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Abstract
In this study, a hardware design that runs the PSO algorithm at the micro level is carried out using FPGA technology, which
facilitates prototyping and testing of integrated circuit systems. In this way, a high rate of acceleration has been achieved for
swarm algorithms that perform stochastic search and whose calculation time is not suitable for real-time systems. For this,
the inverse kinematics problem, which is used in the robotics field and which forms the basis of the robot control system, is
solved for a 7-joint serial robot manipulator. Since the study aims to compare software-based calculations and hardware-based
calculations, the results are presented in a comparative way with the results obtained with Matlab software. The tests have
been performed in the study revealed two important situations. Firstly, the biggest handicap of algorithms such as PSO that
reach a result by searching in a certain solution space is that the solution times are not suitable for real-time applications.
The other is that FPGA can be used as a prototyping device for real-time applications due to its speed and hardware-based
running. Because according to the test results, FPGA has accelerated the calculations up to 1000 times.

Keywords Integrated circuit · Embedded systems · Particle Swarm optimization · Inverse kinematics · Robotics

1 Introduction

It is clear that robots provide great convenience to us by
entering different areas of our lives in different ways. Robots
have been the most important factor in the industry becom-
ing huge. Today, there are many industrial robots, large and
small, used in fixed, autonomous, serial and parallel. Of
course, it is inevitable that such a structure which is at the
forefront of the industry will be the center of attention of the
research world [1]. Especially the control, movements and
structure of robots have been examined by many researchers
in the literature and important results and analyzes have been
obtained [2]. The subject of kinematics, especially the inverse
kinematics equations and the solution of the problem, has
been repeatedly investigated in this field. Because inverse
kinematics equations have revealed a non-linear, complex
and time-consuming problem [3]. Inverse kinematics is to
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obtain joint angles from the position information of the end
effector of a robot manipulator in the work space [4]. Until
20 years ago, the researchers used numerical, algebraic and
geometricmethods known as conventional methods to obtain
joint angles from the position of the end effector. However,
thesemethodswere insufficient due to complexity limitations
in solving the inverse kinematics problem with the increas-
ing degrees of freedom of the robots [5]. Later, even today,
intelligent optimization techniques have taken their place in
the literature as the most effective methods in solving this
problem [6]. This process has started with artificial neu-
ral networks and evolutionary algorithms; for a long time
this techniques have produced effective results in solving
the inverse kinematics problem [7]. However, over time,
the calculation times obtained with these techniques have
become insufficient for use in real robots [8]. For this rea-
son, researchers preferred heuristic algorithms [9] because of
their advantages such as quick convergence to solution, pro-
ducing effective solutions and reasonable time of solution
[10]. Techniques such as particle swarm optimization [11,
12], artificial bee colony [13], firefly algorithm [14], wolf
colony algorithm are the solution methods that come to the
fore in this case. In the last few years, the current situation has
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shifted from a software-based solution to a hardware-based
solution in parallel with the development of technology.

FPGAs are the manifestation of the idea of designing
digital circuits since the 1970s. Today, FPGAs are used
as integrated circuits that accelerate systems by provid-
ing high speed and performance, and whose design can
be changed later [15]. Therefore, FPGA-based solution
approaches proposed especially for high-performance situa-
tions have attracted the attention of the researchers [16].After
performing the path planning of a mobile robot named Pio-
neer 3-DX with FPGA-based genetic algorithm, Tuncer and
Yıldırım performed the field test. The authors, who focused
on the problem of obtaining the solution time of the genetic
algorithm for very long periods, reduced this time to real-time
study levels in their studies. With their own FPGA designs,
they have achieved an incredible improvement by reduc-
ing the solution time of the genetic algorithm by 90% [17].
Allaire et al. have designed a high-performance hardware-
based genetic algorithm to enable the unmanned aircraft to
follow the shortest route. When they compared the results
of the software-based GA and the hardware-based GA, they
clearly showed that there was a difference of 10,000 times
[18]. Alabdo et al. have developed a parallel FPGA-based
architecture for the control of a robotic system. This parallel
design, which operates in an image-based dynamic struc-
ture, has greatly reduced the controller’s response time and
increased sensitivity [19]. Irgens et al. have implemented the
Viola-Jones face recognition algorithm, which is successful
in observing images in a video and finding the desired peo-
ple,with aFPGA-based system.Theyhave alsodemonstrated
the success of their systems by verifying their applications
on a true FPGA device [20]. In another study, Dereli pro-
posed a hardware-based solution for the forward kinematics
calculation of a 7-joint robotmanipulator. In addition, by run-
ning this hardware both in series and parallel in accordance
with the structure of FPGAs, it has ensured that the result is
obtained in a much shorter time [21].

This study has been focused on optimizing solution times
so that inverse kinematic solutions of articulated robots can
be used in real-time studies with the help of heuristic algo-
rithms. For this purpose, the PSO algorithm was designed
and tested in accordance with the FPGA architecture to solve
the inverse kinematics problem of a complex 7-joint robot
manipulator. The proposed designwas synthesized and tested
for performance on the Nexys 4 DDR device and imple-
mented in a true 7-DOF robot manipulator. The results were
analyzed by comparing themwith the software results of dif-
ferent swarm-based heuristic algorithms.

The next part of the study is organized as follows: In the
second section, advanced kinematic equations for the robot
manipulator to be used in the study are obtained. In addi-
tion, details of the FPGA-based design encoded in VHDL

language are explained. In the third section, the results are
divided into three sub-sections and analyzed in depth.

2 Materials andMethods

2.1 Kinematic Analysis of a 7-Dof Robot Manipulator

Today, researchers use 7-joint robot manipulators in their
work. Because they need complex problems to show the
effect of the algorithms they have developed for the solu-
tion [22]. In addition, these manipulators have the advantage
of having more than one joint, avoiding obstacles and having
more than one solution to perform a task because they have
too many joints [23].

The robot manipulator used in this study, whose joint
structure is shown in Fig. 1, is 7-jointed and includes nine
Dynamixel AX-12A servo motors. The second joint torque,
which is the main axis of the robot manipulator, has sup-
ported with a double motor because of insufficient torque. In
addition, an additional servo motor has been used for the end
element mounted on this robot manipulator called Sungur
375.

Kinematic performance in robot manipulators is directly
related to the structure of the robot and helps the manip-
ulator to operate flexibly and efficiently in the work space
[24]. In robot manipulators, kinematics reveals the relation-
ship between joints and the position of the end effector in
the work space [25]. In this study, kinematics analyzes have
been obtained using Denavit-Hartenberg parameters and are
shown in Table 1.

The transformation matrix of each joint of the robot
manipulator has been obtained with the help of the general
transformation matrix given in Eq. 1. The forward direc-
tion kinematics has been obtained by performing the process
given in Eq. 2, that is, multiplying the transformation matrix
of each joint. In this study, the orientation parameters are
omitted because the x, y and z positions of the end element
are desired.

i−1
i T �

⎡
⎢⎢⎢⎣

cosθ i −cosαi .sinθ i sinαi .sinθ i ai .cosθ i
sinθ i cosi .cosθ i −cosθ i.sini ai .sinθ i
0 sinαi cosαi di
0 0 0 1

⎤
⎥⎥⎥⎦ (1)

In Eq. 1, a, alpha, d and theta represent DH parameters and
a new value assignment must be made for each joint. These
values are obtained based on the x, y and z axes where the
joints are located. a is the length of each joint, ie the offset
value of the joint with the center of the previous joint, based
on the x centers of the joints; alpha is the angle of change of
a joint relative to the z-axis with the previous joint; d is the
z-axis offset of the joints; Finally, theta angle is the x-axis
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Fig. 1 The structure of 7-dof robot manipulator named Sungur 375

Table 1 DH parameters of 7-dof
robot manipulator i ai (cm) αi (°) di(cm) �i (°)(Range)

1 0 −90 L1 � 5 −90 < �1 < 90

2 L2 � 6,5 −90 0 −180 < �2 < 0

3 L3 � 5,5 −90 0 −90 < �3 < 90

4 L4 � 6,5 −90 0 −90 < �4 < 90

5 L5 � 6,5 90 0 −90 < �5 < 90

6 L6 � 6,5 0 0 −90 < �6 < 90

7 L7 � 13 0 0 −90 < Q7 < 90

centered angle value.

(2)

AEnd−Effector � 0
7T � 0

1T .1
2T .2

3T .3
4T .4

5T .5
6T .6

7T

�

⎡
⎢⎢⎢⎣

nx sx ax Px
ny sy ay Py
nz sz az Pz
0 0 0 1

⎤
⎥⎥⎥⎦

px � L2cθ1cθ2 − L5sθ5 (cθ3sθ1 − cθ1cθ2sθ3) + L3sθ1sθ3

+ L5cθ5 (cθ4 (sθ1sθ3 + cθ1cθ2cθ3) + cθ1sθ2sθ4)

− L6sθ6 (sθ4 (sθ1sθ3 + cθ1cθ2cθ3) − cθ1cθ4sθ2)

−L7cθ7 (sθ6 (sθ4 (sθ1sθ3+cθ1cθ2cθ3)−cθ1cθ4sθ2)

− cθ6 (cθ5 (cθ4 (sθ1sθ3 + cθ1cθ2cθ3) + cθ1sθ2sθ4)

− sθ5 (cθ3sθ1 − cθ1cθ2sθ3)))

+ L6cθ6 (cθ5 (cθ4 (sθ1sθ3 + cθ1cθ2cθ3) + cθ1sθ2sθ4)

− sθ5 (cθ3sθ1 − cθ1cθ2sθ3))

−L7sθ7 (cθ6 (sθ4 (sθ1sθ3+cθ1cθ2cθ3)−cθ1cθ4sθ2)

+ sθ6 (cθ5 (cθ4 (sθ1sθ3 + cθ1cθ2cθ3) + cθ1sθ2sθ4)

− sθ5 (cθ3sθ1 − cθ1cθ2sθ3)))

+ L4cθ4(sθ1sθ3 + cθ1cθ2cθ3)

+ L3cθ1cθ2cθ3 + L4cθ1sθ2sθ4

(3)

py � L5sθ5 (cθ1cθ3 + cθ2sθ1sθ3)

+ L7sθ7 (cθ6 (sθ4 (cθ1sθ3−cθ2cθ3sθ1)+cθ4sθ1sθ2)

+ sθ6 (cθ5 (cθ4 (cθ1sθ3 − cθ2cθ3sθ1) − sθ1sθ2sθ4)

−sθ5 (cθ1cθ3+cθ2sθ1sθ3)))+L2sθ2sθ1−L3cθ1sθ3

− L5cθ5 (cθ4 (cθ1sθ3 − cθ2cθ3sθ1) − sθ1sθ2sθ4)

+ L6sθ6(sθ4(cθ1sθ3 − cθ2cθ3sθ1) + cθ4sθ1sθ2)

− L4cθ4 (cθ1sθ3 − cθ2cθ3sθ1)

− L6cθ6 (cθ5 (cθ4 (cθ1sθ3 − cθ2cθ3sθ1)

− sθ1sθ2sθ4) − sθ5 (sθ1cθ3 + cθ2sθ1sθ3))

+ L7cθ7 (sθ6 (sθ4 (cθ1sθ3−cθ2cθ3sθ1)+cθ4sθ1sθ2)

− cθ6 (cθ5 (cθ4 (cθ1sθ3 − cθ2cθ3sθ1) − sθ1sθ2sθ4)

− sθ5 (cθ1cθ3 + cθ2sθ1sθ3)))

+ L3cθ2cθ3sθ1 + L4sθ1sθ2sθ4

(4)
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pz � L1 − L2sθ2 + L6sθ6 (cθ2cθ4 + cθ3sθ2sθ4)

−L7sθ7 (sθ6 (cθ5 (cθ2sθ4−cθ3cθ4sθ2)−sθ2sθ3sθ5)

− cθ6 (cθ2cθ4 + cθ3sθ2sθ4 + cθ3sθ2sθ4))

− L3cθ3sθ2 + L4cθ2sθ4

+ L6cθ6 (cθ5 (cθ2sθ4 − cθ3cθ4sθ2) − sθ2sθ3sθ5)

+ L5cθ5 (cθ2sθ4 − cθ3cθ4sθ2)

+ L7cθ7(cθ6(cθ5(cθ2sθ4 − cθ3cθ4sθ2)− sθ2sθ3sθ5)

+ sθ6(cθ2cθ4 + cθ3sθ2sθ4))

− L4cθ3cθ4sθ2 − L5sθ2sθ3sθ5

(5)

2.2 Model of Position Error and Fitness Function

One of the main objectives of this study is to calculate the
optimal joint angles that will lead the robot manipulator end
effector to the predetermined point using forward kinematics
equations. The joint angles obtained direct the robot manip-
ulator to a certain position in the work space. Position error
is the distance between the actual position of the end effec-
tor and the desired position of the end effector, and in this
paper, Eq. 6, known as the Euclidean distance equation in the
literature, is used to calculate the position error.

PositionError �
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

(6)

Figure 2 is the explicitly stated position error for this study.
"P2" represents the position that the end effector has to reach
and "P1" indicates the actual position.

Fig. 2 Illustration of position error

2.3 FPGA-Based Particle SwarmOptimization
(IC-PSO)

This technique, first used byKennedy and Eberhart, is a pow-
erful search algorithm inspired by swarm of birds and fish
[26]. As shown in Fig. 3, the particles in the swarm are always
moving toward the target. It achieves this with the new posi-
tion calculated according to the velocity of the particle at
each iteration. If the calculated new position of any particle
is worse than the old position, the new position is ignored
and the old position is considered the new position.

The PSO flowchart used in this study is shown in Fig. 4.
As with all heuristic algorithms, the processing cycle in this
algorithm starts with random numbers. After generation of
random numbers, it is checked whether the joint angles are
within the ranges specified in Table 1. Afterward, x, y and z
position in the work space is calculated by performing for-
ward kinematics calculations of the particlewith the obtained
joint angles. After calculating the position error of the parti-
cle, the local best value and the global best value are obtained.
If the stop criterion is not reached, the velocity and angle val-
ues of the particles are updated, and continue from the next
iteration.

The hardware-based high-performance particle swarm
optimization (PSO) block diagram is shown in Fig. 5. This
figure is also known as the state diagram in digital systems,
and in each case one or more sub-modules run sequentially
as hardware. The control unit is an indispensable unit for the
circuit to run in the correct order. Random angles (particles),
local best values, general best values and velocity values of
particles are stored in RAM, the memory unit. Some FPGA
devices have external block RAM, but not many. In these
devices, data is stored on flip flops that actually act as a sin-
gle cell of RAM [27]. "Target x, y, z" is the coordinates of
the point of the robot manipulator must reach in the work
space and it is transferred to the system from outside. In the
implementation of this study, the coordinates are transferred
from the computer. The block diagram in Fig. 5 is executed
according to the flowchart of the algorithm of Fig. 4.

All modules are designed using the VHDL hardware
description language, and the system is first tested in sim-
ulation and then implemented with FPGA. The red arrows
shown in Fig. 5 not only express the mechanism that updates
the particle velocity and position, but also initiates a new
iteration in the algorithm. When the design is considered in
terms of the size of the integrated systems, it can be consid-
ered as a VLSI design with a total of 12 sub-modules. These
sub-modules are explained in detail below at this stage.
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Fig. 3 Motion of particles toward the target in PSO algorithm

Fig. 4 FPGA-based PSO
flowchart
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Fig. 5 FPGA-based IC-PSO block diagram

Fig. 6 LFSR random number
generator used in this study

2.3.1 LFSR (Linear Feedback Shift Register)

All random values used in the system were generated by
the LFSR technique, which is used as an effective pseudo-
random number generator in the literature. As it is known,
LFSR, which is frequently preferred in the key generation
phase with a uniform distribution in encryption algorithms,
was preferred as 16-bit in this study [28]. The LFSR used
in this article performs the XOR operation between the thir-
teenth and fifteenth bits to generate 16-bit random numbers.
The 16-bit LFSR technique illustrated in Fig. 6 was used in
this study.

2.3.2 Angle Limits

The joints in the robot manipulator perform positioning by
taking angle values at certain intervals. Exceeding this limit
causes themanipulator to be in the wrong position or tomove
to a position other than the desired position. This sub-module
is also used to prevent the joints from colliding by taking an
angle value in the wrong range. For this reason, this stage is
used in all heuristic algorithms and ensures that the angles
remain within certain value ranges that appear in Table 1. As
shown in this table, it is clear that all angle values except the
second joint are the same.

For Second Angle For Other Angles

Angle Value �
{

−180, angle < −180
0, angle > 0

Angle Value �
{

−90, angle < −90
90, angle > 90

(7)
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2.3.3 Forward Kinematics Calculation

In this design, which is used as a sub-logical module, seven
joint angles are taken and the position of the manipulator’s
end effector on the x, y and z axes is obtained through forward
kinematics equations. In this module, trigonometric calcula-
tions are performed with a 16-bit CORDIC algorithm, while
the results are generated as 32-bit floating numbers. The
CORDIC (Coordinate Rotation Digital Computer) algorithm
is based on capturing the desired angle value by rotating a
vector around the origin, as the name suggests. Also, since
the CORDIC algorithm does not contain multiplication or
divisions, its cost to the computer is extremely low [29].

As shown in Fig. 7, two IP cores, Cordic and Floating
Point, are used in the logical sub-module. Cordic IP is an IP
Core that produces the sine and cosine values of 16-bit input
numbers as 16-bit + 16-bit, i.e., 32-bit in total. Floating Point
IP is used to convert 16-bit fixed numbers to 32-bit decimal
number. Thus, by performing forward kinematics calcula-
tion, the positions where the angles guide the end element
are obtained.

As seen in Fig. 7, this sub-design consists of four finite
states, "s1, s2, s3 and s4." In the first finite state (s1), the joint
angles are transferred to a vector andmade ready for process.
In the second finite state (s2), the joint angles present in the
vector are transferred to the CORDIC algorithm in order and
sine and cosine values are obtained. The angles are now at
the stage of converting to decimals, and this is done in the
third finite state (s3). In the last state (s4), forward kinematics
calculated using the sine and cosine angle values and position
information of the end effector is obtained.

2.3.4 Position Error

In the heuristic algorithms, the rate at which the values
obtained at the end of iteration approach the target point is
questioned in this sub-module. Since heuristic techniques are
randomly approaching the target, how close the solution is
to the desired point is determined by the position error value.
So, in this sub-design, the distance of the end effector of
the robot manipulator to the target point is calculated using
Euclidean Equation (Eq-6).

2.3.5 Best Values

At this stage of the digital circuit, the process of finding the
position closest to the target point in the work space of the
robot manipulator is performed. In the previous steps, the
position of each particle in the work space was calculated
and the particle with the best local value (pbest) information
was obtained. In this sub-module, it is questionedwhether the
particle with the best local value (pbest) has the best value
obtained so far (gbest). For this, the “pbest” value and the

“gbest” value are compared in terms of position error, and the
particle with the small position error continues the algorithm
as the best particle. As a result of this comparison process,
the new global best value (Gbest) is calculated according to
Equation-8.

Gbestnew � Gbestold − Pbest (8)

2.3.6 Update Velocity and Position

According to the PSO algorithm, this stage is one of the
important steps that the particles use to reach the desired
position. This logical sub-module also consists of five finite
state (s1, s2, s3, s4, s5) as shown in Fig. 8 and the transition to
each stage takes place via the control unit as in other logical
circuits. The most prominent feature of this step is that all
operations are performed as 32-bit floating numbers. For this
reason, all the numbers in the circuit were first expanded to
32-bit and then converted to a floating number. The angle
values transferred to the output ports are 16-bit and the speed
values are 32-bit.

IW (Inertia Weight) is known as the velocity control
parameter in particle swarm optimization algorithm and the
value of this parameter can be changed by many methods
[30]. Because the IW parameter enables the particles tomove
toward the specified target and increases the stability of the
algorithm [31]. In this study, although a fixed IW value is
used, a separate step is added to the logical design as it
appears in the block diagram. In this way, other IW tech-
niques used in the literature can be easily integrated into the
system.

In the s3 and s4 stages of the design, the particles are
brought closer to the target according to the PSO algorithm
rule. For this, the particle velocity at the s3 stage and the
position of the particle at the s4 stage, that is, the new joint
angle, are calculated. Equation-9 is used for velocity calcu-
lations and Equation-10 is used for position, i.e., joint angle
calculation.

vid � vid + c1.r1.(pbest − xid ) + c2.r2.(gbest − xid ) (9)

xid � xid + vid (10)

In Eqs. 9 and 10; “d” is the dimension of the problem; “i”
is the number of particles; “c1” and “c2” personal best and
global best weights; “r1” and “r2” represent random num-
bers in the range [0–1]. "Pbest" is the distance of the location
of each particle to the food source, i.e., the optimum solu-
tion. “Gbest” is the closest distance the swarm has achieved
according to the food source during iteration.
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Fig. 7 Forward kinematics block schema

Fig. 8 Block schema of the update position

3 Results

In this section, simulation and implementation results of
hardware-based particle swarm optimization algorithm with
FPGA are examined. This digital circuit, which can be
synthesized, has been implemented in the Vivado interface
2017.4 using the VHDL hardware design language.

3.1 Simulation Results

The hardware-based PSO is designed using the VHDL lan-
guage in the Vivado interface. The digital circuit design has

been tested separately with 30, 50 and 100 populations and
the results have been demonstrated. Also, as a result of the
joint angles obtained, the orientation of the robotmanipulator
has been demonstrated through the Roboanalyzer simulation
software [32]. Parameters and values used in designs are as
follows:

• Iteration number: 50
• c1 � 1.4
• c2 � 1.4
• w � 0.7
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Table 2 Initial values of random numbers

Type Rnd1 Rnd2 θ1 θ2 θ3 θ4 θ5 θ6 θ7

Hex c526 8207 1921 f7a0 02ca fd36 0b2b f4d5 0860

Fixed-Point (Radian) 0.7700 0.5078 0.7853 −0.5983 0.0871 −0.7728 0.3490 −0.5109 0.2617

Degree – – 45.0172 −34.2975 4.9947 −44.3006 20.0064 −29.2873 15.0019

1          5         10         15         20         25         30         35         40         45         50

Itera�on

0.000003
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Fig. 9 Position error of different particles-iteration graph

In the designs, LFSR is used for random numbers and
these random values to be used in each iteration are initially
generated. Similarly, joint angles have been randomly gener-
ated at the initial of the PSO algorithm to assign 16-bit angle
values. In the conversion of this 16-bit to radian, MSB bit
represents the sign bit, the next 2-bit integer, and the remain-
ing 13-bit represents the fraction part. Rnd1 and Rnd2, which
take a value between [0–1], show the random numbers used
when updating the velocity of the particles while the others
(θ1–θ7) show the values of the joint angles. The initial values
of randomness in both random numbers and joint angles are
as follows:

The results were compared in terms of position error and
time to reach the solution. Since the time in FPGA is directly
related to the frequency value of the chip on the board, the
number of clock pulses in the runs is also indicated next to
the time. Because the Nexys 4 DDR device used in this study
has a clock frequency of 450 MHz, the designs have been
tested with 3 ns clock pulses. If the device used has a higher
frequency, the operating time will of course be reduced.

The design consists of seven parts: ’Random Numbers’,
’Random Angles’, ’Angle Limits’, Forward Kinematics’,
’Position Error’, ’Best Values’ and ’Updating Angle and
Velocity. When analyzing the results, the times used for each
section as well as the number of clock pulses are particularly
indicated. Because in FPGAs, the factor that actually consti-
tutes the time is the clock pulse in which the circuit runs [33]
(Table 2).

Min Avg Max

30 par�cle 50 par�cle 100 par�cle
1

0.1

0.008
0.001 0.0037

0.00093 0.0014

0.0001 0.0002
0.000072

0.00001
0.00000537 0.00000525 0.00000598
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si�

on
 E
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 (m
)

Fig. 10 Minimum, maximum and average position error values of each
swarm

Figure 9 shows the best position error values obtained
when the hardware-based PSO circuit is performed 50 itera-
tions with 30, 50 and 100 particles. The best values of each
swarm reaches between 50 iterations are extremely close to
each other and are at 10–6. Even when the iterations in which
the solution values are obtained are examined, it is clear that
there is a similarity.

Figure 10 shows the average, best and worst values of 50
different tests performed with hardware-based PSO. There-
fore, it appears that there is a 1000 times difference between
the best value and the worst value. However, it is obvious that
even the worst values are quite close to the best values of the
software-based algorithm. The main subject of this study is
to bring the solution times closer to the real time.

Table 3 shows the time at which the best position error
values obtained according to the number of particles reached
a solution and the number of clock pulses. Although the posi-
tion error values are very close to each other, quite different
values emerge in terms of solution time. Of course, since
these values are in milliseconds, they seem to be small dif-
ferences in the workings of the mechanisms, but double the
differences in science. When we look at the number of clock
pulses, it is clear that this difference is double.

Figure 11 shows the solution times obtained with each
particle as a minimum, maximum and average value after 50
tests. In fact, these times are directly related to the number
of iterations performed. Because as the number of iterations
increases, the number of clock pulses increases. Therefore,
the solution time increases.

In terms of position error and calculation time, the best val-
ues and average values obtained are shown in Table 4. In this
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Table 3 Comparative results of
best values obtained by number
of particles

Swarm
Number

PositionError (m) Solution Time (ms)
(clk*3 ns)

Solution
Iteration

Number of clock
pulse (clk)

30 5.37e-06 1.423 38 474,285

50 5.25e-06 2.678 43 876,207

100 5.98e-06 4.867 39 1,622,170

Min Avg Max

30  PARTICLE 50  PARTICLE 100 PARTICLE

1.
42

3

1.
48

3
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50

2

2.
67
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71

7
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86
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4.
89

4

5.
25

1

Fig. 11 Minimum, maximum and average solution time values of each
swarm

paper, the number of clockpulses is calculated bymultiplying
by 3 ns, because FPGA device is used with 450 MHz fre-
quency. Looking at the table, the number of clock pulses has
increased as the number of particles increases, thus increas-
ing the calculation time.

Table 5 shows the comparison of the software-coded con-
ventional particle swarm optimization, artificial bee colony,
firefly algorithm and quantum particle swarm optimization
with hardware designed PSO in terms of positional error and
calculation time. Obviously, the IC-PSO showed a high level

of performance in terms of computation time. The proposed
FPGA-based method appears to have 165 times better time
than even the quantum PSO with the best computing time.
Also, this proposedmethod has the best values after quantum
PSO in terms of position error.

3.2 Implementation of the System

The block diagram of the system created for this purpose
can be seen in Fig. 12. In this figure, the FPGA device cal-
culates seven joint angles from the x, y, and z coordinates
that the end effector of the manipulator must reach, with
the PSO algorithm. The results are transferred to the com-
puter environment via the RS232 interface and from there to
the CM-530 control card. The control card directs the joints
to these angles according to the cubic trajectory planning,
allowing the end effector to reach the desired point. In this
study, themain focus is on designing the algorithm at theRTL
level. Therefore, the FPGA device is not directly connected
to the robot manipulator. Because this stage also includes
connecting a microprocessor to the system, transferring the
obtained angle information to the pins first and then to the
motors via the microprocessor with appropriate resolution.
Therefore, this process is considered to be the subject of

Table 4 Comparative results of
best values obtained by number
of particles

Particle Position Error (m) Solution Time (ms)
(Clock*3 ns)

Solution
Iteration

Solution Clock

Number Avg./Min Avg./Min Avg./Min Pulse Number

30 9.3e-04/5.37e-06 1.483/1.423 43/38 490,638/474285

50 2.0e-04/5.25e-06 2.717/2.678 45/43 886,146/876207

100 7.26e-05/5.98e-06 4.894/4.867 41/39 1,627,891/1622170

Table 5 Comparison of software
values of algorithms with
FPGA-based PSO

Algorithm Swarm
Size

Max.
Iteration

Position Error
(m)

Solution Time
(ms)

Speed
Improvement

PSO 300 500 6.71e-03 449.8 320 x

ABC 100 500 5.47e-04 444.1 317 x

Firefly 50 500 6.53e-05 920.4 657 x

Quantum
PSO

150 500 2.77e-17 231.9 165 x

IC-PSO 30 50 5.37e-06 1.483 –

123



Arabian Journal for Science and Engineering (2023) 48:10441–10455 10451

Fig. 12 Connection diagram of the system used

Fig. 13 Manual (Left) and calculated (Right) position of the robot manipulator

another study, since it reveals a situation that is comprehen-
sive and different from the focus of this study.

In Fig. 13, an example image of the position change
performed by the robot manipulator is illustrated. In this
figure, the image (1) indicates the point that the end effec-
tor is desired to reach, while the image (2) indicates the
orientation formed by the joint angles calculated with the
hardware-based PSO. As a result, although the joint angles
were different, the end effector was oriented to the same loca-
tion.

Figure 14 shows the intermediate values of the angles
obtained by the cubic trajectory planning of the joint angles
that bring the robot manipulator from its initial position to

the desired target position. In the planning made, it is fore-
seen that the joint angles will reach their latest values in a 1 s
time frame. In this context, each joint angle takes 20 different
intermediate values and the robot manipulator is positioned
at the desired point.

In Fig. 15, sequential positions of a task performed by the
robot manipulator are shown. In this task, the robot manip-
ulator takes positions (2), (3), (4), (5) and (6), sequentially,
to move the object visible in image (1) to the target. The
red lines on the images indicate the position that the robot
manipulator will take next.
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Fig. 14 Cubic trajectory planning of the robot manipulator

3.3 Discussion and Analysis

This study aimed to reduce the solution times by realizing the
heuristic algorithms, whose calculation times are very long
and which cannot be used in real-time systems, with FPGA.
However, when looking at the literature comprehensively,
it is clear that heuristic algorithms are used to reduce the
position error of the manipulator. Because, all of the heuris-
tic algorithms achieve inverse kinematics solution in almost
similar times. Table 6 shows the current literature on the
inverse kinematics solution performed with heuristic algo-
rithms in this sense. Studies have been examined in terms

of both position error (m) and solution resolution time (s).
It can be clearly seen in this table that although the position
error value has been reduced to the desired levels, the solu-
tion time has not been reduced to real-time operating levels.
This makes it difficult to use heuristic algorithms in real-time
applications. As a matter of fact, this is the process of lifting
or releasing a load by directing the end effector of the robot
manipulator from a point to the desired position. Therefore,
in real applications, this process itself should take place in
a time interval of [0–1] seconds. However, researches in the
literature with heuristic algorithms have obtained the solu-
tion of the inverse kinematics problem, which is only part of
the process, in the interval of [0–1] seconds. This is why it
is essential to reduce this time to reasonable times that can
be used in real-time applications, which is the focus of this
study.

This study reveals a real application for the use of heuris-
tic algorithms in real-time applications thanks to FPGA. For
this purpose, firstly, priority has been given to the litera-
ture studies where FPGA is used in real applications. The
results obtained in the literature studies have been the pri-
mary motivation for this study. The fact that there are few
studies and that FPGAs are preferred for real-time applica-
tions is an important parameter in terms of demonstrating the
importance of this study.

Fig. 15 Exemplary task performed by the robot manipulator
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Table 6 Comparison with some studies in the literature

Research Robot Arm Reference Technique Technique Compared Comparison Type

Ayyıldız and Çetinkaya [8] 4-DOF PSO GA

7.39e-06 4.74e-04 Position Error (m)

4.15 16.9 Solution Time (s)

Dereli and Köker [11] 7-DOF IW-PSO PSO

3.64e-03 9.13e-03 Position Error (m)

1.2 1.9 Solution Time (s)

Rokbani et al. [14] 3-DOF IK-FA Cyclic Coordinate Descent
(CCD)

10e-04 10e-04 Position Error (m)

2.19e-03 0.4329 Solution Time (s)

El-Sherbiny et al. [34] 5-DOF Adaptive Neuro-Fuzzy
Inference System (ANFIS)

GA

5.426e-03 7.64e-04 Position Error (m)

0.0308 83.1239 Solution Time (s)

Küçük and Bingül [35] 6-DOF NIKA (News Inverse
Kinematics Algorithm)

Newton–Raphson

1.02e-04 0.2266 Position Error (m)

0.327456 0.331443 Solution Time (s)

Momani et al. [36] 3-DOF Continuous GA Conventional GA

2.10 5.25 Convergence Speed
(s)

Wichapong et al. [37] 4-DOF DE (Differential Evolution) ABC (Artificial Bee Colony)

5.06e-06 2.45e-03 Position Error (m)

Lopez et al. [38] 5-DOF Soft Computing Aproach Traditional Method

5.08e-04 6.77e-03 Position Error (m)

0.7969 1.717 Solution Time (s)

Collinsm and Shen [39] 9-DOF Bare Bones PSO Constriction Factor PSO

0.00579 0.00232 Position Error (m)

2.44 4.22 Solution Time (s)

Dalmedico et al. [40] 3-DOF ANN –

1.12e-03 – Position Error (m)

Dereli [41] 7-DOF Improved GWO

2.78e-17 GWO

1.159e-04

Position Error (m)

Dereli [42] 7-DOF Improved WOA

2.96e-15 2.49e-04

Position Error (m)

For example, Lee et al. [43] carried out an FPGA-based
real-time study to avoid delays and speed up the system in
bidirectional request-response data communication. In their
study, they compared the systems developed with GPU and
CPU to reveal the contribution of the FPGA factor to the
system. As a result, they found that the FPGA-based system
operates 50% faster than the GPU-based system and 75%
faster than the CPU-based system.

Another study is as follows: Li et al. [44] have designed the
FPGA design to further develop the convolution neural net-
work (CNN) model in terms of speed and energy efficiency
compared to the GPU. Apart from the FPGA design, it is an
important element that the proposed architecture has parallel
operation and optimization features. According to the results
of the experiment, it is stated that the proposed architecture
has 7.5 × faster and 75 × more energy efficiency than GPU.
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Karakuzu et al. [45] have developed a neuro-fuzzy system
that performs meta-heuristic learning through the particle
swarmoptimization techniquewith FPGA.Themost obvious
feature of the proposed system is that it reduces the multi-
plier coefficients and consequently excess memory space. In
this way, the proposed system has produced a more effective
study than the existing systems.

Li et al. [46] made motion planning with an FPGA-based
design for an autonomous mobile robot operating in real
time. As themost time-consuming issue in path planning of a
mobile robot is collision detection, they have implemented a
visual system based design. They proved their effectiveness
by experimental test the proposed design on a real robot.

4 Conclusion

In this study, an architecture that produces FPGA-based
inverse kinematics solution is proposed in order to use heuris-
tic algorithms in real-time robotic applications. The design
architecture used in the study has realized the inverse kine-
matics solution of the 7-DOF serial manipulator based on the
PSO algorithm. Because the proposed method is synthesiz-
able, it has been run on a Nexys 4 DDR device and the results
have been tested in real time on a 7-DOF robot manipulator.
The experimental test of the design was carried out in two
ways. Initially, the robot manipulator has been directed to a
single point and the inverse kinematics solution of this point
was calculated. Then, in order to analyze the accuracy of the
method, the robot manipulator has been directed to 50 differ-
ent points and the results have been obtained. The findings
were analyzed in terms of position error and especially cal-
culation time and compared with the software results such as
PSO, ABC, FA and QPSO. The results obtained by the pro-
posed hardware-based method are at least 150 times better
in terms of calculation time and 10 to 1000 times better in
terms of position error. Thus, it is seen that the FPGA-based
designs allow the real-time operation of the systems that
involve complex and time-consuming processes. The limi-
tation of this study is that the FPGA-based design is unique
only to the robot manipulator used in this article. However, if
the FPGA-based design is realized on the basis of Denavit-
Hartenberg (DH) parameters, it will become a state that can
be used for all robot manipulators. In parallel with this sit-
uation, the inverse kinematic solution of any robot can be
obtained comparatively by creating one by one IP core in a
compact structure for similar heuristic algorithms.
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