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Abstract

A strange novel three-dimensional quadratic continuous autonomous chaotic system with fully
golden proportion equilibria is proposed. It has only seven terms, three quadratic nonlinearities
and one parameter ’a’. The system equations have four equilibrium points and very interestingly
all the equilibrium points have fully Golden Proportion values. Besides, this chaotic system has
hidden amplitude control properties. The dynamic analyses of the system are presented such as
equilibrium points, dissipativity, Lyapunov exponents, bifurcation diagrams, phase portraits and
hidden amplitude control properties. Later, electronic circuit of the system is simulated in software
and implemented in real environment. Finally, microcomputer-based random number generator
(RNG) application and its NIST-800-22 tests are executed as another real-time application.

Keywords:
Chaotic systems, fully golden proportion, hidden amplitude control, electronic circuit
realization, microcomputer-based RNG.

1. Introduction

After discovering and introducing first known chaotic system in the form of three-dimensional
quadratic autonomous ordinary differential equations by Lorenz [1], lots of scientific researches
have been carried out to discover new chaotic systems and attractors with different features [2,
3]. Especially during last decades more and more novel choatic systems have been found and
introduced from different diciplines[4–8]. Detailed analyses and applications of several chaotic
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systems in different fields like physics, control, artificial neural networks, communications and
computer science have been introduced in the literature [9–15].

Golden section [16] (golden proportion, golden mean) is another interesting interdisciplinary
subject. There is presently an increasing interest of modern science in the applications of the golden
section in many different fields such as several researches in crystallography [17], in astronomy,
theoretical physics [18–22] and physics of the high energy particles [23–25]. Adapting a chaotic
system to engineering applications often requires synchronization [26–28] and amplitude-phase
control [29, 30]. There are also lots of different works related to chaos-based amplitude control
in the literature [31–34].

It is really an interesting and challenging work to discover some nonlinear systems with fully
golden proportion equilibria and hidden amplitude control properties like in this paper. Also, real
time applications of these systems are exciting. In this paper, electronic circuit realizations and
microcomputer based RNG design are executed for real-time applications. There are many works
related to chaos-based applications with common chaotic systems in the literature [34–40].

Random numbers are used in lots of different applications such as computer games, lottery,
chance games, Monte Carlo simulation and weather forecast [41, 42]. Random number generators
are classified into 2 different groups as True-Random Number Generator (TRNG) and Pseudo-
Random Number Generator (PRNG) depending on the producing method [43]. TRNG and PRNG
can be implemented in software, hardware and hybrid structures. There are several entropy sources
in literature to generate random numbers such as jitter [44], metastable [45], chaotic systems [46].
There are lots of chaos based RNG designs in the literature with different approaches; TRNGs based
on mouse movement and chaotic cryptography [47], Piece-wise Affine Markov(PWAM) chaotic
maps [48], chaos-modulated dual oscillator [49], performance metric for discrete-time chaos [50]
and double scroll attractor.

Inspring from previous studies, in the intersection of chaos and golden section, a novel three
dimensional continuous quadratic autonomous chaotic system with fully golden proportion equilib-
ria is introduced in this article. In section 2, detailed analysis of fully golden proportion equilibria is
presented and some common dynamical analysis such as phase portraits, dissipativity, equilibrium
point analysis, lyapunov exponent spectrum and bifurcation diagram are investigated. In Section
3, hidden amplitude control properties of the system are investigated. In Section 4, a real elec-
tronic circuit design implementation of the proposed chaotic system is simulated in software and
implemented in real environment. Furthermore, microcomputer-based RNG are designed and NIST-
800-22 tests are applied. Finally, results are evaluated in conclusions.

2. A new 3D chaotic system with fully golden proportion equilibria and its dynamic analyses

The following strange chaotic system have fully golden proportion equilibrium points. The
new chaotic system introduced in this paper is described as the following autonomous differential
equations:
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



ẋ = −x− yz,
ẏ = x− y − xz,
ż = xy + a,

(1)

Initial values of the new chaotic system are x(0) = 1, y(0) = 0, z(0) = 0. The system has only
one constant parameter ’a’. In system (1) each equation contains a single quadratic cross-product
term, and the linear terms in the first and second equations and a constant term in the third equation.
Substituting a=1, the new system can be described by the following Eq. (2):





ẋ = −x− yz,
ẏ = x− y − xz,
ż = xy + 1,

(2)

In this section, some dynamic behaviours of the chaotic system such as phase portraits, dissi-
pativity, equilibrium points, lyapunov exponents spectrum and bifurcation are analyzed.

2.1. Phase portraits

To observe dynamic behaviors of the new systems,mathematical simulations are performed
using Matlab ode45 function and phase portraits are obtained. x− y, x− z, y− z plane (2D) phase
portraits and x− y − z plane (3D) are shown in Figure 1.
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(a) (b)

(c) (d)

Figure 1: Phase portraits of chaotic system (1) with parameter a = 1, a)x − y plane, b)x − z plane, c)y − z plane,
d)x− y − z plane

2.2. Dissipativity and equilibrium points analyses

The new system has seven terms, three quadratic nonlinearities and one parameter ’a’. Typical
parameter is a=1. Let us consider a volume in a certain domain of the state space. For the system
(1), one has

∆V =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −2 = r (3)

with r = −2, where r is a negative value. Dynamical system (1) is one dissipative system, and
an exponential contraction rate of the system (1) is

dV

dt
= er = e−2 (4)
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In the chaotic system (1), a volume factor V0 is seemingly contracted by the flow into a volume
factor V0ert = V0e

−2t in time t. This shows that as t approaches infinity at an exponential rate of
r, each volume containing the trajectory of this dynamical system shrinks to zero. Therefore, all
this dynamical system orbits are finally confined to a private subset which has zero volume and the
asymptotic motion settles onto an attractor of the system (1).

Detailed equilibrium points analyses are performed for the following values of parameter ’a’ :

a = τ−2 =
1

τ2
=

3−
√

5

2

a = τ−1 =
1

τ
=
−1 +

√
5

2

a = τ0 = 1

a = τ1 =
1 +
√

5

2

a = τ2 =
3 +
√

5

2

a = −τ−2 = − 1

τ2
=

√
5− 3

2

a = −τ−1 = −1

τ
=

1−
√

5

2

a = −τ0 = −1

a = −τ1 =
−1−

√
5

2

a = −τ2 =
−3−

√
5

2
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Table 1: Equlibrium points corresponding to the parameter values of ’a’

PARAMETER ’a’
EQULIBRIUM POINTS for x, y, z state variables
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Equilibrium points of x, y, z state variables corresponding to the parameter values of ’a’ are
shown in Table 1. System has four equilibrium points. Two of them are real and two of them are
imaginary in all situations in Table 1. It is clearly seen in Table 1 that, the new system exactly have
golden proportion equilibrium points for all parameter values. It is interesting that amplitudes of
real and imaginary equilibrium points are mutually displaced, when sign of ’a’ changed positive
to negative. The celebrated Golden Proportion τ = 1+

√
5

2 is often seen in nature and examined in
modern physical research in the last years [18, 19, 51].

2.3. Lyapunov exponents spectrum and fractional dimension

Lyapunov exponent spectrum of new chaotic system shown in Figure 2 is symmetrical relative
to a = 0. The spectrum shows the parameter a is varying in the range of -5 and +5 with 0.01 steps.
The system is in chaos when lyapunov exponents are positive, zero and negative (+, 0,−) in some
regions like in Figure 2.

Figure 2: Lyapunov exponents spectrum of new system when a is varying between -5 and +5.

For the negative values of parameter a, system first enters chaos about a = −4.4 . Between
a = −4.4 and a = −2.5 the system enters to and exits from chaotic zone several times. After a =

−2.5 the system is always chaotic until a = −0.25. For the positive values of parameter a, system
first enters chaos about a = 0.25. Between a = 0.25 and a = 2.5 system is always chaotic. And the
system exits from chaotic zone about a = 4.4. Lyapunov dimension of the system is calculated from
Lyapunov exponent spectrum graph by the formula; (for a = 0.5, L1 = 0.09, L2 = 0, L3 = −2.05)

DL = j +
1

|Lj + 1|

j∑

i=1

(Li) = 2 +
L1 + L2

|L3|
= 2.043902
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Rounding 2.043902 up to 3 shows that the system is three-dimensional continuous time chaotic
system and Lyapunov dimensions of the system are fractional.

2.4. Bifurcation analysis

Figure 3 shows bifurcation diagram of the system when parameter a is varying between -5 and
+5. It is clearly seen from the Figure 3 that chaotic zone limits of parameter a are consistent with
the Lyapunov exponent spectrum shown in Figure 2. The system enters to and exits from chaotic
zones several times.

In the Figure 3 multiple lines or dots for the same value of parameter a show that system is
chaotic for this value. For the values between a = −4.5 and a = 4.5 the system is mostly chaotic.
The system is not chaotic out of this zone.

Figure 3: Bifurcation diagram when a is varying between -5 and +5.
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3. Hidden amplitude control properties and coexisting attractors

To achieve adequate amplitude control, we introduce a parameter in a quadratic coefficient to
achieve partial amplitude control of the chaotic system. Hidden amplitude control properties of
the system is achieved by adding a coefficient b in the quadratic term xy in the third dimension of
system (1).





ẋ = −x− yz,
ẏ = x− y − xz,
ż = bxy + a,

(5)

If we take b→ kb, x→ x/
√
k, y → y/

√
k, z → z,

in Eq. (5), the resulting system is identical to system (1), which means that parameter b can
control the amplitude of variables x and y according to 1/

√
k, while leaving the variable z un-

changed. To show this interesting feature, b parameter values were taken as b = 1, b = 0.25 and
b = 4, and also their phase portraits were achieved and showed in Figures 4-6 respectively. As can
be seen in Figures 4-6, amplitudes of variables x and y are multiplied by 2, and then divided by
2, according to their corresponding amplitude control factors 1/

√
0.25 and 1/

√
4. In simulations,

initial conditions of x(0), y(0) and z(0) variables are taken as 1, 0, and 0 respectively.

(a) (b) (c)

Figure 4: Phase portraits of the system when b=1, a)x− y plane, b)x− z plane, c)y − z plane
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(a) (b) (c)

Figure 5: Phase portraits of the system when b = 0.25. Amplitudes of variables x and y are multiplied by 2, according to
amplitude control factors 1/

√
0.25, while leaving the variable z unchanged, a)x− y plane, b)x− z plane, c)y − z plane

(a) (b) (c)

Figure 6: Phase portraits of the system when b=4. Amplitudes of variables x and y are divided by 2, according to
amplitude control factors 1/

√
4, while leaving the variable z unchanged, a)x− y plane, b)x− z plane, c)y − z plane

4. The electronic circuit application of the new 3D chaotic system

Electronic circuit of the 3D chaotic system (2) is implemented. The parameters values are
adjusted to a = 1 for electronic circuit application. The time series of the new chaotic system are
seen in Figure 7.
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Figure 7: The time series signals of the new chaotic system for x, y and z (ms)

The signal values must be in the linear range of operational amplifiers for electronic design. All
the chaotic signal values are in the interval of (−15, 15) as seen in Figure 7. Therefore the circuit
can be realized using ordinary electronic components and signal values dont need to be scaled for
real-time application. We can directly implement the electronic circuit without scaling.
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Figure 8: The circuit schematic diagram of the new chaotic system

To obtain the nonlinear system in Eq. (1), state variables are provided as in Eq. (6). The values
of electronic component are calculated by using Eq. (6). An electronic circuit is designed as shown
in Figure 8 for new chaotic system. Select C1 = C2 = C3 = 1nF,R1 = R3 = R4 = 100k,R2 =

R5 = R7 = 40k,R6 = 6000k and R8 = R9 = 100k. Corresponding phase portraits in ORCAD
- PSpice and on the oscilloscope are shown in Figure 9 and Figure 10. The circuit is powered by
+15V and −15V DC supply. Real electronic circuit implementation of the new chaotic system on
a test board is shown in Figure 11.





ẋ = − 1
R1C1

x− 1
R2C1

yz,

ẏ = 1
R4C2

x− 1
R3C2

y,− 1
R5C2

xz,

ż = 1
R7C3

xy + 1
R6C3

(6)
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(a) (b) (c)

Figure 9: The phase portraits of the new chaotic system in ORCAD-PSpice, a)x− y plane, b)x− z plane, c)y − z plane

(a) (b) (c)

Figure 10: The phase portraits of the new chaotic system on the oscilloscope, a)x− y plane, b)x− z plane, c)y− z plane
(Volt/Div=2V, for all planes)
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Figure 11: The experimental circuit of the new chaotic system

By using R6= 6k ohm, parameter a=1 is chosen for circuit implementation. Small changes on
R6 resistance value or any external noisy signal may cause some small changes on the parameter
a value. However the system is still chaotic as it can be seen on Lyapunov Exponents Spectrum
in Figure 2 where the system is always chaotic for all the values of the parameter a between 0.25
and 2.5. On the other side, the system has hidden amplitude control property as explained in sec-
tion 3 which enables to get required chaotic signal with any desired amplitude level by setting the
resistance value of R7 easily using an adjustable resistor.

Thanks to large chaotic range of the parameter a and adjustable amplitude control property, the
chaotic system and its electronic circuit implementation have robust chaotic dynamics.

5. Microcomputer-based random number generator (RNG)

Nowadays, some random number generators are implemented by using high-cost hardware like
FPGA and computers [11, 52, 53]. In this section we designed a low-cost random number generator
by using 64-bit quad-core ARM Cortex-A53 microprocessor based ”Raspberry Pi 3” microcomputer
board which has several external interface ports. Design steps of random number generator, imple-
mented in Raspberry Pi 3 using Python programming language, are shown in Figure 12. At first
step, parameters and initial values of the chaotic system are entered. Then by using RK4 method,
continuous time chaotic system is solved and converted to discrete system. After discretization, 3
different series of float numbers are obtained. Each of x, y and z series of numbers or their different
combinations can be used to generate random numbers. In this study, only z series numbers are
preferred. Then z numbers in float format are converted to 32 bit binary. LSB 4 bits from each
32-bit number are extracted to compose random bit series.
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Figure 12: Random number generator design steps

In order to test and verify the randomness of generated bit series, NIST-800-22 test suite, which
is the most reliable and internationally proved test suite currently available, is used. For NIST-800-
22 tests at least 1 Mbit series of bits are required as input. At each test step, resulted Pvalue shall
be greater than 0.001 to pass the test. The generated bit series extracted from LSB 4 bits of z output
of the chaotic system has passed all tests successfully. Test results are given in Table 2.
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Table 2: NIST-800-22 test results for z output

Statistical Tests P-value (Z 4bit) Result
Frequency (Monobit) Test 0.5445 Successful
Block-Frequency Test 0.4404 Successful
Cumulative-Sums Test 0.8358 Successful
Runs Test 0.0514 Successful
Longest-Run Test 0.1896 Successful
Binary Matrix Rank Test 0.3705 Successful
Discrete Fourier Transform Test 0.2438 Successful
Non-Overlapping Templates Test 0.0742 Successful
Overlapping Templates Test 0.6543 Successful
Maurer’s Universal Statistical Test 0.4279 Successful
Approximate Entropy Test 0.7380 Successful
Random-Excursions Test (x = -4) 0.2700 Successful
Random-Excursions Variant Test (x = 9) 0.5700 Successful
Serial Test-1 0.3697 Successful
Serial Test-2 0.8689 Successful
Linear-Complexity Test 0.7117 Successful
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The random bit series from z output of the chaotic system that passed all NIST-800-22 tests is
produced by Raspberry Pi 3 microcomputer GPIO (General purpose input/output) pin 38 shown in
Figure 13.

Figure 13: ’z’ output of the new chaotic system on ”Raspberry Pi 3” microcomputer board

In Figure 14 several views of random bit series, produced from z output, on oscilloscope screen
are given. The generated random bit series can be useful in real-world applications where random
numbers needed. Main advantages of the random number generator are low-cost design and mobil-
ity.
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(a)

(b)

Figure 14: Oscilloscope screens of the random bit series produced from ’z’ output(250 KHz), a) Sample screen output 1,
b) Sample screen output 2.

6. Conclusions

In this paper, we proposed a strange novel three-dimensional chaotic system with golden pro-
portion equilibria. One notable feature of chaotic system is that it has equilibrium points which are
fully golden proportion values. In addition, the strange chaotic system has hidden amplitude control
properties presented in section 3.After dynamical analyses, the chaotic system is implemented as an
electronic circuit. A microcomputer-based RNG is also designed using this chaotic attractor. RNG
results are tested and successfully passed the universal NIST-800-22 tests.

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Acknowledgments

This work is supported by the Scientific and the Research Council of Turkey (TUBITAK)
under Grant No. 117E284 and Sakarya University Scientific Research Projects Unit under Grants
2017-09-00-010.

References

[1] E. N. Lorenz, Deterministic nonperiodic flow, Journal of the atmospheric sciences 20 (2)
(1963) 130–141.
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