very short time. An example of this
is to save the lives of patients with cardiovascular diseases
without any delay [4].

Cryptography is a well-known data-protection tech-
nique [5, 6]. So far, many technologies have been devel-
oped to protect and store various data groups. Among these
technologies, chaotic encryption is the most intuitive and
effective way to obfuscate data [7, 8]. A chaotic system is
sensitive to initial conditions, not periodically and
randomly, and it has many features required for cryptog-
raphy. But, chaos-based cryptology applications have
some security drawbacks. In this article, using a mega-
stable chaotic oscillator is realized to overcome those
drawbacks by using a secure steganography application
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with chaos-based encryption. In literature, studies which
perform encryption and data hiding operations together
are rare.

Chaos theory is an interesting branch of mathematics
that is widely used in many fields of technology [9–12].
One of the applications of this theory is encryption of
data such as audio, video, images and biomedical sig-
nals. Yildiz et al. encrypted 1–8 bits dorsal hand vein
images in their study, encrypting vein images with a new
chaos-based encryption algorithm and protect them in
the database [11]. Zhang et al. utilised the compression
detection and pixel permutation approaches. A medical
image encryption and compression algorithm was pro-
posed in their study. At the same time, this algorithm can
simultaneously encrypt and compress medical images
[13].

Chaos-based encryption is suitable for telemedicine
applications [9, 14–20] because it facilitates data protec-
tion and guarantees confidentiality of patient-related
information. Hao et al. proposed a chaotic map-based
validation scheme for telecare drug information systems
(TMIS) [21]. Lee et al. proposed an improved mobile
health emergency system based on chaotic maps [2].
Parveen et al. have developed a chaos-based encryption
technique using wavelet transform to encrypt EEG
signals [22]. In their study, Lin et al. developed a
two-dimensional chaotic-based virtual encryption
algorithm and implemented EEG signals [19]. Lin et al.
implemented the same encryption algorithm to encrypt
ECG signals [20].

In this study, we are interested in proposing a new 3D
chaotic oscillator that shows megastability out of any
external excitement. Three different electrophysiological
signals (EEG, EMG and ECG) received from humans were
encrypted using a new chaotic system to secure them
before being transmitted. Before the encryption, the
identity of the patient (Name, ID Number) were hidden
within these signals. In addition, an interface was
designed to enable healthcare personnel to easily
conceal data, encrypt and decrypt the received signal.
The results of the analyzes confirm that the developed
system provides high security for electrophysiological
signals and minimizes the possibility of unauthorized
access.

In Section 2, a novel 3D megastable oscillator (3DMO)
is detailed and its dynamical analysis are performed.
Electrophysiological signals and preprocessing are intro-
duced in Section 3. In Sections 4 and 5 data hiding and
cryptology application in electrophysiological signals are
realized, respectively. Then, security analysis are imple-
mented in Section 6. Also, a custom made user interface is

designed in Section 7. The last section provides conclu-
sions and draws future works.

2 3D megastable oscillator (3DMO)
and its dynamical analysis

Many recent literatures have proposed chaotic oscillators
with lattices of attractors and infinite number of equilib-
rium points [23–27] and some of them are unique with
countable number of coexisting attractors named as
“Megastable” after [28]. All the megastable oscillators
discussed in the literatures show chaotic oscillations only
when forced with an external excitation [29–32]. Hence in
this paper, we are interested in proposing a new 3D chaotic
oscillator which shows megastability without any external
excitation. It is to be noted that such an oscillator was not
discussed in the earlier literatures and hence the proposed
system falls under category-2; as such an unforced
megastable oscillator has not been investigated in the
literature [33].

The mathematical model of the 3DMO is given by,

ẋ � z
ẏ � b ∗ cos(z) − c ∗ y
ż � −dx + zcos(x) − ay

(1)

where a, b, c, d are the system parameters. Using a
computer search method, we could find the parameters
as a = 2.1, b = 0.7, c = 0.1, d = 0.3 for which the
system shows infinitely coexisting attractors as shown in
Figure 1.

Figure 1: Coexisting attractors for the x initial values taken
between −20 and 20 with steps of four and y initial values taken
between −10 and 20 with steps of four.
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The equilibrium points of the system are calculated as

E � [ − ab
cd,

b
c,0]. The Jacobian of the above system in its

equilibria is:

⎡⎢⎢⎢⎢⎢⎣ 0 0 1
0 −c 0
−d a cos(ab/cd) ⎤⎥⎥⎥⎥⎥⎦ (2)

The characteristic polynomial can be derived as:

λ3 + (c − cos(ab
ca

))λ2 + (d − c cos(ab
cd

))λ + cd (3)

and the eigenvalues will be:

λ1,2 � ⎛⎜⎜⎜⎜⎜⎜⎝ �����������������������������
cos(ab

cd
)/2 +⎛⎝cos(ab

cd
)2

− 4d⎞⎠√√ ⎞⎟⎟⎟⎟⎟⎟⎠/2

λ3 � −c

(4)

It can be easily noted from (4) that the third eigen value
is always negative as c > 0 and hence the first two eigen
values determine the stability of the system. Figure 2 shows
the various eigen values for different values of parameter
a and the 3DMO change between stable and unstable

attractor and the chaotic attractors for stable, unstable and
non-hyperbolic equilibriums are also shown in Figure 2.

According to the Routh-Hurwitz criterion, the real
parts of all the roots of Eq. (3) are negative if and only if

c − cos(ab/cd) > 0
cd > 0(d − ccos(ab

cd
))(c − cos(ab

cd
)) > 0

(5)

It can be seen from (5) that when c < cos(ab
cd),

d < ccos(abcd) the system is unstable and stable for

c > cos(abcd), d > c cos(ab
cd).

Bifurcation diagram of the 3DMO system and the
Lyapunov spectrum are shown for parameter a between
0 and 6 in Figure 3. The system has chaotic behaviour
approximately between 0 and 1, 1.9–2.6 and 3.1–6.

To show the megastable behaviour of the 3DMO
system, we have plotted the bifurcation plots with
respect to initial conditions by fixing the system
parameters to = 2.1, b = 0.7, c = 0.1, d = 0.3 as shown in

Figure 2: The real part of eigen values for various values of a. The chaotic attractors with stable, unstable and non-hyperbolic equilibriums are
shown alongside the eigen values.
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Figure 4a. We could identify the growing amplitude of the
state ‘z’ as the initial condition of state ‘x’ is increased/
decreased which confirms that the radius of the system
grows as in Figure 1. Also, the 3DMO system shows chaotic
attractor for a wide range for x0 ∈ [−80.80] which can be
confirmed from the Lyapunov spectrum shown in Figure 4b.

3 Electrophysiological signals and
preprocessing

EEG is one of the methods used to determine normal and
abnormal functions of the living human brain. Electrical
recordings obtained from the surface of the brain from the
outer surface of the head indicate that the brain has a
continuous electrical activity. The electrical activity of brain
skull is between0 and 200 uVand its frequency is between 1
and 50 Hz. The electrical activity of the brain is affected by
changes in the level of arousal such as coma, sleep/wake,
epilepsy, some psychoses and brain death [34]. Biomedical
EEG signals have been used since the 1950s to monitor pa-
tients with coma, dementia and long-term memory prob-
lems. It is also used to assess brain death to legally prove
that a patient will not recover from life support equipment.

ECG is a method based on recording the possible
electric changes in the heart [35]. ECG signals with a fre-
quency range of 0.1–100 Hz, and usually a maximum
amplitude of 1 mV provide some information for the diag-
nosis of heart disease.

The EMG signal is an electrical electrophysiological
signal representing the activity of the corresponding motor
unit of the contracting muscle and is a potential source for
the human-machine interface [36]. The amplitude of the
EMG signal is between 0 and 10 mV peaks or 0–1.5 mV
(rms) while the frequency is in the range of 50–500 Hz.

Electrophysiological data are specific to the patient, but
when admitted to a hospital, they are routinely transmitted
over an insecure channel prior to diagnosis. When the same
data is collected for telemedical purposes, it is required by
law to protect the patient’s biomedical health information
from unauthorized access before being transmitted over an
insecure channel. It is equally important that the applied
protection approach does not change the patient’s data to
influence the later diagnosis. Furthermore, a powerful
encryption algorithm must be stored to protect personal
signals from illegal access or modification of attacks.

Figure 5 shows the ECG signal from the physiobank
database. Thesignal ranging from1 to−0.8mVwasconverted
into eight bit data for encryption. Figure 5 shows also the
conversion of ECG data to eight bits. The signal ranging from
0 to 256 μV was converted into eight bit data for encryption.

4 Data hiding in
electrophysiological signals

The name, surname and ID number information received
from the participants of electrophysiological signals is

Figure 3: (a) Bifurcation of the 3DMO system with parameter a;
(b) the corresponding Lyapunov spectrum.

Figure 4: (a) Bifurcation of the 3DMO system with parameter x0; (b)
The corresponding Lyapunov spectrum.
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an important credential; therefore, it is concluded that
this information should be hidden in the signals. The
reason why encryption precedes is that it requires
identity information which is not recognized on the
encrypted signal. Steganography is one of the methods
for securely storing and transmitting personal informa-
tion in a computer environment. The purpose of steg-
anography is to obscure the existence of important
personal information. Steganography hides the data that
is to be hidden in the object without changing the
structure of the data to be hidden. The hidden data is not
displayed by unauthorized persons because they are
invisible to the naked eye. In this study, least significant
bit (LSB) method was selected from the algorithms
commonly used to hide data in electrophysiological
signals to increase the encrypted data capacity. As a
result of this method, data hidden in electrophysiolog-
ical signals are minimized to hide maximum information
at the same time. This attempts to minimize algorithmic
complexity.

Algorithm 1 Hide data algorithm pseudo code

1: Start
2: Text = [name, surname, id number]
3: binary text = ascii (text)
4: for i = 1: length of binary text do
5: binary signal = decimal to binary (Signal (i))
6: binary signal (8) = binary text (i)
7: end for
8: Hidden_data_signal = binary to decimal (binary_signal)
9: End

Algorithm 1 gives the LSB method for embedding the most
trivial bite for hiding contact information in electrophysi-
ological signals. First, the text consisting of the first name,
last name, and ID number is converted to numerical values
in binary according to the American Standard Code for
Information Interchange (ASCII) code. The binary numer-
ical values of ECG, EEG and EMG signals are converted into
eight bites. The eighth bit of these eight bit binary values is
synchronized with the binary value from the text data. This
process continues up to the length of the text data binary
value. This means personal data is hidden in electrophys-
iological signals.

Figure 6 shows the general flow diagram of the system.
Electrophysiological signals taken fromPhysiobankdatabase
were transferred to the microcomputer and converted into
eight bits by preprocessing. The personal data obtained from
the patients were transferred to the system over the interface
and hidden in eight-bit signals using the LSBmethod. In this
way, the personal data of thepatientwere hiddenwithin their
physiological signals. Finally, the electrophysiological sig-
nals of the patient were encrypted by passing through the
eXclusive (XOR)bit operatorwith randomnumbersgenerated
from the 3DMO system and securely stored in the database.

Mean squared error (MSE) and peak signal-to-noise
ratio (PSNR) analysis of the original signal and the data
hiding signal are shown in Table 1. As the purpose of data
type authentication with the LSB encrypting method is to
keep the original signal intact, MSE and PSNR analyses
measure the quality of data hiding. The MSE is an average
quadratic error analysis and its percentage should be very
low in a data-hidden signal. This does not disturb the
original electrophysiological signal. PSNR indicates noise
and quality levels and is inversely proportional to, and

Figure 5: An example ECG signal received from Physiobank and the converted to eight bits before encryption.
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almost 0 causes the original signal to be corrupted after
data hiding. The values calculated in Table 1 were calcu-
lated using Eqs. (6) and (7).

MSE(I, I0) � 1
M

x ∑
M

y�1
∑
N

x�1
[I − I0] (6)

PSNR � 20x log10( 255���������
MSE(I, I0)

√ ) (7)

In Eq. (6), M refers to the length of the binary value
according to the ASCII code of text information consisting
of the person’s name, last name and ID number data. The
value of the I and I0 refer data hidden signal and the value
of the hidden signal, respectively.

In the analysis of the data hidden in the electrophysi-
ological signals of 2000 data shown in Table 1, it was
concluded that the original signal was not distorted by
giving very close results to 0 MSE. At the same time, the
PSNR results in Table 1 show that the PSNR will be a
maximum of 80 in 2000 data of eight bits.

5 Cryptology application in
electrophysiological signals

Chaos-based random numbers were used to encrypt in
many engineering applications as pseudo and true random

numbers [37–41]. In this paper, random numbers were
generated with chaotic signals from the 3D Megastable
oscillator. The generated random numbers were tested by
subjecting to the internationally valid NIST-800-22 test.

Algorithm 2 Random number generator algorithm
pseudo code.

1: Start
2: Entering system parameters
3: Entering initial condition
4: Determination of the appropriate value of Δh (0.05)
5: Solving the chaotic system using RK-4 algorithm and

obtaining time series
6: for i = 1: 2000*8/16 do
7: xrng(16*(i − 1) + 1:16*(i − 1) + 16) =

decimaltobinary(round(mod(x(i),0.00065535)*
100000000), 16)

8: end for
9: Ready to use 2000*8 random number
10: End

Algorithm 2 specifies the so-called random number code,
which is generated on the basis of chaotic systems.
According to the algorithm, the parameter and start values
of the 3D Megastable Oscillator are first entered into the
system. After entering the system as step interval value
0.05, the values of the 3D chaotic system used by the dif-
ferential equation solution method are determined in
Runge–Kutta 4. With the x phase of the 3D chaotic system
whose values are determined, a 16-bit random number
sequence is generated at each step. Since the data
requested for encryption is 2000 pieces and the electro-
physiological signals hidden in the data are eight bits, a
random sequence of numbers of 2000*8 is obtained.

The NIST-800-22 test [10] was used to measure the
complexity of random numbers generated. It is a security

Figure 6: The general flow diagram of the
system.

Table : MSE–PSNR analysis of data hidden and original signals.

MSE PSNR

ECG . .
Encrypted ECG
EEG . .
Encrypted EEG
EMG . .
Encrypted EMG
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testing tool performed by the National Institute of
Standards and Technology [11, 13]. The NIST-800-22 test
contains 16 tests. In order for the generated random
numbers to pass the NIST-800-22 test successfully, it must
pass all 16 tests. The names of the tests are given in the
table [14].

In this test, themost important parameter, the p-value,
is considered as ameasure of the complexity of the random
number sequence that enters the test. If the p-value is a
really complex series, it is close to 1, not 0. For the tests
to be successful, these p-values must be greater than 0.01
[15–18].

In Table 2, random numbers generated from the status
variables of the chaotic system were tested NIST-800-22 to
measure their randomness. The results indicated that the
p-values found in each of the 16 tests in theNIST 800-22 test
were greater than 0.01. So after the NIST 800-22 test, which
was made by passing all 16 tests, it was determined that it
was random.

Algorithm 3 Signal encryption algorithm pseudo code.

1: Start
2: for i = 1: length of hidden data signal do
3: Encrypted signal = XOR (hidden data signal, random

number)
4: end for
5: End

Algorithm 3 provides the encryption algorithm for
electrophysiological signals hidden in data. According to
the algorithm, the signal which hides the data is XOR
processed by an eight bit random number sequence
generated in Algorithm 2. As a result of this algorithm, data
hidden and encrypted signals are shown in Figures 7 and 8,
respectively.

6 Security analysis of encrypted
electrophysiological signals

The bit values of encrypted datamust be evenly distributed
for a good encryption [17]. The data must have a proper
histogram to be resistant against statistical attacks. The
histogram of the encrypted data indicates that the value of
each bit is the same and the values are properly distributed,
indicating that the randomness has been achieved.

In Figure 9 histogram analysis of encrypted ECG, EEG
and EMG signals are performed by histogram analysis of
ECG, EEG and EMG signals with data hidden in the data.
Data is weighted only in hidden signals, while encrypted
signals have a homogeneous distribution.

There are strong correlations with non-encrypted
signals. In a well-encrypted image, the correlation results
should be scattered. The dispersion of the correlation
results indicates a uniform variability of the values and the
randomness.

There is strong correlation when the correlation maps
of ECG, EEG and EMG signals are hidden in Figure 10. There
is a numbness between adjacent pixels. In encrypted
electrophysiological signals, the correlation was low and
the distribution was homogeneous.

The knowledge of entropy is a mathematical theory
derived from Shannon [22, 20]. It is a feature that defines
randomness and uncertainty in data and is used to
measure the same distribution of values in the data. The
entropy value is calculated using Eq. (8) [19].

H(s) � ∑
2M−1

i�0
P(si) log2 1

P(si) (8)

NPCR � 1
M

∑
M

i�1
Dif(i) ∗ 100% (9)

Dif(i) � { 1 C1(i) ≠ C2(i)
0 C1(i) � C2(i) (10)

UACI � 1
M

∑M
i�1|C1(i) − C2(i)|

255
Dif(i) ∗ 100% (11)

Table : NIST-- test results for generated random numbers
from chaotic system.

Statistical tests p-value Result

Frequency monobit test . Successful
Block-frequency test . Successful
Run test . Successful
Longest-run test . Successful
Binary matrix rank test . Successful
Discreate Fourier transform test . Successful
Non-overlapping templates test . Successful
Overlapping temp templates test . Successful
Maurier’s universal statistical test . Successful
Linear complexity test . Successful
Serial test- . Successful
Serial test- . Successful
Approximate entropy test . Successful
Cumulative sums (forward) test . Successful
Random excursion test (x = −) . Successful
Random excursion variant test(x = −) . Successful
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In the equations, M represents the total number of
values in the data, C1 represents the values of unencrypted
data, C2 represents the values of the encrypted data. The
Number of Changing Pixel Rate (NPCR) shows the number
of changed values between encrypted and unencrypted
data, and the Unified Averaged Changed Intensity (UACI)
shows the average value of the changed values [24]. In
previous studies, the fact that NPCR is greater than 99.6%

and UACI is close to or greater than 30%has been accepted
as an indication of good encryption.

While the entropy value in the unencrypted data in the
table is far from eightwhich is the number of the data in bit,
this value is very close to eight in the encrypted data. As the
result of the encryption, the entropy value is close to the
maximum values, which means that the encrypted data
has good frequency values. In addition, it has been shown

Figure 7: Data hidden electrophysiological signals.

Figure 8: Encrypted electrophysiological signals.
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Figure 9: Histogram analysis of original and
encrypted ECG, EEG and EMG signals.

Figure 10: Correlation analysis of original
and encrypted ECG, EEG and EMG signals.
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that NPCR andUACI encryption analyzes were successfully
passed in Table 3.

7 Graphical user interface design

The recording of electrophysiological signals from the
person into the database facilitates the work of health

workers with an interface designed as given Figure 11.
This designed interface retrieves the person’s name
and ID number information from the user and enters it
into the system. The retrieve text button transforms the
person’s information into a text sequence. The signal type
received by the person is then selected and transmitted to
the interface in the voltage unit. The hide data button
hides a text sequence in the signal information converted
to eight bites. In the final phase, the electrophysiological
signal is encrypted with random numbers from the
chaotic system by pressing the encrypt data button. The
encrypted data is securely stored in the database with
the name entered by the user. The process of storing a
sample ECG data in the database is displayed in the
interface environment.

Figure 12 shows the process of decrypting the signal
stored in the database in an encrypted form to give
contact information to the screen. First, the encrypted
data which will be decrypted in the database is trans-
ferred to the interface via the import data button in the
interface.

Table : Entropy, UACI and NPCR analysis of original and encrypted
electrophysiological signals.

Entropy UACI NPCR

ECG . . .
Encrypted ECG .
EEG . . .
Encrypted EEG .
EMG . . .
Encrypted EMG .

Figure 11: Graphical user interface main
screen.
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While the process of encrypting the signal and storing
the person’s information in the signal took 50 ms, it took
only 30 ms to retrieve the original signal and the hidden
personal data from the encrypted signal.

8 Conclusion

In this paper, a novel 3D chaotic oscillator which
shows megastability without any external excitation was
introducedwith somedynamical analysis. It is to be proved
that such an oscillator was not shown in the earlier litera-
tures. This paper includes both encryption and data hiding
processes for high security in electrophysiological signals.
ECG, EEG and EMG signals were utilized for personal data
hiding and cryptology applications on amicrocomputer. In
the cryptology application, random numbers were ob-
tained via the novel 3D megastability chaotic oscillator.
These random numbers were tested with NIST-800-22 and
they successfully passed from all NIST-800-22 tests.

The encrypted electrophysiological signals which hide
data with LSB technique were done security analysis such
as MSE, PSNR, entropy, differential attacks, histogram,
correlation and initial condition sensitivity. An input
parameter error (for example, 10−12initial condition error)
does not allow signals to be decrypted. The results have

proved that the security analysis are successful. These
analysis gave superior encryption results, and the elec-
trophysiological signals were completely recovered when
the correct initial condition parameter was applied. Also, a
user interface is developed to ease of use. This study set out
to assess the feasibility of realising to secure transfer the
electrophysiological signals. The results of the analysis
have shown that the proposed two-level security method
can be used in many fields as mobile in the future.
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