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A B S T R A C T   

Poor air quality has various detrimental physical and mental effects on human health and quality 
of life. In particular, PM2.5 air pollution has been associated with cardiovascular and respiratory 
problems. Therefore, air quality management is an essential issue for densely populated cities to 
reduce or prevent the adverse effects of air pollution. Considering this, reliable models for pre
dicting pollution levels for pollutants like PM2.5 are critical tools for decision-making. For this 
purpose, this study presents three kinds of deep learning (DL) algorithms (LSTM, RNN, and GRU) 
that utilize a time-windowing strategy to predict the hourly concentration of PM2.5 in the Istanbul 
metropolitan. The models were trained and tested using large data sets that envelope air quality 
parameters (PM2.5, SO2, NO, NO2, NOX, and O3) and meteorological factors (temperature, wind 
speed, relative humidity, and air pressure) for about five years. The experimental results 
demonstrate that the LSTM+LSTM model performs significantly better with an R2 of 0.98 and 
0.97 at the significance level (p < 0.05) for training and test sets compared to other deep learning 
algorithms. In addition, data for one year from several stations located in nine different districts 
of Istanbul were used to evaluate the proposed model's generalization ability. As a result, the 
proposed LSTM+LSTM model has a good generalization ability with an R2 accuracy rate of 0.90 
(p < 0.05) and above for all stations and can be used for non-linear, non-stationary multidi
mensional time series data. Furthermore, the results were compared to other studies in the 
literature; it was found that the proposed LSTM+LSTM model performed better in predicting 
PM2.5 concentrations.   

1. Introduction 

Air pollution has become a critical and costly environmental problem associated with global industrialization and urbanization. 
(US EPA O, 2014). Fine particulate matters that are defined as complex mixtures of solids and aerosols with an aerodynamic diameter 
of ≤2.5 μm (PM2.5) have been categorized as the most health-damaging effect, including respiratory and cardiovascular morbidity and 
mortality (Yu et al., 2022). PM2.5 commonly originates from outdoor sources, including transportation systems, heating systems, 
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wildfire smoke, volcanic eruptions, power plants, and indoor activities, including tobacco smoke, cooking, operating fireplaces, and 
burning candles or oil lamps (Tucker, 2000). Several studies confirm associations between PM2.5 exposure and adverse health effects 
such as total mortality, cardiovascular mortality, respiratory mortality, hypertension, lung cancer, and influenza (Miller and Xu, 2018; 
Guan et al., 2021; Yu et al., 2022). According to the World Health Organization, approximately 7 million deaths per year (one-eighth of 
the total annual global deaths) are expected via outdoor and indoor air pollution (WHO, 2022a). A secondary adverse effect of PM2.5 is 
that it reduces atmospheric visibility by contributing to smog formation. Hence, low visibility causes a decrease in the photosynthetic 
activity of plants, while the physicochemical attributes of soils change to lead to the accumulation of minerals and metals in soil 
(Mukherjee and Agrawal, 2017). 

An adequate air pollution management strategy is essential to improve air quality and air-related public health. Therefore, air 
quality management tools are crucial to controlling air pollution's adverse outcomes, especially in densely populated metropolitan 
areas. One of the most effective ways to reduce air pollution-related health risks and economic losses is to develop an early warning 
system based on the prediction of air quality parameters. In this sense, current air pollution prediction models widely use numerical 
and statistical methods for their predictions. Numerical models consider atmospheric physics and chemistry while using meteoro
logical principles and mathematical methods to model air quality on a large scale (Yan et al., 2021). Examples of numerical models 
include nested air quality prediction modeling system (NAQPMS) (Wang et al., 2001), weather research and forecasting model with 
chemistry (WRF-Chem) (Wang et al., 2016; Zakarin et al., 2021; Nerobelov et al., 2021), community multiscale air quality (CMAQ) 
(Zhou et al., 2019), the environment-high resolution limited area model (Baklanov et al., 2017) and chemical transport models (CTMs) 
(Srivastava and Blond, 2022). These models rely upon comprehensive pollutant data sets, complete knowledge of pollutant sources, 
the chemical composition of emissions, relatively complex calculations, and carry high uncertainty in forecasting results (Bai et al., 
2018; Yan et al., 2021). Unlike numerical models, statistical models do not consider atmospheric processes and do not require an 
understanding of air quality processes. Statistical forecast models depend on a data-driven perspective (Bai et al., 2018). These models 
were first developed using traditional multiple linear regression methods. Traditional regression methods evolved into statistical 
forecasting methods along with advancements in computer science and technology. Accordingly, artificial intelligence (AI)-based 
statistical methods have emerged for non-linear air pollution modeling in a high-dimensional space. Currently, there are many studies 
on the use of AI for predicting air pollutants. For example, the PM2.5 and PM10 forecasting system in the Polish agglomerations 
(Czernecki et al., 2021), the PM2.5 hourly forecast in Santiago de Chile (Perez and Menares, 2018), the PM2.5 daily forecast in Bishkek 
(Isaev et al., 2022), the PM2.5 forecasting system in Tehran (Karimian et al., 2019a), and in Shanghai, China, ML technology is used to 
improve PM2.5 forecasts using WRF-Chem model simulations (Ma et al., 2020). Moreover, the most commonly used AI-based methods 
for air pollution prediction include artificial neural network (ANN) (Cabaneros et al., 2019), support vector machine (SVM) (Leong 
et al., 2020), random forest (RF) (Rubal, 2018), and deep learning (DL) (Bui et al., 2018). Among these methods, the use of DL for air 
pollution prediction has become widespread due to advantages such as using more layers and more comprehensive datasets and 
obtaining more accurate results by processing all layers simultaneously (Bekkar et al., 2021). 

Deep learning algorithms (LSTM, CNN, RNN, etc.) are particularly suitable for modeling multi-parameter, complex, and non-linear 
processes. For example, the LSTM is the most commonly utilized DL algorithm in air pollution modeling because it accurately rep
resents non-linear real-world situations, considers the effect of long history data, and solves multiple inputs or multivariate series (Lu 
et al., 2021; Bekkar et al., 2021). In a recent study, Karimian et al. (2019b) compared the estimation performances of models based on 
multiple additive regression trees (MART), a deep feed-forward neural network (DFFNN), and LSTM to predict PM2.5 concentrations at 
different time intervals. The study noted that the LSTM model captured the temporal dependencies in the time series data compared to 
the other two models and gave the best estimate for PM2.5 concentrations with 80% of the variability (R2 = 0.8). In another study, Pak 
et al. (2020) applied a hybrid convolutional neural network and long short-term memory (CNN-LSTM) mode to 3-year air quality and 
meteorological data obtained from 384 stations to predict the next day's average daily PM2.5 concentrations considering the spatio
temporal correlations between the input variables. They concluded that this model has better stability and prediction performance 
than the multilayer perceptron (MLP) and LSTM models. Menares et al. (2021) proposed a LSTM and DFFNN model to predict 
maximum PM2.5 concentrations. They concluded that LSTM models respond better to PM2.5 event prediction when appropriate 
pollutant and meteorological variables are selected. LSTM models can recall important synoptic patterns useful for PM2.5 prediction 
over time through memory units. The LSTM algorithm is reliable and accurate in predicting PM2.5 utilizing historical air quality and 
meteorological data. 

Developing an air quality prediction model using the deep learning method can be considered in several dimensions. One of those 
dimensions is determining the most appropriate imputation method for detecting the missing values and outliers and removing and 
filling them with new data. Missing and erroneous data in any time series can be caused by human error, device failure, or downtime 
due to routine maintenance. For the forecasting model, missing and erroneous data are not handled by an appropriate method, leading 
to unreliable forecasting results (Mir et al., 2022). For this purpose, several imputation methods, such as linear interpolation, mean 
imputation, mode-median imputation, K-Nearest Neighbor imputation, and deep learning imputation methods, have been frequently 
used (Quinteros et al., 2019). Samal et al. (2021) estimated the PM2.5 data, which consisted of missing data, with deep learning 
methods. In addition to traditional machine learning methods, deep learning methods such as CNN, RNN, and LSTM were used in the 
study comparison. Another dimension is the selection of a deep learning algorithm that will solve the relationship in the multidi
mensional and complex relationship data set. No single algorithm is suitable for every data set used in prediction models. Many al
gorithms need to work with training datasets of different types, volumes, and accuracy. The primary goal of the prediction model 
development studies is to determine the appropriate algorithm that will give reliable and acceptable performance for the selected data 
set. The recent increase in the development of deep learning models for prediction purposes has led to many new algorithms. 
Therefore, investigating the effect of combining various deep learning algorithms on model prediction performances is considered 
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Fig. 1. Workflow for prediction of hourly PM2.5 concentrations.  
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another dimension. Li et al. (2020) predicted PM2.5 data in the Beijing region using CNN-LSTM deep learning algorithms in a hybrid 
way. In the study, a successful model with an RMSE of 18.99 was developed by combining the CNN method's feature extraction with 
the advantages of the LSTM method in time series analysis. The last dimension evaluates the developed deep learning model's 
generalization ability. The generalization ability of the developed model (how good the model is in estimating new samples that it has 
not seen before) is essential in terms of applicability and dissemination of the model to other regions and data sets with similar 
characteristics. Du et al. (2022) experimentally performed the models they developed for three Chinese cities (Beijing, Tianjin, and 
Shijiazhuang). That study emphasizes the importance of predicting pollutants that threaten human health, such as PM2.5, and states 
that the developed model can be used for cities with similar characteristics. Considering all these dimensions, predicting the air 
pollutant concentrations in a particular region is crucial. Overall, the main objectives of this study are as follows:  

(i). To develop a deep learning model that can predict hourly PM2.5 concentrations using a specific time series dataset comprising 
air quality and meteorological data with a complex and potentially non-linear relationship.  

(ii). To determine the effectiveness of the time windowing strategy in estimating 25th-hour PM2.5 concentrations using historical 
data from the previous 24 h in a developed deep learning model for estimating hourly PM2.5 concentrations. 

(iii). To present a comparative analysis combining different deep learning algorithms like LSTM, RNN, and GRU based on perfor
mance evaluation criteria, i.e., MSE, RMSE, MAE, MAPE, and R2.  

(iv). To evaluate the proposed model's generalization ability and applicability in hourly PM2.5 concentration prediction using data 
from different regions with potentially similar characteristics. 

The remainder of this study is organized as follows: Section 2 describes the study area and its characteristics, as well as the datasets, 
data preprocessing stage, and time windowing strategy. Also, it defines the basic concepts of the deep learning models, namely LSTM, 
RNN, and GRU. Section 3 compares the model performances and discusses the experimental results with the studies published in the 
literature and evaluates the generalization ability of the proposed deep learning model. Finally, Section 4 presents the concluding 
remarks and possible extensions of this work with future research suggestions. 

2. Material and methods 

In this study, the workflow of the proposed approach is summarized in Fig. 1. Accordingly, meteorological and air quality data were 
combined to create the data set in the first step. Data preprocessing steps were carried out in the second stage of preprocessing data, 
such as processing missing data and detecting outlier data. Then, the data set was taken into a 24-h time frame and adapted to the deep 
learning model. The data set was divided into training and testing, and the model parameters were determined with a two-stage 
approach. The obtained estimation results were evaluated with different performance indices. Finally, the generalization ability of 
the proposed model was assessed. 

Fig. 2. Evaluation of PM2.5 concentrations according to international standards for Istanbul metropolitan city a) Annual average PM2.5 concen
trations monitored AQMS in Istanbul for 2019 b) Annual average PM2.5 concentrations at Kağıthane AQMS between 2013 and 2019 (SIM, 2022). 
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2.1. Study area 

Istanbul province is situated at the Black Sea's entrance, lying on Europe and Asia separated by the Bosphorus Strait, covering 
nearly 5342 km2. Istanbul has a diverse topography with altitudes ranging from 0 to 537 m. This has an impact on local climatic 
conditions as well as air pollution. At the end of 2021, Istanbul was Turkey's most populous urban city, with a population of 15.6 
million (about one-fifth of Turkey's population), which is increasing daily. The city has the highest population density, with 3049 
people per square kilometer (110 people/km2 in the country) (TUIK, 2022). Depending on the population growth, the number of motor 
vehicles and residences also increases; vehicle emissions and urban heating also increase. Istanbul is also significantly affected by 
particulate matter pollution carried from Europe by westerly winds and dust transport from Africa over the Sahara Desert, especially 
by southerly winds in autumn and early spring (Ağaç, 2016). Overall, all these factors play an essential role in negatively changing the 
air quality of Istanbul. 

Currently, 38 air quality monitoring stations (AQMS) throughout Istanbul monitor air pollution at different locations. Although it 
varies by station, seven parameters are generally monitored at these stations: PM10, PM2.5, SO2, CO, NO2, NOx, and O3. Only two 
stations, PM2.5 air pollution, were monitored between 2013 and 2018 (Ümraniye AQMS on the Asian and Kağıthane AQMS on the 
European side of the city). As of 2019, the number of stations measuring PM2.5 air pollution has reached 19 stations (SIM, 2022). 
Turkey's national standard for PM2.5 air pollution has not yet been regulated, but the draft legislation aims to reduce the PM2.5 limit 
value from 30 μg/m3 annually in 2021 to 25 μg/m3 by 2029 (Gümüşel, 2022). Therefore, the comparison of annual average PM2.5 
concentrations based on the international standard values for the Istanbul metropolitan area is illustrated in Fig. 2. The annual average 
PM2.5 concentrations monitored in AQMS of Istanbul in 2019 are demonstrated in Fig. 2a. The annual average PM2.5 concentrations of 
the Kağıthane station between 2013 and 2019 were selected as the study area illustrated in Fig. 2b. The annual average PM2.5 con
centrations at all stations exceeds the standards set by the US EPA, WHO, and EU air quality. The observations are slightly below the EU 
air quality limit value except for Aksaray, Kağıthane, and Kartal stations, as in Fig. 2a. Furthermore, Fig. 2b shows that the PM2.5 
concentrations in the Kağıthane District are consistently higher than the international limit values, and the annual average PM2.5 
concentrations in this region are currently about five times the WHO revised annual air quality guideline value of 5 μg/m3 (WHO, 
2022b). Considering this, predicting the PM2.5 air pollution in Istanbul will enable the detection of possible adverse effects in advance 
and take necessary measures to protect public health by preparing various air pollution reduction scenarios, warnings, and health 
practices. 

In this study, the District of Kağıthane was selected as the study area for model development because the number of observed air 
pollutant parameters and the measurement period is high, the number of missing data is relatively low, and air pollution is consid
erably higher in this region than in other locations. The Kağıthane District is in a narrow valley on Istanbul's European side. Kağıthane 
valley's elevation ranges from sea level to 130 m, with an average of 90 m. The district has a population density of 29,000 persons per 

Fig. 3. Distribution of Monitoring Stations in Istanbul metropolitan city and the location of the Kağıthane (K) monitoring station (in red circle) used 
for model development and other nine monitoring stations (in blue circle), including Aksaray (1), Avcılar (2), Beşiktaş (3), Kadıköy (4), Kartal (5), 
Maslak (6), Sultangazi (7), Tuzla (8) and Ümraniye (9) district data used to test model generalization ability (AQMS, 2022). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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km2 and a total size of 16 km2. It is also surrounded by various industrial zones and highways (Efe et al., 2022). 

2.2. Data acquisition and description 

In this study, hourly time series data of air quality and meteorological values for the Kağıthane District (Istanbul-Turkey) were 
obtained from the Kağıthane Air Quality Monitoring Station (KAQMS) by the Ministry of Environment, Urbanization and Climate 
Change of Turkey (SIM, 2022) and the Turkish State Meteorological Service, respectively (TSMS, 2022). Additionally, the data sets 
from other stations in the city were utilized to evaluate the generalization ability of the best PM2.5 prediction model constructed using 
Kağıthane district data. Fig. 3 illustrates the distribution of all monitoring stations across the city and the locations of the monitoring 
stations. 

The data set used in this study to develop deep learning models for PM2.5 prediction was obtained hourly from Kağıthane AQMS for 
around five years, from January 1st, 2015, to November 30th, 2019. The KAQMS data were utilized for model construction (training 
and testing) because it has data set for longer than other stations. The KAQMS has urban, traffic, and industrial source characteristics 
established on March 1st, 2013. The station is located 6 m from the roadway and 91 m above sea level (Latitude: 41.0923, Longitude: 
28.9747). The station's measurement height is 4 m (KAQMS, 2022). 

Table 1 demonstrates the descriptive statistics such as average (avg), standard deviation (SD), minimum (min) and maximum (max) 
of the parameters in the data set used for model development. The dataset contains some missing values commonly seen in practice 
because of sensor malfunction, sensor sensitivity, power outages, computer system failure, routine maintenance, human error, and 
other reasons. In this study, the missing values are between 3.4% and 3.7% for air quality parameters and 2.0% to 2.2% for meteo
rological parameters (excluding temperature). The availability of missing values in a data set might lead to bias, affecting the model's 
prediction performance. As a result, in this study, outliers in the data set were eliminated first, and any missing data was filled using the 
linear interpolation method. The total data dimension was (43,057, 10), which means that the data table contained 43,057 rows and 
ten columns. Then the data was divided into two portions, with 80% of the data utilized to train the models and the remaining 20% 
used to test the models. 

A time series is a sequence of values measured in discrete or continuous-time units over a time step. Time series prediction has been 
an early warning and control tool in various studies. Time series analysis aims to predict future changes at observation points over 
time. As illustrated in Fig. 4, the data set used in this study is a typical multivariate time series that typically includes real-valued air 
pollutants and meteorological parameters. When the graph is examined in more detail, it is seen that there are irregularities in both air 
quality and meteorological data. However, temperature data only show seasonal and annual variation patterns. Air quality data is 
significantly associated with meteorological observation data. High wind speeds reduce PM2.5 concentrations, whereas high humidity 
increases air pollution. Moreover, high atmospheric pressure is associated with good air quality (Du et al., 2021). Therefore, multi
variate time series data sets, including air quality and meteorological features, are critical for air quality forecasting. Since time series 
consists of sequential data, sequential data should be taken to determine training and test sets. The data used to train and test the 
models were obtained at KAQMS from 01/01/2015 to 30/11/2019 (43,057 h). Similarly, the data sets provided by another nine 
monitoring stations covering the dates 01/01/2019 through 30/11/2019 (a total of 7960 h for each station) were used to evaluate the 
model generalization ability. The air quality dataset contains hourly averaged concentrations of air pollutants, including PM2.5 (μg/ 
m3), NO (μg/m3), NO2 (μg/m3), NOX (μg/m3), O3 (μg/m3) and SO2 (μg/m3). Among them, PM2.5 is selected as the target feature. 
Similarly, the meteorological dataset includes atmospheric temperature (◦C), relative humidity (%), air pressure (mbar), and wind 
speed (m/s) (SIM, 2019). 

Due to their typically large size and multiple and heterogeneous sources, today's real-world datasets can contain erroneous data and 
outliers. Such data sets may negatively affect the prediction accuracy of the developed models. Therefore, data quality should be 
improved using the data preprocessing step before training the model to avoid bias. During the data preprocessing stage, erroneous 
data and outliers were initially recorded as missing data, then filled with the linear interpolation method (Zhang and Thorburn, 2022). 
The linear interpolation method is the simplest imputation method that assumes a linear relationship between the missing and non- 
missing values. This method connects two data points with a straight line. The equation of the linear interpolation function is as follows 
(Huang, 2021): 

Table 1 
Descriptive statistics of air quality and meteorological parameters from January 1st, 2015 to November 30th, 2019 (43,057 h) at Kağıthane AQMS.  

Dataset Identifier Unit Missing (%) Avg SD Min 25% 50% 75% Max 

Air quality parameters PM2.5 μg/m3 1570 (3.6%) 26.20 17.02 0.01 14.51 20.75 32.31 86.69 
SO2 μg/m3 1444 (3.4%) 5.91 5.13 0.03 2.34 3.92 7.83 24.30 
NO μg/m3 1593 (3.7%) 33.92 33.27 0.01 11.17 20.53 44.78 142.29 
NO2 μg/m3 1516 (3.5%) 36.53 26.45 0.01 17.22 29.42 49.18 144.89 
NOX μg/m3 1545 (3.6%) 93.18 80.48 0.04 37.81 64.32 121.14 370.65 
O3 μg/m3 1473 (3.4%) 44.81 28.97 0.02 19.10 43.07 68.17 189.79 

Meteorological factors 

Temperature ◦C – 15.67 7.63 0.01 9.36 15.85 22.09 37.68 
Wind speed m/s 884 (2.1%) 1.87 1.17 0.02 0.92 1.68 2.69 7.32 
Relative humidity % 966 (2.2%) 77.48 16.75 12.52 66.73 80.08 91.14 100.00 
Air pressure mbar 851 (2.0%) 1006.11 6.51 979.76 1001.70 1005.44 1010.18 1033.30  
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f1(x) = b0 + b1(x − x0) (1) 

Where x is the independent variable. x0 is a known value of the independent variable, and f1(x) is the value of the dependent 
variable for a value x of the independent variable. The following formulas are used to determine b0 and b1. 

b0 = f (x0) (2)  

Fig. 4. Time series plots of hourly air quality and meteorological data for Kağıthane district from 01/01/2019 through 30/11/2019.  
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b1 =
f (x1) − f (x0)

x1 − x0
(3) 

In order to improve the prediction accuracy, the data is then scaled to the range [0–1] using the Min-Max normalization method. 
The method is given in Eq. (4) (Guo et al., 2020). 

Zi =
xi − min(x)

max(x) − min(x)
(4) 

Where, 
Zi = ith normalized value ranging from 0 to 1. 
xi = nth observed value for the variable x. 
min(x) = minimum value in the data set. 
max(x) = maximum value in the data set. 

2.3. Time windowing strategy 

Time-series prediction is estimating future information using past and present samples. As a result, this study's time windowing 
strategy (also referred to as “next hour prediction”) is a supervised learning problem. The main goal of this strategy is to generate 
forecasting datasets from current data by windowing the original dataset to produce historical datasets (t = 1, t = 2, …,t = 24) and the 
next-hour dataset (t = 25). Then, the model combines all the datasets to create an entry time-series dataset that can be combined with 
the target dataset to predict future values (t = 25, t = 26, …,t = n). This strategy is summarized in Fig. 5. 

2.4. Deep learning models 

2.4.1. Recurrent neural network (RNN) 
RNNs are a variant of ANNs that mimic human brain neural connections and aim to have a memory to store information. RNNs were 

developed to learn sequenced data such as voice recognition (Graves et al., 2013), in which data points are dependent on each other, 
and thereby, the sequence allows for the estimation of the following word (Kim and Lee, 2016; Zoph et al., 2016; Park et al., 2018), 
machine translation, and time series (Walid and Alamsyah, 2017; Tokgöz and Ünal, 2018; Canizo et al., 2019). According to the RNN 
concept, information from the previous states is also used to produce the output value. However, ANNs only output from current 
inputs. In other words, memory cell, a key term, has been developed so that the data points can also be used to predict the following 
data. This reflects the properties of the sequential data in the output variable by storing or ignoring some information. 

RNNs have input, hidden, and output layers like a classical ANN (Assaad et al., 2008). As shown in Fig. 6, RNNs can be represented 
as a chain that affects each other and is interconnected. Each node indicates the neural network cell at a single timestep. X is the 

Fig. 5. Illustration of the time windowing strategy.  
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features set and Xt indicates the feature's state at t time. Ot indicates the output value at t time and ht is the hidden state. There is a 
connection within the RNN from the input layer to the hidden layer, from the hidden layer to the output layer. These links are 
illustrated by the weight matrices U, W, and V. Equations are given by: 

ht = tanh(Wht− 1 +UXt) (5)  

yt = tanh(Vht) (6) 

The presence of LSTM, GRU, and RNN structures in the popular DL libraries, especially TensorFlow(Abadi et al., 2016) and Keras 
(Chollet, 2015), has allowed us to see frequent comparison studies in the literature. RNNs can maintain memory for up to 10-time steps 
and pay more attention to recent information (Graves, 2012). Therefore, information earlier than 10-time steps can have little effect on 
predictions. Variations such as LSTM and GRU have been developed within the RNN to address drawbacks (vanishing gradient 
problem etc.) in RNNs (Pascanu et al., 2013). In this study, multivariate time series forecasting will be carried out on an hourly PM2,5 
dataset. The target variable, PM2.5, is affected not only by the current state but also by previous states. For this reason, RNN and its 
variants LSTM and GRU DL models were preferred as methods in this study, and their performance was compared. 

Fig. 6. A sample RNN cell and its chain structure.  

Fig. 7. The structure of LSTM (Xt indicates the values that the feature receives at t time. Ht is the output cell of the previous cell. Inside the LSTM 
cell, memory is indicated by ct− 1. W is the weight matrix, and B is the term bias. The sigmoid function (σ), hyperbolic tangent function (tanh), 
processes the X(t) variable, the h variable from the previous learning. 
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2.4.2. Long short-term memory (LSTM) 
LSTM, the variant of RNNs customized for long-term series use, was first introduced to solve the gradient vanishing problem. LSTM 

has a proven successful application in sequential data, i.e., time series with long timesteps (Cao et al., 2019; Chimmula and Zhang, 
2020). Because in the structure of the LSTM, the address is shown to the memory unit as a solution to the vanishing gradient problem 
(Greff et al., 2016; Abdullah et al., 2019). The first learnings are forgotten a lot towards the vanishing gradient problem. Therefore, 
while the initial inputs have little effect on the output, the most recent inputs have a lot of impacts (Graves, 2012). 

LSTMs carry memory cells like RNNs (Abidogun, 2005). In addition, memory has been improved with three gate cells: input, forget, 
and output gates (Freeman et al., 2018). The input gate determines which information is transferred from the previous state to the 
present state. LSTM uses a series of gates and feedback loops that are self-trained on the input data. A single structure of an LSTM cell is 
given in Fig. 7. 

σ(t) = 1
1 + e− t tanh(t) =

(
et − e− t

et + e− t

)

(7) 

A separate multiplicative operation is performed at each gate (Eq. (8)). The ft equation is multiplied by the forgotten variable of the 
previous state. Then it is determined at the input gate whether to update the variable (Eq. (9)). Finally, states go to the output gate and 
determine the output variable (Eq. (10)). 

ft = σ
(
Wf ( ht− 1,Xt)+Bf

)
(8)  

it = σ(Wi( ht− 1,Xt)+Bi ) (9)  

ot = σ(Wo( ht− 1,Xt)+Bo ) (10)  

2.4.3. Gated recurrent units (GRU) 
The GRU unit has been developed as a variant of RNN, like LSTMs. It has a less complex structure than LSTMs. The input, forget, and 

exit cells in the LSTMs have been updated here as exit, update (z), and reset (r) gates, as shown in Fig. 8. Through these gates, it is 
determined whether the current situation will be affected by the condition in the past. In the reset gate, it is decided how to combine 
the input in the memory with the new input. How long before the information remains in the memory is determined by the update gate. 
The following equations are given for three gates of GRU: 

r = σ(Wr( ht− 1,Xt)+UrXt ) (11)  

z = σ(Wz( ht− 1,Xt)+UzXt ) (12)  

c = tanh(Wc( ht− 1*r)+UcXt ) (13)  

ht = (z*c)+ ((1 − z)*ht− 1 ) (14)  

2.5. Performance evaluation metrics 

The study employs five metrics to assess the models' prediction performance and determine the efficacy of the proposed method. 
The evaluation metrics include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Ab
solute Percentage Error (MAPE), and Coefficient of Determination (R2). The formulation of these metrics is presented in Eqs. (15–19). 

Fig. 8. The structure of Gated Recurrent Units (GRU).  
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Table 2 
The PM2.5 forecasting performance results of the developed models. 

MSE RMSE MAE MAPE R2 MSE RMSE MAE MAPE R2

Model#1 1 5 LSTM 27.45 5.002 3.228 0.138 0.956 28.19 5.137 3.315 0.142 0.930
Model#2 1 10 LSTM 27.04 4.966 3.221 0.138 0.956 27.89 5.122 3.323 0.142 0.926
Model#3 1 20 LSTM 30.79 5.262 3.405 0.154 0.935 31.56 5.394 3.490 0.158 0.912
Model#4 1 30 LSTM 45.93 8.920 4.656 0.201 0.904 33.16 5.160 3.581 0.201 0.880
Model#5 1 40 LSTM 30.13 5.196 3.395 0.147 0.944 31.19 5.379 3.514 0.153 0.911
Model#6 2 5 LSTM 46.94 9.008 4.693 0.202 0.896 48.15 9.240 4.815 0.207 0.873
Model#7 2 10 LSTM 26.93 4.941 3.219 0.135 0.963 27.27 5.003 3.260 0.136 0.951
Model#8 2 20 LSTM 25.92 4.902 3.136 0.133 0.973 26.11 4.937 3.159 0.134 0.965
Model#9 2 30 LSTM 24.95 4.771 3.099 0.130 0.976 25.20 4.818 3.129 0.132 0.966
Model#10 2 40 LSTM 66.44 13.02 6.156 0.270 0.838 67.40 13.21 6.245 0.274 0.826
Model#11 4 5 LSTM 168.4 33.49 13.77 0.617 0.515 169.1 33.64 13.84 0.620 0.512
Model#12 4 10 LSTM 127.0 25.25 10.70 0.476 0.647 127.0 25.24 10.70 0.476 0.647
Model#13 4 20 LSTM 187.3 37.45 15.21 0.682 0.461 184.8 36.94 15.00 0.673 0.468
Model#14 4 30 LSTM 167.4 33.40 13.72 0.614 0.522 166.9 33.29 13.67 0.612 0.523
Model#15 4 40 LSTM 206.0 41.14 16.59 0.745 0.397 204.2 40.78 16.45 0.739 0.401

Model#16 2 30 GRU+GRU 25.81 4.853 3.132 0.133 0.975 26.05 4.900 3.162 0.134 0.965
Model#17 2 30 LSTM+LSTM 24.60 4.739 3.056 0.129 0.980 24.84 4.785 3.086 0.130 0.970
Model#18 2 30 RNN+RNN 31.99 5.281 3.407 0.154 0.934 31.54 5.371 3.465 0.157 0.917
Model#19 2 30 GRU+LSTM 67.86 13.15 6.239 0.278 0.835 68.35 13.241 6.283 0.280 0.828
Model#20 2 30 GRU+RNN 26.76 4.940 3.214 0.134 0.964 27.31 5.042 3.281 0.137 0.944
Model#21 2 30 LSTM+RNN 46.47 8.967 4.686 0.202 0.897 27.53 5.093 3.291 0.139 0.936
Model#22 2 30 LSTM+GRU 29.19 5.099 3.305 0.141 0.949 30.10 5.258 3.409 0.145 0.920
Model#23 2 30 RNN+GRU 32.79 5.453 3.521 0.194 0.911 33.93 5.641 3.642 0.201 0.880
Model#24 2 30 RNN+LSTM 48.92 9.184 4.796 0.205 0.879 31.15 5.352 3.522 0.153 0.911

Stage Models Hidden 
Layer Size

Number of 
Neurons Algorithms

Train Test

 dn a tne
mpoleve d l edo

m  
MT SL  .1 e gatS

noitazi
mitpo r ete

marap

 fo gnitaul avE .2 egatS
 gninrael  pee d tnere ffi d

sh
mtiro gla

Hyperparameters for Model#1 - #24
Learning rate:0.001, Activation function: Relu, Optimizer: Adam, Batch size: 32, and Loss function: Mean Absolute Error.
All models were run ten times, and the average score of performance values is shown in the table.
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MSE =
1
n

∑n

i=1
(yi − ŷi)

2 (15)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

(16)  

MAE =
1
n

∑n

i=1
∣ yi − ŷi ∣ (17)  

MAPE =
100%

n
∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (18)  

R2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n
∑n

i=1
yi ŷi i −

(
∑n

i=1
yi

)(
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i=1
ŷi

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

n
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yi

2 −

(
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i=1
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]

×

[

n
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i=1
ŷ2

i −

(
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i=1
ŷi

)2
]√

√
√
√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

(19) 

Where, n is the number of observations, yi is the predicted value and ̂yi is the actual value. MSE, RMSE, MAE, and MAPE are used to 
evaluate the amount of error in the forecast results. The smaller values mean, the better the prediction performance of the model. R2 is 
used to assess the fit of the prediction results to the actual data. The closer the value is to 1, the higher the degree of data fit and the 
better the prediction effect. 

2.6. Model development 

In this study, the proposed deep learning and baseline models are implemented using Python packages, including Keras (version 
2.6.0), Tensorflow backend, and Scikit-learn (Pedregosa et al., 2011; Chollet, 2015; Abadi et al., 2016), matplotlib, and seaborn for 
visualizations of the results (Hunter, 2007; Waskom, 2021), Papermill for the experimental designs. Heavier workloads were run on 
Google Colab equipped with NVIDIA's Tesla T4 GPU. The rest of the models were executed on a computer with Intel(R) Core (TM) i7- 
5600U CPU @ 2.60GHz 2.59 GHz 12,0 GB RAM. The model development process is divided into two stages described below. 

Stage 1 (selection of hidden layer size and numbers of neurons). 
At this stage, hidden layer size and number of neuron optimizations were made to create the LSTM model used in the PM2.5 

prediction. The high number of neurons increases the computation time and memory requirement. On the other hand, a low number of 
neurons causes underfitting. As the number of layers increases in deep learning algorithms, the model learns better, but the back
propagation reaches the first layers less (Szandała, 2021). Other parameters for the developed model are learning rate, activation 
function, optimizer, epoch, batch size, and loss function. 

Stage 2 (prediction performance evaluation of different deep learning algorithms). 
In Stage 2, the PM2.5 prediction performances of GRU + GRU, LSTM+LSTM, RNN + RNN, GRU + LSTM, GRU + RNN, LSTM+RNN, 

LSTM+GRU, RNN + GRU, RNN + LSTM algorithms are evaluated. The Models were run ten times to achieve robust evaluation results. 

Table 3 
The hyperparameters of the best deep learning model (Model#17).  

Hyperparameters Value 

Batch Size 32 
Optimizer Adam 
Loss function Mean Absolute Error 
Number of hidden layers 2 
Number of neurons in each layer 30 
Learning rate 0.01 
Models used in the layers LSTM + LSTM 
Dropout rate 0 
Epoch 50 
Batch size 32 
Activation function ‘relu’ 
Train size 0.80 
n hours 24 
SEED 10 different seed 
Input Shape [null, 24, 10] 
Duration 16:31 min  
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3. Experimental results and discussion 

We applied a two-stage modeling approach to predict the hourly PM2.5 concentration using deep learning algorithms. The per
formance results of all models developed in this study are presented in Table 2. In the first part of Table 2, it is seen that the LSTM 
model (model#9) with two hidden layers and 30 neurons in each layer has the best performance values for training and testing with 
MSE = 24.95 and 25.20, RMSE = 4.771 and 4.818, MAE = 3.099 and 3.129, MAPE = 0.13 and 0.132, and R2 = 0.976 and 0.966, 
respectively (p < 0.05). The second part of Table 2 presents the results of the models developed using different learning algorithms. By 
comparing the performance results of those models, it was found that model#16 (GRU + GRU), model#17 (LSTM+LSTM), and 
model#20 (GRU + RNN) had performance values that were quite similar to each other. However, model#17 had the best performance 
values for training and testing with MSE = 24.60 and 24.84, RMSE = 4.739 and 4.785, MAE = 3.056 and 3.086, MAPE = 0.129 and 
0.13, and R2 = 0.98 and 0.97 (p < 0.05). Consequently, model#17 (LSTM+LSTM) outperforms other developed models in terms of 
prediction accuracy. On the other hand, model #19 (GRU + LSTM) had the lowest prediction performance results in this study. Table 3 
summarizes the hyperparameters selected for model#17. 

Violin plots of all models with R2 value have been provided in Fig. 9. The violin plot represents the distribution and average of the 
experiments, in which the white colour indicates medians and interquartile ranges are indicated by boxplots with black colour. Blue 
and orange areas show the distribution of the performance. Accordingly, model#9 has the best result in the first stage. In the second 
stage, model#17 is observed to work well. 

In Fig. 10, PM2.5 predicted values obtained from the LSTM+LSTM model and actual values are compared. A comparison of the first 
one hundred hours of data is shown for better readability of the graph in the figures. Similarly, the scatter plot graphs for predicted and 
actual values are in Fig. 11. Overall, the performance of the LSTM+LSTM model is the best among the other models, as shown in 
Table 2 and Fig. 10a and b. In predicting accuracy, model#9 and model#17 (LSTM+LSTM) have the lowest MSE, RMSE, MAE, and 
MAPE and the highest R2 values among the forecasting models and better prediction accuracy. 

As shown in Table 4, the results obtained from this study were compared with the model results developed for predicting PM2.5 
concentrations by deep learning those published in the literature based on model prediction performances, and the results were 
evaluated. The results obtained from this study were compared with the model results developed for predicting PM2.5 by deep learning 
in the literature. Huang and Kuo (2018) used APNet (CNN_LSTM) algorithm in PM2.5 concentration prediction in Beijing, China. They 
compared the performance of APNet with the support vector machine, random forest, decision tree, MLP, CNN, and LSTM models. As a 
result, they determined the highest prediction accuracy in the CNN-LSTM model (APNet). In another study, Li et al. (2020) used the 
hourly values of PM2.5 concentration and meteorological data in Beijing to predict PM2.5 concentration for the next day. That study 

Fig. 9. Violin plots of all developed models, (a) Model#1-Model#6, (b) Model#7-Model#12, (c) Model#13-Model#18, (d) Model#19-Model#24.  
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finds that hybrid model (CNN-LSTM) performance is higher than single LSTM. Also, multivariate models' performances are higher than 
univariate models. Finally, Ma et al. (2019) investigated the prediction accuracy of Neural Networks (bi-directional Long Short-Term 
Memory- BLSTM and the transfer learning technique) in PM2.5 prediction. They concluded that the proposed TL-BLSTM model 
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Fig. 10. Comparison of predicted vs. measured PM2.5 values for Kağıthane District using the LSTM+LSTM model a) train data set and b) test data set 
from Kağıthane AQMS (p < 0.05). 

Fig. 11. Scatter plots for predicted vs. measured PM2.5 values for Kağıthane District using the LSTM+LSTM model (p < 0.05).  
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performed better at the larger temporal resolutions. When all these studies are evaluated together for PM2.5 prediction performances 
based on the performance index, it is understood that deep learning models are suitable for the future prediction of air pollutants. As a 
result, when all these studies were compared in terms of PM2.5 prediction based on the performance index, as seen in Table 4, it was 
seen that the results of the proposed deep learning model were compatible with the other literature studies and had better performance 
results. 

3.1. Evaluating the generalization ability of the developed model 

In this section of the study, we assess the generalization ability of the proposed LSTM+LSTM model using data sets from nine 
different stations (Aksaray, Avcılar, Beşiktaş, Kadıköy, Kartal, Maslak, Sultangazi, Tuzla and Ümraniye districts of Istanbul metro
politan city) that have never been utilized for the models training and testing. The generalization performance results of the model for 
the stations are shown in Table 5. It is seen that the proposed LSTM+LSTM model has excellent performance values for all stations, and 
the best performances are obtained for the Kadıköy and Avcılar stations considering the generalization performances. When the p- 
values of the predictions are examined, all algorithms have p-value<0.05 which means all prediction results are acceptable. Besides, in 
order to test the validity of the RMSE, it is necessary to evaluate the SD values along with the RMSE performance as suggested by Ritter 
and Muñoz-Carpena (2013). Although the optimal value of RMSE is considered as zero, it is more likely that RMSE will be high in data 
sets with high SD values. In this context, the SD/RMSE ratio is presented in Table 5 to evaluate the algorithm's performance. Ritter and 
Muñoz-Carpena (2013) proposed four performance ratings based on the SD/RMSE ratio. If SD/RMSE value is higher than 3.2, the 
performance rating is “Very good”; if it is between 2.2 and 3.2, then the performance rating is “Good”; between 1.2 and 2.2 is 
“Acceptable”, and lower than 1.7 values are classified as “Unsatisfactory”. In this study, it is seen that the performance of Kartal district 
has a “Very good” performance rating, and the performance of the others has a “Good” performance rating. 

In Fig. 12, scatter plot graphs for predicted versus actual values are shown for nine districts. According to those plots, there is an 
excellent match between the measured and predicted PM2.5 concentrations. Consequently, the proposed LSTM+LSTM model has 
outstanding generalization ability for hourly PM2.5 prediction of Istanbul metropolitan city. 

4. Conclusions 

One of the most effective ways to reduce health risks, environmental effects, and economic losses caused by PM2.5 air pollution is to 
create a model that can predict future PM2.5 concentrations. This study developed a deep-learning model using LSTM, RNN, and GRU 
deep-learning algorithms to predict hourly PM2.5 concentrations. Among the developed models, it has been observed that the 
LSTM+LSTM model has the best prediction performance compared to other models and can predict hourly PM2.5 concentrations with 
high accuracy based on the performance index. In addition, the developed model was applied to data from 9 different regions and 
discovered that it had outstanding generalization ability. Moreover, the proposed model's performance results were compared to the 
published studies in the literature, and it was seen that the proposed model outperformed the others. Overall, by estimating PM2.5 air 
pollution using the proposed model, possible adverse effects will be determined, and necessary measures will be taken to protect public 
health by preparing various air pollution reduction scenarios and warnings. 

On the other hand, this study has some limitations. Firstly, the effectiveness of the proposed model for other air pollutants, except 
PM2.5, has not been studied. Secondly, the feature importance ranking of the input parameters has not been evaluated. All these 

Table 4 
Compared to existing studies published in the literature.  

Reference Study area Method Performance 

MAE RMSE R2 

(Huang and Kuo, 2018) PM2.5 and meteorological data (Beijing, China). ApNet (CNN - LSTM) 14.634 24.228 - 
(Li et al., 2020) PM2.5 and meteorological data. (Beijing, China). CNN-LSTM (Multivariate) 13.969 17.930 - 
(Ma et al., 2019) PM2.5 (Guangdong, China) TL- BLSTM 6.184 8.653 – 
The proposed model PM2.5 and meteorological data (Kağıthane, İstanbul, Turkey) LSTM-LSTM 3.086 4.785 0.97  

Table 5 
The generalization performances of the LSTM+LSTM model for nine different stations (p < 0.05).  

Station MSE RMSE MAE MAPE R2 SD SD/RMSE 

Aksaray 29.41 5.531 3.570 0.152 0.932 16.220 2.932 
Avcılar 28.52 5.364 3.462 0.147 0.961 12.512 2.262 
Beşiktaş 30.02 5.646 3.644 0.155 0.913 13.023 2.355 
Kadikoy 28.46 5.353 3.455 0.147 0.963 14.118 2.552 
Kartal 30.09 5.659 3.652 0.155 0.911 21.257 3.843 
Maslak 29.70 5.585 3.605 0.153 0.923 13.209 2.388 
Sultangazi 29.99 5.640 3.640 0.155 0.914 12.762 2.307 
Tuzla 30.32 5.702 3.681 0.156 0.904 14.476 2.617 
Ümraniye 30.06 5.652 3.648 0.155 0.912 14.025 2.536  
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limitations are planned for future studies. 
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