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A B S T R A C T

Covid-19 pandemic lock-down has resulted significant differences in air quality levels all over the world.
In contrary to decrease seen in primary pollutant species, many of the countries have experienced elevated
ground-level ozone levels in this period. Air pollution forecast gains more importance to achieve air quality
management and take measures against the risks under such extra-ordinary conditions. Statistical models
are indispensable tools for predicting air pollution levels. Considering the complex photochemical reactions
involved in tropospheric ozone formation, modeling this pollutant requires efficient non-linear approaches. In
this study, deep learning methods were applied to forecast hourly ozone levels during pandemic lock-down for
an industrialized region in Turkey. With this aim, different deep learning methods were tested and efficiencies
of the models were compared considering the calculated RMSE, MAE, 𝑅2 and loss values.
1. Introduction

Tropospheric ozone (O3) is a worldwide air pollutant that is well-
known as the main index substance of photochemical smog phe-
nomenon. Formation of tropospheric O3 involves complex photochem-
ical interactions of nitrogen oxides (NOx), volatile organic compounds
(VOCs) and carbon monoxide (CO) which are known to be precursors of
O3 (Özbay et al., 2011). So, it is evident that tropospheric ozone levels
are correlated with anthropogenic pollution emissions (Alvim-Ferraz
et al., 2006). Due to serious harmful effects on human well-being and
ecology, tropospheric ozone is of concern to many scientific studies.
Chronic exposure to high levels of O3 is associated with decreased
pulmonary functions and cardiovascular diseases (Zhan et al., 2018).
Raised ground level O3 has well-known harmful impacts on vegetation
as it causes leaf injury and growth reduction (Hayes et al., 2010).
Furthermore, ozone exhibits a remarkable greenhouse potential that
contributes to the global climate change (Sharma et al., 2017). Cer-
tainly, intensity of the mentioned impacts increases with rising O3
concentrations.

Air quality parameters indicate significant variations during Covid-
19 pandemic period all over the world. Although many of the pri-
mary pollutants (...) exhibited decreasing tendencies during lock-down
days, an increasing trend was noted for ground level ozone concentra-
tions. Hashim et al. (2020) concluded that O3 concentrations increased
during lock-down periods and the daily O3 concentration exceeded
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World Health Organisation (WHO) limit (100 μg∕m3) in mid-July. In
another study, Kerimray et al. (2020) investigated the impacts of
COVID-19 lock-downs on variations of air quality in Kazakhstan and
determined 15% increase in ground level O3 concentrations when
compared to pre-lock-down period. Similarly, O3 levels exhibited a
remarkable increasing tendency in Rio de Janeiro (Dantas et al., 2020),
Barcelona (Tobías et al., 2020) and Delhi (Mahato et al., 2020) during
lock-down period. The observed increase in O3 levels has attributed to
declining NOx emissions considering the negative correlation between
them. Actually, increasing trend of tropospheric O3 during pandemic
period worth to be examined in detail. Undoubtedly, predictive models
are useful tools to forecast the forthcoming levels of ground-level O3
under such extra-ordinary conditions.

In literature, there are different studies about application of sta-
tistical and deterministic approaches for modeling tropospheric O3
concentrations. Statistical methods which can be categorized as linear
and non-linear models are based on analyzing monitored datasets in
order to obtain qualitative or semi-quantitative results about forthcom-
ing ozone levels. On the other hand, Eulerian, Lagrangian and Gaussian
are the deterministic chemistry-transport approaches used to model
atmospheric processes. Deterministic models can be used to provide
knowledge about formation mechanism of ground-level ozone and also
to obtain prognostic time- and spatially-resolved concentrations for
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different scenarios (Zhang et al., 2012). There are numerous studies
about combined and individual applications of these approaches for
O3 modeling. Among the statistical methods, multivariate regression
models (Draxler, 2000; Abdul-Wahab et al., 2005; Kovač-Andrić et al.,
2009; Özbay et al., 2011; Lv et al., 2016), fuzzy models (Lin and
Cobourn, 2007; Cheng et al., 2011; Carbajal-Hernández et al., 2012)
and neural network models (Hadjiiski and Hopke, 2000; Chaloulakou
et al., 2003; Pastor-Bárcenas et al., 2005; Coman et al., 2008; Sekar
et al., 2016; Gao et al., 2018) have been extensively studied. In some
cases, statistical and deterministic models were applied in an integrated
manner in order to improve forecasting performance (Kalenderski and
Steyn, 2011; Gradišar et al., 2016).

Deep learning technologies are also emerging methods for efficient
modeling of different air pollutants (Li et al., 2016; Zhang et al., 2016).
When compared to conventional neural networks, the most significant
superiorities of deep learning methods can be sorted as demand for less
computational units, automatic learning without guidance and higher
modeling efficiency (Wu et al. 2015). Hence deep learning provides
adequate accuracy in solving complex problems even in presence of
large datasets, it is considered to be a promising tool for prediction of
ground-level O3 concentrations (Wang et al., 2020).

The major goal of this work was to evaluate the efficiency of deep
learning approach in modeling hourly concentrations of tropospheric
O3 for pandemic lock-down period. Appropriate model architecture was
selected to predict relatively higher ozone levels by selected inputs
consisted of meteorological parameters (temperature, wind speed and
relative humidity) and pollutant parameters (𝑃𝑀10, SO2, NO, NO2,
O3).

2. Materials and methods

2.1. Studied area and data collection

Data used in this study was collected in Korfez district of Kocaeli
located at the northeastern coast of Marmara Sea. There are important
industrial establishment in the region which of two is working at
petroleum refinery sector. Transportation facilities are also developed
with two motorways, railway and special ports in order to meet the
requirements of industrial plants.

Unfortunately, ecological structure has been destroyed in the region
as a result of industrial development. In particular, local air quality
is of concern and is monitored by continuous measurements. 𝑃𝑀10,
𝑃𝑀2.5, NO, NO2, NOx, SO2, O3 and also meteorological parameters
are being measured in the station monitored with continuous mea-
surements in the station belonging to Air Quality Monitoring Network
of Environmental Ministry. In the station NO, NO2 and NOx were
measured by using Teledyne API 200 E model analyzer whereas O3 and
SO2 were measured by Teledyne API 400 E and Teledyne API 100 E
model devices. BAM-1020PM Monitoring System was used for 𝑃𝑀10
and 𝑃𝑀2.5 measurements. Temperature (𝑇 ), humidity (𝑅𝐻), pressure
(𝑃 ), wind direction (𝑊𝐷) and wind speed (𝑊𝑆) were monitored by
using Delta OHM model device.

In this study hourly measured values of 𝑃𝑀10, SO2, NO, NO2, 𝑇 ,
𝑊𝑆, 𝑅𝐻 and O3 were used as input variables in order to predict the O3
concentrations of next hour (t+1). With this aim, data obtained in May
2020 was preferred as most of the stay-at-home days (total 15 days)
were recorded in May during Covid-19 pandemic. Summary of various
pollutants and meteorological parameters measured at study area.

2.2. Methodology

2.2.1. LSTM
Long Short Term Memory (LSTM) proposed by Hochreiter and

Schmidhuber (1997) is a kind of special Recurrent Neural Network
(RNN) architecture that can perform better for long-term dependency
2

Fig. 1. RNN architecture.

Fig. 2. LSTM architecture.

problems. The structure of RNN and LSTM are shown in Figs. 1 and 2
respectively.

𝑥𝑡 and ℎ𝑡 represent the input and the recurrent information of the
cell at time t respectively.

While RNN is a single layer neural network with a feedback loop, in
LSTM, the repeating module has four neural network layers interacting
in a special way as shown in Fig. 2. An LSTM network consists of three
gates that controls the cell states: the input gate, the forget gate, and
the output gate.

The forget gate decides which information are going to be discarded
from the cell state. The output of the forget gate is obtained by a
sigmoid function that takes the information from the previous cell and
the current cell as inputs. It is mathematically expressed as follows
based on :

𝑓𝑡 = 𝜎(𝑊𝑓 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (1)

In Eq. (1) above, while 𝑓𝑡 represents the forget gate, 𝑊𝑓 and 𝑏𝑓
represent the weight and the bias of the forget gate respectively.

The input gate decides what new information is going to be added in
the cell. To achieve this, a sigmoid layer first decides which values are
going to be updated. Then a tanh layer generates a vector of candidates
that could be added to the state. The mathematical expression is given
with Eq. (2). Finally the outputs of the tanh function and the sigmoid
function are multiplied as in Eq. (3).

𝑖𝑡 = 𝜎(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 )
(2)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + (1 − 𝑓𝑡) ∗ �̃�𝑡. (3)

When the 𝑖𝑡 represents the input gate, 𝑊𝑖 and 𝑏𝑖 represent the weight
and the bias of the input gate respectively. 𝐶𝑡 denotes the state of the
LSTM cell.

The output gate decides what information to output from the cur-
rent cell state. To achieve this, first the previous and the current state
are transferred to the sigmoid function. Then the new state is put
through tanh function and multiply it by the sigmoid unit output. The
new state is transferred to the next state. The mathematical expressions
for output gate is given with Eq. (4) and Eq. (5) as follows:

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)
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Fig. 3. Inner structure of LSTM unit.

𝑓𝑡 = 𝜎(𝑊𝑓 [𝐶𝑡−1, ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 )

𝑖𝑡 = 𝜎(𝑊𝑖[𝐶𝑡−1, ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑊𝑜[𝐶𝑡−1, ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

(5)

where 𝑜𝑡, 𝑊𝑜 and 𝑏𝑜 represent the output gate, weight and the bias of
the output gate respectively.

Complete view of An LSTM unit is given in Fig. 3.

2.2.2. BiLSTM
Bidirectional LSTM (BiLSTM) is an improved LSTM network pro-

posed by Graves and Schmidhuber and it is also used in occasions
where the learning problem is sequential (Graves and Schmidhuber,
2005). Bidirectional LSTM composed of two LSTM units, one of them
is built and optimized in a forward direction, and the other is built
and optimized in a backward direction. Applying the LSTM units in
two direction improves the ability of learning long term-dependencies
and consequently this improves the accuracy of the model. The hid-
den state of the forward LSTM process can be represented as ⃖⃗ℎ𝑡 =
𝐿𝑆𝑇𝑀(𝑥𝑡, ⃖⃗ℎ𝑡−1); the hidden state of the backward LSTM process can
be represented as ⃖⃖ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡, ⃖⃖ℎ𝑡+1). The eventual output of BiLSTM
unit are the sum of the forward and the backward hidden states and
represented as ℎ𝑡 = ⃖⃗ℎ𝑡 + ⃖⃖ℎ𝑡.

2.2.3. Stacked LSTM
Stacked LSTM network which has a simple and efficient structure,

provide higher capacity and depth for the LSTM network by stacking
the LSTM layers. Three recurrent layers LSTM is illustrated in Fig. 4.
The unrolled stacked LSTM along the time dimension is presented in
Fig. 5 where we assume that the sequence length is 4.

The output of the (𝐿 − 1)th LSTM layer at time t is represented
as ℎ𝐿−1𝑡 . This output is also the input, 𝑥𝐿𝑡 , of the Lth layer. When the
model is examined it is observed that the recurrent connections are only
within one layer. The mathematical formulas of the Lth LSTM layer are
as follows:
𝑓𝐿
𝑡 = 𝜎(𝑊 𝐿

𝑓ℎℎ
𝐿
𝑡−1 +𝑊 𝐿

𝑓𝑥ℎ
𝐿−1
𝑡 + 𝑏𝐿𝑓 )

𝑖𝐿𝑡 = 𝜎(𝑊 𝐿
𝑖ℎℎ

𝐿
𝑡−1 +𝑊 𝐿

𝑖𝑥ℎ
𝐿−1
𝑡 + 𝑏𝐿𝑖 )

𝑐𝐿𝑡 = 𝑡𝑎𝑛ℎ(𝑊 𝐿
𝑐ℎℎ

𝐿
𝑡−1 +𝑊 𝐿

𝑐𝑥ℎ
𝐿−1
𝑡 + 𝑏𝐿𝑐 )

𝑐𝐿𝑡 = 𝑓𝐿
𝑡 𝑐

𝐿
𝑡−1 + 𝑖𝐿𝑡 𝑐

𝐿
𝑡 .

(6)

2.2.4. CNN-LSTM
Convolutional neural network (CNN) is a special Multilayer percep-

tron (MLP) which composes of one or more convolutional and max
pooling layers followed by one or more fully connected layers with a
rectified linear activation function (ReLU).

On the other hand, CNN-LSTM combines both the advantages of
CNN and LSTM networks. In this respect, it can be regarded as a hybrid
network which can be proposed with the various combinations of CNN
and LSTM networks. This hybrid network basically includes four layers
namely Convolutional layer, Pooling layer, LSTM layer and Dense layer.
3

Fig. 4. Stacked LSTM.

The way this architecture works is as follows: at first the input is given
to the network and features are extracted from CNN layers. The output
of the CNN is fed to LSTM to complete learning.

2.2.5. Conv-LSTM
Convolutional-LSTM (Conv-LSTM) is a special LSTM architecture

that contains a convolution operation inside the LSTM units. Namely,
it changes the matrix multiplication in the LSTM unit with a convo-
lutional operation. The Conv-LSTM model defines the next state of
a cell by the inputs and the past states of its neighbors (Shi et al.,
2015). In Conv-LSTM, the states, cell memory, gates and parameters are
encoded as high dimensional tensors. Let the inputs are 𝑋1,… , 𝑋𝑡, the
cell outputs are 𝐶1,… , 𝐶𝑡, the hidden states are 𝐻1,… ,𝐻𝑡. The gates
which are 3D tensors are 𝑖𝑡, 𝑓𝑡, 𝑜𝑡. The inner structure and the equations
of Conv-LSTM are shown in Figs. 6 and 7, respectively. The convolution
operation is denoted as * and Hadamard product is denoted as ◦ in the
equations.

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ 𝐻𝑡−1 +𝑊𝑐𝑖◦𝐶𝑡 − 1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 +𝑊ℎ𝑓 ∗ 𝐻𝑡−1 +𝑊𝑐𝑓◦𝐶𝑡 − 1 + 𝑏𝑓 )

𝐶𝑡 = 𝑓𝑡◦𝐶𝑡−1 + 𝑖𝑡◦𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝑋𝑡 +𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝑐 )

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊ℎ𝑜 ∗ 𝐻𝑡−1 +𝑊𝑐𝑜◦𝐶𝑡 + 𝑏𝑜)

𝐻𝑡 = 𝑜𝑡◦𝑡𝑎𝑛ℎ(𝐶𝑡).

(7)

3. Case study

3.1. Data preparation

In the input data used in the experiments both the range within at-
tributes and among attributes are considerably different. For example,
while 𝑅𝐻 values range from 27.93 to 100.0, 𝑊𝑆 values range from
0.15 to 4.02. Differences on ranges of attributes cause the model to
learn incorrectly. To deal with this problem normalization is recom-
mended to brings the range to certain values. Consequently, variables
in our dataset were transformed into [0, 1] range by using min–max
normalization. This can provide equalization of the impact of attributes
on prediction and more accurate predictions. The formula of min–max
normalization is as follows (8):

𝑦𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
. (8)

where 𝑥𝑖 is the 𝑖𝑡ℎ data point; while 𝑥𝑚𝑖𝑛 minimum-valued data point,
𝑥𝑚𝑎𝑥 maximum-valued data point in the dataset. 𝑦𝑖 represents the
normalized form of 𝑥 and a value in the range [0, 1].
𝑖
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Fig. 5. Unrolled LSTM.
Fig. 6. Inner structure of Conv-LSTM.
Fig. 7. Correlations between model input variables.

In order for the models to be evaluated correctly training and test

sets should be suitable for air pollution. On the other hand, there is

no certain rule how to divide dataset into training and test set. For

comparison, experimental dataset containing 470 hourly observation

values in total is divided into two, training set and test set. The different

data splits for testing the models is proposed as given in Table 1.

When performing splitting training and test sets should have the same

distribution and our splitting provides this.
4

Table 1
The different data splits for testing the LSTM models.

Train split Test split # Data points train set # Data points train set

90 10 424 46
80 20 376 94
75 25 357 113

3.2. Error metrics

In order to evaluate performance of the proposed models we used
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-
squared (𝑅2) and loss value error metrics in these experiments. In these
experiments, the (RMSE) is used as the main evaluation metric. In
addition, while evaluating the network structures of the models, Akaike
information criterion (AIC) and Bayesian information criterion (BIC)
criteria were used.

RMSE is the standard deviation of the error between expected and
predicted value. RMSE is sensitive to the outliers and is used to measure
magnitude of extreme errors and outliers and degree of dispersion;
therefore, we use the RMSE indicator. While lower RMSE indicates
better central tendency and less extreme errors, higher RMSE indicates
worse central tendency and a large dispersion.

MAE is the average of the error between each pair of expected and
predicted values. Just as RMSE is sensitive to outliers, so is the MAE.
The deviation is high in data with high dispersion because of outliers,
so the error obtained with MAE is also high. The lower error reflects
the better model performance.

𝑅2 is the measure of linear relation between two random variables.
If the variation between expected and predicted value is high, little 𝑅2

is obtained and little 𝑅2 shows that expected and predicted have low
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relation with each other. Otherwise, the relation between these values
is high, so the 𝑅2 value is high. In general, 𝑅2 which is equal or greater
han 0.8 is accepted as a successful prediction.

The loss value is one of the basic error metric for deep learning
lgorithms. The closer the loss value is to zero, the better the prediction
erformance of the model is. Hence, the aim is to minimize the loss
alue.

Formulas of these three error metrics are presented in Eqs. (9)–(11).

𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖 − �̂�𝑖, (9)

𝑀𝐴𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖|, (10)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
, (11)

where 𝑦𝑖 is the expected value of 𝑖th observation; �̂�𝑖 is the predicted
alue of the same observation; 𝑦𝑖 is the mean value of observation; 𝑛 is
he number of observations in the test set.

AIC and BIC are the most commonly used model selection methods
sed to make selection amongst the models of different network struc-
ures. The reason for using AIC and BIC is that while 𝑅2 considers the
odel only on fit, AIC and BIC considers the model complexity Xiong

t al. (2019).
AIC was suggested by Akaike Akaike (1998) which is used to

valuate the fitness of the model. The AIC is computed as follows:

𝐼𝐶 = 𝐿 × log( 1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖 − �̂�𝑖) + 2 × 𝐹 . (12)

For data prediction, the efficiency of the model is determined by
sing BIC. The BIC is computed as follows:

𝐼𝐶 = 𝐿 × log( 1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖 − �̂�𝑖) + 𝐹 × log(𝐿). (13)

In the Eqs. (12)–(13) above, while 𝐿 is the length of the dataset, 𝐹
represents the number of features. When both of the AIC and BIC are
the smallest, the model is accepted as the optimal. The main difference
between these two models is that BIC shows that it chooses sim-
pler models, whereas AIC generally tends to choose a more elaborate
model (Agiakloglou and Tsimpanos, 2021).

3.3. Building models

In this study we have proposed to compare LSTM models to decide
which model and which parameters are better making forecast for
air pollution for O3 value. We use Keras1 a high-level Python library
developed for deep learning in the implementation of LSTM models
namely LSTM, BiLSTM, Stacked LSTM, CNN-LSTM and Conv-LSTM.
In order to build architectures for models to be used, several model
parameters including the number of the neurons in the input layer,
the number of hidden layers, the number of in hidden neurons in
each hidden layer, size of fully connected and output layer should be
determined primarily. In addition to these, batch size and number of
epoch that need to be adjusted for all models which have effect on
working of the models. These parameters are common to all models.

The number of neurons in the input layer depends on the number of
attributes in the dataset so the total number of neurons in this layer is
equal to 8. There is no formula for determination of the hidden neuron
size. In the network there is one hidden layer number of hidden neurons
are selected from the set 10, 20, 50, 64 and a fully connected layer
with one neuron. The one-hour prediction is used to predict (t+1)-hour

1 https://pypi.org/project/Keras/
5

air pollution that is why the size of the output layer is 1 with one
neuron. Furthermore, the number of epochs is also important. In our
experiment, epoch size is selected from the set 1000, 2000 and batch
size is set to 72. Grid search or heuristic search methods can be used to
provide better parameter configuration; but, realizing these methods
are almost impossible and computationally expensive because of the
large search space. For these reasons, the experiments are conducted
by using fixed set of parameters.

In addition to parameter settings, loss function optimization is
crucial for building deep learning models. Especially in recent years,
optimization of the loss function has become very important. In the
training phase of the models we used Adam loss function optimizer.
Adam, a stochastic gradient descent algorithm computes first and sec-
ond order moment with exponential moving average. In this regard,
Adam provides fast convergence which is also the main reason why it
is used in this study.

To figure out performance of the deep learning model it is necessary
to use an activation function (Misra, 2019). While LSTM, BiLSTM and
Stacked LSTM tanh is used as activation function, for CNN-LSTM and
Conv-LSTM Rectified Linear Unit (ReLU) is used.

At first, LSTM and BiLSTM models are designed based on the param-
eter settings above. Our stacked LSTM which consists 2 stacked LSTM
layers is composed adding a new LSTM layer to LSTM architecture.
The neurons of the first LSTM layer are fed with input attribute vector.
Then, the first LSTM layer feeds into the second LSTM layer. At the end,
the second LSTM layer feeds into a fully connected layer.

The CNN-LSTM differs from LSTM with it layers. It has convo-
lutional layer and in it number of filters, kernel size and activation
function needs to be determined. These parameters play a very im-
portant role in the performance of the model. In this study only one
convolutional layer is used. For this layer number of filters is selected as
64. As an activation function we use relu to accelerate learning conver-
gence. To minimize the information loss, we use 2 kernel. Another layer
that differs from LSTM is the pooling layer. We have one pooling layer
and set 1 to pooling size. The input data at first feeds into convolutional
layer, the output of this layer feeds into pooling layer, finally passes to
LSTM layer.

Our Conv-LSTM consists of one convolutional layer, one flatten
layer and one dense layer. The number of filters is selected from the
set 10, 20, 60, 64 and kernel is set to 2 × 1 in the convolutional layer.

The summary of the models is given with Table 2.

4. Results and discussions

4.1. Evaluation of the input variables

As mentioned previously although pandemic lock-downs implemen-
tations were started in April, May was the prevailing month of the
period. In this work, the impacts of the lock-downs on air quality have
been evaluated considering the monthly average values of the pollution
parameters. Tables 3 and 4 represent the monthly average values of the
pollution and meteorological parameters, respectively. Data of pre- and
post-lockdown periods (March and June months) were also presented
in the tables.

As seen from Table 3 𝑃𝑀10, NO and NO2 concentrations exhibited
gradually declining trends from March to May as a result of lock-
down implementations. Conversely, 46.98% increase was observed for
ground-level O3 levels in this period. This increase can be attributed
to decreasing NO and NO2 levels which are negatively correlated

ith ground-level O3 concentrations. Increasing temperature values
Table 4) may also promote the photochemical reactions of ozone
ormation. Average temperature values increased remarkably in the
egion (from 10.88 to 18.50 ◦C) in March–May period.

Bivariate correlation analysis was performed in order to evalu-
te the interactions between the input variables. Obtained Pearson’s
orrelation coefficients (r) were given in Fig. 7.

https://pypi.org/project/Keras/
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Table 2
Summary of the Models.
Model name Optimizer Activation function # LSTM layer # Hidden neurons (layer)/Filter # Epoch # Kernel

LSTM Adam tanh 1 10, 20, 50, 64 1000, 2000 –
BiLSTM Adam tanh 1 10, 20, 50, 64 1000, 2000 –
Stacked LSTM Adam tanh 2 10, 20, 50, 64 1000, 2000 –
CNN-LSTM Adam relu 1 10, 20, 50, 64 1000, 2000 2
Conv-LSTM Adam relu 1 10, 20, 50, 64 1000, 2000 (2,1)
Table 3
Monthly average values of the pollution parameters during March–June 2020.
Months 𝑃𝑀10 (μg∕m3) SO2 (μg∕m3) NO (μg∕m3) NO2 (μg∕m3) O3 (μg∕m3)

Mean SD Mean SD Mean SD Mean SD Mean SD

March 47.14 21.37 8.76 7.36 16.50 17.24 30.88 13.78 39.76 16.90
April 35.39 13.04 16.70 16.50 6.11 5.34 28.55 15.99 55.01 16.76
May 30.05 17.30 14.29 12.06 3.93 3.03 27.76 12.66 58.43 9.44
June 32.93 7.67 5.29 4.53 5.38 3.40 34.40 9.95 53.66 10.50
M
Table 4
Monthly average values of the meteorological parameters during March-June 2020.

Months 𝑇 ◦C 𝑊𝑆 (m∕s) 𝑅𝐻 (%)

Mean SD Mean SD Mean SD

March 10.88 2.83 1.26 0.48 76.72 9.80
April 12.83 2.80 1.24 0.23 67.57 11.75
May 18.50 4.95 1.38 0.63 70.84 18.46
June 23.02 2.51 0.99 0.22 71.78 8.01

Considering the relationships between O3 and other pollutant
species, it is clearly seen that NO and NO2 have strong negative correla-
ions with O3 (r=-0.51 and −0.83, respectively). Additionally, ground-
evel O3 levels exhibited strong positive correlation with temperature
r=0.61) and strong negative correlation with relative humidity (r=-
.65). Obtained correlations which are generally coherent with the
iterature provide informative explanations for increasing O3 levels in
he studied region.

.2. Effect of parameter settings and LSTM models

In this study, we aim to investigate effect of different epoch size,
umber of hidden neurons and dataset splitting on the prediction per-
ormance of ground-level ozone concentrations of pandemic lock-down
eriod obtained for each LSTM model at hourly.

Although there is no systematic way to determine the network
tructure in deep learning models, the information gain to be obtained
rom the models with the differentiation of the number of neurons is
aken into account. For this purpose, firstly, the information gain to
e obtained in different neuron numbers for different dataset splits is
alculated and the results are given in Tables 5–9.

When the tables showing the information gain of the models are
xamined, two important conclusions were reached: firstly, it is ob-
erved that the change in the network structure has no effect on the
nformation gain; secondly, the information gain increased with the
ncrease in the training samples. Obviously, the number of data in the
raining set increases the information gain of the models will improve.
he model with the highest information gain is the Stacked-LSTM
odel performed with 2000 epochs with 64 neurons in which the
ataset is divided as 90:10 (AIC= 251.79, BIC= 266.42).

It is seen that results based on RMSE given in the Tables 10–12 are
upported by AIC and BIC results. When all results are evaluated to-
ether, it is clearly seen that chain-like Stacked LSTM has the powerful
odeling capability of air pollution data. Among Stacked LSTM models
4 hidden neurons with 2000 epoch and data split 90:10 is the superior.
he reason this model is most successful is that it is more appropriate
odel for time sequence data and has deeper structure.

In detailed analysis, for epoch size=1000 and number of hidden
euron/filters is equal to 10, RMSE value varies from 13.25 to 14.35,
6

AE value varies from 7.55 to 9.34 and 𝑅2 value varies from 0.92 to
0.95. For epoch size=2000, RMSE value varies from 13.27 to 14.22,
MAE value varies from 7.8 to 8.96 and 𝑅2 value varies from 0.92 to
0.94. When these two analyzes are compared in terms of the number
of iterations, although the average performance of the models has
increased in 2000 iterations based on RMSE, the error values for all
three metrics are very close to each other. When the number of hidden
neurons/filters is taken 20 for the cases where the number of iterations
is equal to 1000 and 2000, analyzes have been made. RMSE value
varies from 13.33 to 13.77, MAE value varies from 7.59 to 9.64 and 𝑅2

value varies from 0.93 to 0.94 for 1000 epoch. In 2000 epoch results of
RMSE takes a value between 13.3 and 14.3, MAE takes a value between
7.7 and 8.87 and 𝑅2 takes a value between 0.92 and 0.93. When the
iteration numbers for 20 hidden neurons are compared, it is seen that
the best success is achieved with 1000 iterations based on RMSE.

For hidden neurons/filters=50 and epoch size=1000, RMSE takes
values in the range of 11.07 and 14.52, MAE takes values in the range
of 7.51 and 8.85 and 𝑅2 takes values in the range of 0.92 and 0.94.
When the results are examined in terms of 2000 epochs, it is seen that
RMSE takes values in the range of 10.75 and 13.88, MAE takes values in
the range of 7.69 and 8.87 and 𝑅2 takes values in the range of 0.9 and
0.93. When the number of hidden neurons/filters is taken 64, RMSE
value varies from 10.95 to 13.77, MAE value varies from 7.68 to 9.59
and 𝑅2 value varies from 0.93 to 0.94 for 1000 epoch. The training is
done with 2000 epoch, RMSE takes values in the range of 10.68 and
13.6, MAE takes values in the range of 7.73 and 8.5 and 𝑅2 takes values
in the range of 0.91 and 0.94.

When the methods are compared for the number of epoch, it is
observed that there are improvements in terms of RMSE values with
the increase of epoch.

For 64 hidden neurons/filters with 2000 epoch 𝑅2 graphics are
given Fig. 8.

Performance of the developed models are evaluated considering the
coefficient of determination (𝑅2) between the predicted and expected
O3 levels. 𝑅2 values of the models are almost closer to each other.

For 64 hidden neurons/filters with 2000 epoch graphics of loss
value are given with Fig. 9.

The train and test set errors of the deep learning models which are
depicted in Fig. 9, allows us to answer an important question – are
train set and test set errors tend to decrease over time? – In all of the
figures, it is seen that, both train and test errors tend to decrease over
the iterations. When these figures are examined in more detail, it is
realized that, the train and test set error of the Stacked LSTM model
are much closer to each other. Besides, There is no over-fitting in any
of the models.

Based on 64 hidden neurons/filters with 2000 epoch, expected and
predicted values of O3 are represented with Fig. 10.

When the results are examined, although the obtained values con-
verge to the observed values for all models, it is seen that the Stacked
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Fig. 8. Predicted O3 values versus measured O3 values for (a) LSTM (b) BiLSTM (c)Stacked LSTM (d) CNN-LSTM (e) Conv-LSTM.
Table 5
Information gain of LSTM for different dataset split.
# Hidden neurons (layer) # Epoch 75:25 80:20 90:10

AIC BIC AIC BIC AIC BIC

10 1000 552.13 573.95 473.75 494.1 253.75 268.38
20 1000 554.99 576.81 471.9 492.24 254.61 269.24
50 1000 551.18 573.0 471.85 492.2 254.29 268.92
64 1000 554.42 576.24 471.64 491.99 253.88 268.51
10 2000 556.87 578.69 470.64 490.99 253.85 268.48
20 2000 553.21 575.03 470.77 491.12 254.66 269.29
50 2000 553.3 575.12 471.2 491.54 254.74 269.37
64 2000 553.8 575.61 470.1 490.45 254.89 269.51
Table 6
Information gain of BiLSTM for different dataset split.
# Hidden neurons (layer) # Epoch 75:25 80:20 90:10

AIC BIC AIC BIC AIC BIC

10 1000 551.8 573.62 472.03 492.38 254.39 269.02
20 1000 552.99 574.81 472.03 492.38 254.29 268.92
50 1000 551.75 573.57 472.23 492.58 254.22 268.85
64 1000 551.72 573.54 471.5 491.85 255.45 270.08
10 2000 552.38 574.2 473.47 493.82 254.61 269.24
20 2000 553.21 575.03 472.05 492.4 255.26 269.89
50 2000 555.33 577.15 471.33 491.67 253.23 267.86
64 2000 556.67 578.49 470.84 491.18 255.3 269.93
7
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Fig. 9. Loss values for (a) LSTM (b) BiLSTM (c)Stacked LSTM (d) CNN-LSTM (e) Conv-LSTM.
Table 7
Information Gain of Stacked LSTM for Different Dataset Split.
# Hidden neurons (layer) # Epoch 75:25 80:20 90:10

AIC BIC AIC BIC AIC BIC

10 1000 550.25 572.07 474.12 494.46 256.11 270.74
20 1000 551.18 572.99 471.46 491.81 255.37 270.0
50 1000 553.95 575.77 471.61 491.96 254.36 268.99
64 1000 551.54 573.36 471.76 492.11 255.14 269.77
10 2000 550.96 572.78 470.23 490.57 255.83 270.45
20 2000 554.43 576.25 469.78 490.13 254.98 269.61
50 2000 557.25 579.07 469.43 489.78 254.39 269.02
64 2000 551.93 573.75 465.86 486.21 251.79 266.42
8
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Table 8
Information Gain of CNN-LSTM for Different Dataset Split.
# Hidden neurons (layer) # Epoch 75:25 80:20 90:10

AIC BIC AIC BIC AIC BIC

10 1000 558.95 580.77 482.22 502.57 261.08 275.71
20 1000 565.34 587.16 482.97 503.32 255.51 270.14
50 1000 565.72 587.54 493.27 513.62 259.33 273.96
64 1000 558.72 580.54 480.53 500.88 257.83 272.46
10 2000 558.95 580.77 598.42 618.77 260.22 274.85
20 2000 559.32 581.14 477.96 498.31 260.76 275.39
50 2000 584.5 606.32 476.96 497.31 261.14 275.77
64 2000 566.0 587.82 483.22 503.57 258.41 273.04
Table 9
Information Gain of Conv-LSTM for Different Dataset Split.
#Filter # Epoch 75:25 80:20 90:10

AIC BIC AIC BIC AIC BIC

10 1000 558.92 580.74 489.65 509.99 257.55 272.18
20 1000 559.38 581.2 480.94 501.29 257.28 271.91
50 1000 563.92 585.74 476.21 496.55 255.39 270.01
64 1000 570.1 591.92 479.06 499.41 255.09 269.71
10 2000 559.52 581.34 474.95 495.3 256.47 271.10
20 2000 571.24 593.06 482.73 503.08 254.05 268.68
50 2000 569.08 590.9 485.66 506.01 262.79 277.42
64 2000 578.0 599.818 486.22 506.57 256.57 271.2
Table 10
Experimental Results for Dataset Split 75:25.

Model name # Hidden neurons (layer)/Filter # Epoch RMSE MAE 𝑅2 Model name # Hidden neurons (layer)/Filter # Epoch RMSE MAE 𝑅2

LSTM 10 1000 10.72 7.4 0.91 Stacked LSTM 10 2000 10.67 7.59 0.89
LSTM 20 1000 10.86 7.65 0.92 Stacked LSTM 20 2000 10.83 7.88 0.9
LSTM 50 1000 10.78 7.52 0.91 Stacked LSTM 50 2000 13.38 7.89 0.91
LSTM 64 1000 10.74 7.42 0.91 Stacked LSTM 64 2000 13.25 7.71 0.89
LSTM 10 2000 10.95 7.85 0.89 CNN-LSTM 10 1000 11.31 7.69 0.88
LSTM 20 2000 10.78 7.62 0.91 CNN-LSTM 20 1000 11.37 7.94 0.88
LSTM 50 2000 10.89 7.82 0.9 CNN-LSTM 50 1000 10.97 7.53 0.87
LSTM 64 2000 10.77 7.67 0.9 CNN-LSTM 64 1000 11.33 7.57 0.89
BiLSTM 10 1000 10.71 7.36 0.92 CNN-LSTM 10 2000 11.05 7.61 0.87
BiLSTM 20 1000 10.76 7.56 0.92 CNN-LSTM 20 2000 11.07 7.07 0.9
BiLSTM 50 1000 10.76 7.55 0.92 CNN-LSTM 50 2000 11.8 8.83 0.84
BiLSTM 64 1000 10.8 7.59 0.91 CNN-LSTM 64 2000 10.96 7.71 0.88
BiLSTM 10 2000 10.73 7.65 0.89 Conv-LSTM 10 1000 11.05 7.91 0.87
BiLSTM 20 2000 10.77 7.68 0.89 Conv-LSTM 20 1000 11.07 7.89 0.87
BiLSTM 50 2000 10.8 7.66 0.89 Conv-LSTM 50 1000 11.6 8.75 0.88
BiLSTM 64 2000 11.0 7.98 0.9 Conv-LSTM 64 1000 10.96 7.68 0.85
Stacked LSTM 10 1000 10.63 7.16 0.91 Conv-LSTM 10 2000 11.08 8.17 0.86
Stacked LSTM 20 1000 10.68 7.3 0.92 Conv-LSTM 20 2000 11.67 8.94 0.81
Stacked LSTM 50 1000 13.38 7.89 0.91 Conv-LSTM 50 2000 12.09 9.31 0.8
Stacked LSTM 64 1000 13.3 7.86 0.92 Conv-LSTM 64 2000 12.26 9.44 0.84
Table 11
Experimental Results for Dataset Split (80:20).

Model name # Hidden neurons (layer)/Filter # Epoch RMSE MAE 𝑅2 Model name # Hidden neurons (layer)/Filter # Epoch RMSE MAE 𝑅2

LSTM 10 1000 11.37 7.58 0.93 Stacked LSTM 10 2000 11.24 7.31 0.92
LSTM 20 1000 11.3 7.45 0.93 Stacked LSTM 20 2000 11.2 7.5 0.91
LSTM 50 1000 11.26 7.46 0.92 Stacked LSTM 50 2000 10.91 7.44 0.9
LSTM 64 1000 11.33 7.6 0.92 Stacked LSTM 64 2000 10.95 7.42 0.91
LSTM 10 2000 11.29 7.5 0.90 CNN-LSTM 10 1000 12.19 8.99 0.9
LSTM 20 2000 11.27 7.66 0.91 CNN-LSTM 20 1000 12.81 9.6 0.87
LSTM 50 2000 11.21 7.54 0.9 CNN-LSTM 50 1000 12.34 8.59 0.78
LSTM 64 2000 11.3 7.63 0.9 CNN-LSTM 64 1000 11.99 8.39 0.83
BiLSTM 10 1000 11.3 7.53 0.92 CNN-LSTM 10 2000 11.81 7.62 0.89
BiLSTM 20 1000 11.26 7.39 0.92 CNN-LSTM 20 2000 11.8 8.33 0.87
BiLSTM 50 1000 11.32 7.4 0.92 CNN-LSTM 50 2000 11.8 8.59 0.85
BiLSTM 64 1000 11.27 7.53 0.92 CNN-LSTM 64 2000 13.25 10.22 0.7
BiLSTM 10 2000 11.23 7.48 0.91 Conv-LSTM 10 1000 11.68 8.06 0.9
BiLSTM 20 2000 11.28 7.58 0.91 Conv-LSTM 20 1000 11.64 7.97 0.9
BiLSTM 50 2000 11.25 7.66 0.89 Conv-LSTM 50 1000 11.53 7.97 0.88
BiLSTM 64 2000 11.27 7.63 0.9 Conv-LSTM 64 1000 11.64 7.96 0.9
Stacked LSTM 10 1000 11.27 7.35 0.93 Conv-LSTM 10 2000 11.48 7.95 0.89
Stacked LSTM 20 1000 11.27 7.41 0.93 Conv-LSTM 20 2000 11.71 8.26 0.88
Stacked LSTM 50 1000 11.19 7.62 0.93 Conv-LSTM 50 2000 12.03 8.62 0.85
Stacked LSTM 64 1000 11.20 7.40 0.92 Conv-LSTM 64 2000 12.49 9.22 0.82
9
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Table 12
Experimental Results for Dataset Split 90:10.

Model name # Hidden neurons (layer)/Filter # Epoch RMSE MAE 𝑅2 Model name # Hidden neurons (layer)/Filter # Epoch RMSE MAE 𝑅2

LSTM 10 1000 13.25 7.684 0.94 Stacked LSTM 10 2000 13.56 8.06 0.94
LSTM 20 1000 13.38 7.672 0.94 Stacked LSTM 20 2000 13.43 7.8 0.93
LSTM 50 1000 13.4 7.508 0.94 Stacked LSTM 50 2000 10.75 7.69 0.93
LSTM 64 1000 13.34 7.706 0.94 Stacked LSTM 64 2000 10.68 7.73 0.93
LSTM 10 2000 13.27 7.799 0.93 CNN-LSTM 10 1000 14.35 9.34 0.95
LSTM 20 2000 13.39 7.821 0.93 CNN-LSTM 20 1000 13.51 9.64 0.94
LSTM 50 2000 13.32 7.847 0.92 CNN-LSTM 50 1000 14.52 8.85 0.94
LSTM 64 2000 13.31 7.849 0.92 CNN-LSTM 64 1000 13.77 9.59 0.93
BiLSTM 10 1000 13.35 7.546 0.94 CNN-LSTM 10 2000 14.22 8.89 0.92
BiLSTM 20 1000 13.33 7.729 0.93 CNN-LSTM 20 2000 14.3 8.87 0.92
BiLSTM 50 1000 13.31 7.816 0.93 CNN-LSTM 50 2000 13.88 8.87 0.92
BiLSTM 64 1000 13.28 7.871 0.93 CNN-LSTM 64 2000 13.61 8.50 0.94
BiLSTM 10 2000 13.38 7.804 0.92 Conv-LSTM 10 1000 13.81 8.78 0.92
BiLSTM 20 2000 13.47 7.698 0.92 Conv-LSTM 20 1000 13.77 8.69 0.94
BiLSTM 50 2000 13.35 7.947 0.93 Conv-LSTM 50 1000 13.35 8.29 0.92
BiLSTM 64 2000 13.49 8.017 0.91 Conv-LSTM 64 1000 10.96 7.68 0.93
Stacked LSTM 10 1000 13.6 7.9 0.94 Conv-LSTM 10 2000 13.65 8.96 0.94
Stacked LSTM 20 1000 13.49 7.59 0.94 Conv-LSTM 20 2000 13.3 8.84 0.93
Stacked LSTM 50 1000 11.07 8.07 0.94 Conv-LSTM 50 2000 13.12 8.15 0.9
Stacked LSTM 64 1000 10.95 7.81 0.93 Conv-LSTM 64 2000 13.33 8.18 0.93
Fig. 10. Comparison between the expected and predicted O3 values for (a) LSTM (b) BiLSTM (c)Stacked LSTM (d) CNN-LSTM (e) Conv-LSTM.
10
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LSTM model converges better especially in the 18–22 time interval.
Therefore, Stacked-LSTM outperforms thanks to this time interval.

5. Conclusion

As cited in the recent literature, ground-level O3 concentrations
have exhibited increasing tendency in many countries during pandemic
lock-down period. During this unusual period, concentrations of ozone
precursors (𝑁𝑂𝑥, VOCs, etc.) which are negatively correlated with O3,
declined remarkably especially in developed countries as a result of
decreased traffic and industrial activities. Therefore, investigation of
ground-level O3 levels during pandemic period is of concern especially
for developed regions.

The major objective of the present study was to model hourly
concentrations of tropospheric O3 for pandemic lock-down period in
a prominent industrial area of Turkey, Korfez. With this aim, deep
learning approach, which is known to be superior in modeling complex
non-linear systems, was applied. During modeling studies, pollutant
parameters of 𝑃𝑀10, SO2, NO, NO2, O3 and meteorologic factors
of temperature, wind speed and relative humidity were attained as
input data to forecast the next hour’s O3 levels. Among the tested
deep learning methods (LSTM, BiLSTM, Stacked LSTM, CNN-LSTM
and Conv-LSTM) the Stacked LSTM has the most powerful modeling
capability to classify the present data. This is because in the Stacked-
LSTM model the hidden layers of the classic LSTM are stacked and the
network becomes deeper and the success increases in parallel with the
deepening of the network. The effect of this was seen on RMSE values.
Stacked-LSTM had two hidden layers with 64 neurons each running
2000 epochs predicted the most successful method with 10.68 RMSE
value for data split 90:10.

Statistical models are useful tools of monitoring and improving air
quality in the industrialized sites especially for such unusual conditions.
Results of this study may be informative to forecast tropospheric O3
levels under conditions of declining precursor levels.
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