
International Journal of Mechanical Sciences 242 (2023) 108023

Available online 9 December 2022
0020-7403/© 2022 Elsevier Ltd. All rights reserved.

Application of magnetic field to reduce the forced response of steel bridges 
to high speed train 
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A B S T R A C T   

This paper uses a train-track-bridge interaction system to assess the dynamic performance of railway bridges 
exposed to a high-speed train and magnetic field. A 24◦ of freedom 3D train model and thin steel bridge beam are 
considered. In the interaction of train and bridge, a new six-parameter track system consisting of rail, sleeper, 
and ballast is modeled. The governing equations of the bridge, track and train motions are derived based on the 
Lagrange method. The Lorentz force induced by the directed magnetic field in the axial direction is obtained by 
Maxwell’s equation. Using state-space forms, the second-order equations of motion are transformed into first- 
order differential equations, which are then solved using the Runge-Kutta method. Studies using parametric 
data are done to show how the suggested approach may be used to investigate the dynamic interaction of the 
entire system. The magnetic field intensities and moving train speed on the interaction of the railway bridge 
system were investigated and analyzed for the first time in the literature. Depending on the speed of the vehicle, 
when the dimensionless magnetic field is Hm

x =30, it can be seen that the train body’s vertical displacement falls 
by around 50%. The obtained results are helpful for the design of railway bridges and the safe and comfortable 
ride of high-speed trains over flexible structures.   

1. Introduction 

Due to the ever-increasing high speeds, infrastructure systems such 
as railways and other bridges require sufficiently sensitive engineering 
work because vibration and noise at high speeds shorten the life of 
railway vehicles and reduce passenger comfort. In addition, trains 
generally reduce their speed when passing over flexible structures such 
as bridges to ensure driving safety. This situation causes a decrease in 
transportation speed and economic loss. Therefore, vibration analysis of 
railway bridges exposed to high-speed trains is crucial for passenger 
comfort and driver safety. Studies of dynamic interaction between high- 
speed trains and bridges date back to earlier times [1]. The modeling of 
the train to an analysis of the interaction system is a crucial stage. 
Looking at the vehicle models from the past to the present, the constant 
force model moves on the simply supported beam proposed by Fryba 
[2]. Later on, train-bridge interaction (TBi) with 2 degrees of freedom 
(DoFs) [3–6] and 4 DoFs [7–9] models were proposed. In addition, the 
quarter train model [10–12], half train model [13–17], and full train 
models [18–21] are also studied. TBi and TTBi with ballasted track 

analysis are used to determine railway dynamics. In this context, Wang 
et al. measured the aerodynamic forces of the high-speed train moving 
on the truss bridge using the TBi model [22]. Stoura and Dimi-
trakopoulos [23] study the extra dampening effect on bridges caused by 
vehicle-bridge contact. Yau et al. provide a comparable extra dampening 
approach for short-span railway bridges to incorporate TBi effects [24]. 
Zhang et al. analyzed the dynamic response of bridge and vehicle by 
considering variable speeds [25]. Koç et al. conducted the dynamic re-
sponses of the TBi model, taking into account the mass and speed of the 
train, as well as the stiffness of the rail [26]. However, for almost 200 
years, railway lines have been built on ballasted tracks, and TBi studies 
have been insufficient [27]. Therefore, Xu et al. conducted a dynamic 
response analysis of long-span bridges and railway vehicles using the 
mode superposition method [28]. Zhai et al. introduce the framework 
for modeling and superposition method to model the bridge in the TTBi 
system [29]. To reduce the computational cost of solving the dynamic 
interaction in the TTBi analysis, Zhu provided the various domain fre-
quency properties of the TTBi’s dynamic responses [30]. A strategy for 
resolving the train-track-bridge interaction problem is presented by 
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Melo et al. [31]. 
In addition, when the literature is examined, it is seen that railway 

bridges can generally be modeled as simply supported beams. Beam 
theories such as Timoshenko and Euler-Bernoulli are often preferred to 
model vibration analysis of beams. For example, Hirzinger et al. deter-
mined the dynamic responses of the bridge exposed to the moving mass- 
spring-damper system [32]. The dynamic response of a ballasted track 
railway bridge was studied by Tahiri et al. using a composite 
Euler-Bernoulli beam with two layers [33]. König et al. proved the dy-
namic behavior of the bridge in various configurations by modeling the 
bridge beams in high-speed trains in accordance with the 
Euler-Bernoulli theorem and taking into account the 
vehicle-track-bridge-soil interaction [34]. Zhen et al. discuss the 
steady-state responses of an infinite Euler-Bernoulli beam sitting on a 
nonlinear foundation while being subjected to a harmonic moving load 
[35]. 

In Timoshenko beams, the beam’s rotational inertia and shear strain 
are considered, unlike Euler-Bernoulli beams. In this context, Esen 
examined the dynamic responses of the Timoshenko beam subjected to a 
variable velocity moving mass and an accelerating load [36,37]. Pala 
investigated the damped vibrations of cracked Timoshenko beams sup-
ported by springs and damping elements [38]. In some studies, the dy-
namic response of beams has been compared by applying both beam 
theories [14,39,40]. Many researchers have used methods to solve the 
motion equations by using the models mentioned above, such as New-
mark β method [18,41–44], Wilson θ method [45,46], FEM [47–51], 
moving load convolution integral method (MLCIM) [11], Runge–Kutta 
method [26,52–54], Zhai method [55], differential quadrature method 
(DQM) [56–60]. 

Furthermore, numerous studies on Functionally Graded (FG) beams 
exist in the literature. For example, Gang et al. evaluated the stiffness 
matrix of FG nanoplate using Gaussian process regression (GPR) [61]. 
Using a continuous nonlocal model, Huang et al. investigate the vibra-
tional and critical circular velocity characteristics of FG rotating 
microdisc [62]. Kumar et al. developed a refined trigonometric 
high-order shear deformation theory combined with nonlocal theory to 
describe the vibration response of FG porous nanoplate [63]. An exact 
transfer matrix method was developed in a paper to analyze the free 
vibration characteristics of the FG beam [64]. 

There are also studies on the dynamic and static behavior of beams 
exposed to a magnetic field or thermal effects. In this context, Jalaei 
et al. examined the dynamic behavior of nanobeams, which they 
modeled according to the Timoshenko beam theorem, in the presence of 
magnetic and thermal effects [65]. Arani and Jalaei examined the dy-
namic response of the viscoelastic graphene sheet exposed to the lon-
gitudinal magnetic field [66]. In a thermal environment, Esen et al. 
investigated buckling stability and free vibration analysis of microbeams 
modeled as Euler-Bernoulli subjected to the magnetic field [67,68]. In 
another study, the same author examined the dynamic behavior of 
Timoshenko beams modeled in micro dimensions subjected to a moving 
mass in a magnetic field [69]. Bai et al. studied the vibrations of 
hygro-thermo-magnetically based nanobeams [70]. Ebrahimi and Dab-
bagh investigated the effect of a magnetic field on rotary 
double-nanobeam systems [71]. The dynamic and instability assess-
ments of nanobeams with viscoelastic cores under the influence of 
magnetic fields were clarified by Sobhy and Abazid [72]. 

1.1. The novelty of the present study 

Different models and theories for determining the dynamic behavior 
of trains and bridges in the literature have been summarized above. In 
addition, no literature deals with how magnetic field applied to railway 
bridges affect train dynamics. Therefore, the primary aim of this study is 
to develop a simulation model of a train track bridge system with a full 
vehicle model by applying different magnetic field intensities to the steel 
bridge. Also, none of the above references have studied the analysis of 

the TTBi system, taking into account the railway bridges under the effect 
of magnetic fields. In this study, a magnetic field application that de-
creases the vibrations caused by the interaction of the bridge with the 
train has been studied so that the train’s speed does not need to be 
reduced while passing over the bridge. The equations for the bridge, 
described as an Euler-Bernoulli beam, contain the transverse Lorentz 
force generated by the magnetic field using Maxwell’s equation. As a 
result of this study, it is seen that the vibrations affecting the train are 
reduced due to the more rigid behavior of the beams in the magnetic 
field. In other words, to increase passenger comfort and driving safety in 
railway vehicles, vibrations can be reduced by managing the magnetic 
field effect without needing an active suspension system. Thanks to this 
study, one can investigate the dynamic behaviors of the bridge beam and 
train, considering the magnetic field and the train speed. 

1.2. The organizations of the present study 

The rest of this article is divided into the following sections: In 
Section 2, modeling of the train-track-bridge system is conducted. The 
equations of motion for TTBi are found using the Lagrangian approach in 
Section 3, which also determines the Lorentz force acting on the beams 
owing to the magnetic field. In Section 4, the validation of the Runge- 
Kutta method proposed in this study and the numerical results are 
given. The main conclusion is presented in Section 5. 

2. A representation of the train-track-bridge coupling system 

The most comprehensive and realistic model in the literature is the 
train-track-bridge system. The train subsystem is taken as the full vehicle 
model to make the operation more accurate. Track subsystem includes 
rail, sleeper and ballast. Bridges are generally modeled as Euler- 
Bernoulli beams. Although these three subsystems are independent, 
they strongly influence each other. Therefore, these subsystems will be 
briefly introduced in this section. 

2.1. Train model 

The 3D high speed train model proposed in this study is given in 
Fig. 1a and b. The train model under examination consists of two bogies, 
four wheels, a wagon, the primary suspension system linking the bogies 
and the wheels, and the secondary suspension systems connecting the 
bogies and the wagon. As seen in Table 1, each wheel has 3 DoFs in the 
high speed train model, while the car body and bogies each have 4 DoFs. 
Therefore, this study examines the high speed train model with 24 DoFs. 
Table 2 contains the parameters for the train model seen in Fig. 1. This 
study selects the train’s direction of motion as the x-axis. The y-axis 
represents all vertical displacements, whereas the z-axis is employed to 
represent lateral displacements. The displacement and rotation move-
ments are shown in Fig. 1a and b as r12 and Ө12, respectively. Here, the 
first subscript denotes the train’s components, such as the car body, the 
bogie, and the wheel, while the second denotes their direction, such as x, 
y, and z. While rcz displays the lateral displacement of the car body, rcy 
displays the vertical displacement. The front bogie’s vertical and lateral 
displacement and the rear bogie’s vertical and lateral displacement are 
represented by the symbols rb1y, rb1z, rb2y, and rb2z, respectively. 

The vertical and lateral displacements of the front bogie’s two 
wheelsets are denoted by the rw1y, rw2y, and rw1z, rw2z, respectively. The 
rear bogie’s two wheelsets’ vertical and lateral displacements are 
designated as rw3y, rw4y, and rw3z, rw4z, respectively. 

The x-axis and z-axis, respectively, determine the train’s rolling and 
pitching movements. The front bogie, the rear bogie, and the car body’s 
pitching motion are each represented by the symbols Өcz, Өb1z, and Өb2z, 
respectively. The wheelsets, front bogie, rear bogie, and car body’s 
rolling motion are each represented by the symbols Өcx, Өb1x, Өb2x, and 
Өwx, respectively. The car body mass, front and rear bogie masses, and 
wheel mass are each denoted by the parameters mc, mb1, mb2, and mw, 
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respectively. The car body, front bogie, and rear bogie’s mass moment of 
inertia along the pitch axis are represented by the parameters Icz, Ib1z, 
and Ib2z. Icx, Ib1x, Ib2x, Iwx stand for the mass moment of inertia of the car 
body, the front and rear bogies, and the wheelsets, respectively, around 
the roll axis. The symbols lb1 and lb2 stand for the distance between the 
center of mass of the car body and the center of mass of the front bogie 
and the center of mass of the rear body, respectively. The distances 
between the center of the bogie mass and the front and back wheels are 
designated by the symbols lw1 and lw2, respectively. The distances be-
tween the front wheel and the center of the rear bogie mass and between 
the rear wheel and the center of the rear bogie mass, respectively, are 
represented by lw3 and lw4, respectively. The parameters kw1z, kw2z, kw3z, 
and kw4z indicate the lateral spring coefficient in the z-axis, whereas the 
parameters kw1y, kw2y, kw3y, and kw4y represent the vertical spring coef-
ficient in the y-axis between the corresponding bogie and wheels. 

Similar to how cw1z, cw2z, cw3z, and cw4z correspond to the lateral 
damping coefficient in the z-axis, respectively, and cw1y, cw2y, cw3y, and 

cw4y to the vertical damping coefficient in the y-axis. The vertical spring 
coefficient in the y-axis between the appropriate bogie and vehicle body 
is also represented by the parameters kb1y and kb2y. The vertical damping 
coefficient is represented by the symbols cb1y and cb2y. The lateral spring 
and damping coefficients in the z-axis are represented by the parameters 
kb1z and kb2z, respectively, and by cb1z and cb2z, respectively. v depicts the 
train’s constant-velocity movement along the bridge beam from left to 
right. When modeling the train, the following presumptions are taken 
into account:  

• As seen in Table 1, one car body and two bogies are modeled with 4- 
DOFs, and four wheelsets are modeled with 3-DOFs, which makes a 
total of 24-DOFs.  

• The velocity of the vehicle, v, is constant along the track.  
• The wheels of the train are always in touch with the rail.  
• The wheelsets, bogies, and car body are recognized as rigid bodies.  
• Euler-Bernoulli beam theory is used to simulate the rail and the 

bridge.  
• The rail irregularity is not within the scope of this study and has been 

ignored. 

2.2. Track and bridge model 

In this paper, the dynamic system of the railway track and the bridge 
over which the 3D high-speed train moves at constant speed is given in 
Fig. 1d. The bridge and the rail are modeled separately as two simply 
supported uniform Euler-Bernoulli beams, while the ballast and sleeper 
are modeled as independent solid bodies. The sleeper, rail, ballast, and 

Fig. 1. Bridge beam and railway vehicle mathematical models in a horizontal magnetic field vector Hx. (a-) Side view (b-) Front view (c-) Illustration of TTBi (d-) 
Track-bridge couple model (e-) Beam in a horizontal magnetic field (f-) Application of magnetic field. 

Table 1 
Generalized coordinates of a full high-speed train model.  

Parameter Vertical motion Lateral motion Pitch motion Roll motion 

Car rcy rcz ϴcz ϴcx 

Front bogie rb1y rb1z ϴb1z ϴb1x 

Rear bogie rb2y rb2z ϴb2z ϴb2x 

1st wheelset rw1y rw1z  ϴw1x 

2nd wheelset rw2y rw2z  ϴw2x 

3rd wheelset rw3y rw3z  ϴw3x 

4th wheelset rw4y rw4z  ϴw4x  
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bridge motions are assumed to be only in the vertical direction and are 
represented by wr, ws, wba, and wb, respectively. While Er and Eb repre-
sent the modulus of elasticity of the rail and the bridge, the area mo-
ments of inertia are represented by Ir and Ib. Similarly, the damping 
coefficients of the beams are represented by cr and cb, while the masses 
of the unit length of the beams are represented by µr and µb. Also, ms and 
mba stand in for the sleeper and ballast masses. The spring and damping 
coefficient between rail and sleeper are represented by kp and cp, 
respectively, while spring and damping coefficient between sleeper and 
ballast are represented by kb and cb. In addition, the coefficient of the 
spring and damping between the ballast and the bridge are defined as kf 
and cf, and their values are given in Table 3. 

3. Motion equations of train-track-bridge system with the 
magnetic field 

This section is devoted to presenting the basic equations describing 
the mathematical model of the bridge modeled as a simply supported 
Euler Bernoulli beam and subjected to a magnetic field. In this study has 
considered a simple supported Euler-Bernoulli steel bridge beam with 
the track structure subjected to the magnetic field. The magnetic field 
effect has been integrated into the equation of the TTBi model using 
Maxwell’s equations, which was studied before some researchers gave in 
[66,69,73]. According to this, the parameters related to the current 
density vector (J), magnetic field vector (h), electric field vector (e), 
magnetic field permeability (η), and magnetic field intensity (H) can be 
obtained as follows: 

J = ∇xh, ∇xe = − η ∂h
∂t
, ∇.h = 0 (1)  

e = − η
(

∂U
∂t

xH
)

, h = ∇x(UxH) (2) 

The symbols ∇ and t represent the Laplace operator and time, 
respectively. On the other hand, displacement field vector U is defined as 
= u i→+ v j→+ w k→. Considering that the Euler-Bernoulli beam studied in 
this study bending only vertical direction, so magnetic field vector can 
be stated as follow: 

h = Hx
∂w
∂x

k
→

(3) 

The Lorentz force applied to any structure in the magnetic field is 
defined as follows, considering the current density vector given in Eq. 
(4) [65,66]: 

fmz = fmz k
→

= η(JxH) = η
[

H2
x

(
∂2w
∂x2 +

∂2w
∂z2 +

∂2w
∂y∂z

)

k
→
]

(4) 

Considering Galerkin functions given in Eqs. (11a–c) and (12), the 
Lorentz force (Fl) is expressed as follows [74]: 

Fl =

∫h/2

− h/2

fmzdz = ηhH2
x

(
∑n

i=1
φ′′

i(x)qi(t)

)

(5) 

The parameter h given in the above equation represents the height of 
the cross-section area. To investigate the magnetic field upon the bridge, 
track substructures, and train, the following dimensionless parameter is 
determined: 

Hm
x =

ηhH2
x L2

Db
, Db =

Eh3

12(1 − υ2)
(6)  

Here Hm
x represents the magnetic field intensity parameter, L represents 

the length of the beam, and E represents the modulus of elasticity of the 
beam. The poisson ratio of the material for the substructure is repre-
sented by the parameter υ. 

The motion equations of the TTBi system given in Fig. 1 are obtained 

Table 2 
The parameters of the full 3D high-speed train.  

Mass of train body (mc) 40 tons The secondary suspension 
system’s lateral damping (cbiz, 
i=1,2) 

10 kNs/ 
m 

Masses of front and rear 
bogies (mb1=mb2) 

3.04 
tons 

The primary suspension 
system’s vertical damping 
(cwiy,i=1,2,3,4) 

90.2 
kNs/m 

Wheels mass (mwi, 
i=1,2,3,4) 

1.78 
tons 

The primary suspension 
system’s lateral damping (cwiz, 
i=1,2,3,4) 

10 kNs/ 
m 

Car mass moment of 
inertia in a pitch 
motion (Icz) 

2080 
tons m2 

Length of the bridge (L) 50 m 

Car mass moment of 
inertia in a roll motion 
(Icx) 

75 tons 
m2 

The longitudinal distance 
between car and bogie center 
of gravity (lbi,i=1,2) 

8.75 m 

Bogies mass moment of 
inertia in a pitch 
motion (Ibiz,i=1,2) 

3.93 
tons m2 

The longitudinal distance 
between bogie and vertical 
primary suspension (lwi, 
i=1,2,3,4) 

1.25 m 

Bogies mass moment of 
inertia in a roll motion 
(Ibix,i=1,2) 

1.9 tons 
m2 

The vertical distance from 
bogie to lateral primary 
suspension (hw) 

0.22 m 

Wheels mass moment of 
inertia in a roll motion 
(Iwix, i=1,2,3,4) 

1.25 
tons m2 

The vertical distance from car 
to lateral secondary suspension 
(hc) 

0.8 m 

The secondary 
suspension system’s 
vertical stiffness (kbiy, 
i=1,2) 

1180 
kN/m 

The vertical distance from 
bogie to lateral secondary 
suspension (hb) 

0.5 m 

The secondary 
suspension system’s 
lateral stiffness (kbiz, 
i=1,2) 

15,000 
kN/m 

Half of secondary suspension 
spacing (a) 

1 m 

The primary suspension 
system’s vertical 
stiffness (kwiy, 
i=1,2,3,4) 

530 kN/ 
m 

Half of wheelset contact 
distance (lr) 

0.7175 
m 

The primary suspension 
system’s lateral 
stiffness (kwiz, 
i=1,2,3,4) 

350 kN/ 
m 

Half of the primary spacing (d) 1 m 

The secondary 
suspension system’s 
vertical damping (cbiy, 
i=1,2) 

39.2 
kNs/m    

Table 3 
The parameter of the track and beams parameter.   

Beam Parameter Track Parameter 
Rail Right 

Bridge 
Left 
Bridge 

Elasticity module (GPa) 210 207 200 Mass of sleeper (kg) 237 Mass of ballast (kg) 683 
Cross-section inertia 

moment (m4) 
0.174 0.2 0.2 The stiffness coefficient between the rail 

and the sleeper (N/m) 
1.2 ×
108 

The damping coefficient between the rail 
and the sleeper (Ns/m) 

1.24 ×
105 

Mass of unit length (kg/m) 52.5 20,000 18,000 The stiffness coefficient between the 
sleeper and the ballast (N/m) 

2.4 ×
108 

The damping coefficient between the 
sleeper and the ballast (Ns/m) 

5.88 ×
104 

Equivalent damping 
coefficient (Ns/m) 

1750 1750 1750 The stiffness coefficient between the 
ballast and the bridge (N/m) 

6.5 ×
107 

The damping coefficient between the 
ballast and the bridge (Ns/m) 

3.12 ×
104  

M. Eroğlu et al.                                                                                                                                                                                                                                  



International Journal of Mechanical Sciences 242 (2023) 108023

5

using the Lagrangian method all equations are given in the Appendix C. 

4. Results and discussion 

It is essential to verify the solution method presented in this study 
with previous studies in the literature to evaluate the results of the 
magnetic field applied to bridge and train interaction analysis more 
consistently. For the study results to be understood as acceptable, the 
validation results should be very similar to each other. In this section, 
firstly, the solving method is verified, and then the dynamic responses of 
the TTBi system are examined in detail. 

4.1. Validation 

The motion equations for the entire system are first generated using 
the Lagrangian approach to conduct the dynamic analysis of the model 
considered in this paper. The bridge system comprises eight differential 
equations and a total of 56 2nd order equations of motion, whereas the 
train and track each have 24 differential equations. The state-space form 
provided in Appendix B condenses these resulting equations into 112 
first-order differential equations. These equations are solved more pre-
cisely and quickly using the fourth-order Runge-Kutta method. 

The simpler 4 DoFs quarter railway car and bridge model shown in 
Fig. 2 is used to evaluate the sophisticated and multi-DoF train-track- 
bridge model shown in Fig. 1. The validation example uses a model that 
has been researched by Yang and Sun and is well-known in the litera-
ture. The quarter car model with 4 DoFs has two wheels and one bogie. 
The parameters used in both the model used to evaluate the validity of 
this study and the model depicted in Fig. 2 are identical. A simple- 
supported beam model of the bridge has the following specifications: 
L= 30 m, I= 0.175 m4, E= 27.5 GPa, µ= 1000 kg/m. The properties of a 
quarter railway vehicle model are as follows: Mv=1500 kg, Iv=2738 
kgm2, kw1=kw2=85 kN/m, cw1=cw2=0, Mw1=Mw2=15 kg, d=2.5 m, and 
constant vehicle velocity v=5 m/s [10]. 

The comparison of the dynamic behavior of the four degrees of 
freedom model shown in Fig. 2 is shown in Fig. 3. In contrast to the 
reference research, which employed the Newmark-β method to solve the 
system’s motion equations, this study made use of the Runge-Kutta 
technique. Additionally, although Δt = 0.001 sec was used for the so-
lution time interval in the previous investigation, Δt = 0.01 s was used in 
this study. The findings show that, even if there is a coarse time interval, 
the dynamic reactions of the vehicle when utilizing the solution 
approach suggested in this paper are almost identical to those of the 
study published in the literature. 

Additionally, a simply supported micro beam with L=10 nm, previ-
ously studied in the literature by [69], was analyzed to confirm the 

modeling and compare it to the literature. The results presented in this 
study, as shown in Table 4, are compatible with the literature’s solutions 
[69]. 

4.2. Responses of different train velocity 

The parameters of the track and especially the bridge that high-speed 
trains pass over are crucial. Although the train-track-bridge is a different 
subsystem, they strongly influence each other. The high-speed trains 
vibrate the bridge over which they pass through the track, and the 
vibrating bridge affects the structure on the bridge, especially the train. 
The train’s speed causes the bridge to vibrate at a specific frequency. The 
speed of the train corresponding to these determined frequencies is 
called the critical speed. This study considers the first four vibration 
modes of the bridge. Eq. (7) provides the computation of the beam’s 
natural frequency [2], which stands for the beam’s circular natural 
frequency. 

ω2
j =

j4π4EI
μL4 (rad / s), (7) 

The circular natural frequency of the beam is provided in Eq. (7). The 
frequency of the beam vibration is determined in Eq. (8). 

fj =
ωj

2π =
j2π
2L2

̅̅̅̅̅
EI
μ

√

(Hz) (8) 

The first four vibration modes of the right and left bridge beams may 
be estimated using Eq. (8), as shown in Table 5. Speed parameters are 
the natural frequency (fb) ratio of the bridge and the force-frequency (fv) 
of the train. Resonance happens when fv and fb are equivalent. The train 
going over the bridge experiences an increase in the periodic motion 
amplitude due to the resonance. The train length is the most critical 
characteristic for the resonance induced by the train passing over the 
bridge beam [75]. Eq. (9) [76] gives the critical velocity of the 
train-track-bridge scenario that causes resonance. 

Vcr,j =
dfb,j

i
(9) 

In Eq. (9), vcr stands for the train’s critical velocity, and fb,j for the 
bridge beam’s natural frequency. The symbol d represents the separation 
between the front and back wheels of the front and rear bogie. i is 
represented as the half oscillation cycle number [77,78]. Using Table 2, 
the length d is computed as lb1+lb2+lw1+lw4=20 m. As a result, the 
critical train velocities for the bridge’s first four modes are established, 
as shown in Table 5. 

The dynamic responses of the high-speed train are investigated by 

Fig. 2. Model of validation for the reliability of the research’s methodology.  
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considering the train-bridge system’s second critical speed, vcr. In the 
analyzes, the train velocities are v=0.1, 0.25, 0.5, and 1vcr, and the 
bridge is in a magnetic field effect. The dimensionless magnetic field 
intensity is applied in all analyzes as Hm

x =0, 5, 10, 20, 30. In the graphs, 
the horizontal axis is the dimensionless time x(t)/L, which indicates the 
position of the high-speed train relative to the bridge. 

Figs. 4 and 5 show, respectively, the train body’s vertical displace-
ment and vertical acceleration. The figures show that the high-speed 
train’s dynamic reactions are strongly influenced by the train’s speed 
and the intensity of the magnetic field. Examining Fig. 4, when the 
magnetic field intensity rises, the vertical displacement of the train de-
creases. For example, Hm

x =0, that is, when no magnetic field is applied to 
the bridge, the maximum value of the train’s vertical displacement is 
-0.0156, -0.0189, -0.0212 and -0.0234 m if the train speed is 0.1vcr, 
0.25vcr, 0.5vcr and vcr, respectively. When Hm

x =30, the maximum value 
of the train’s vertical displacement is -0.0083, -0.0095, -0.0091, and 
-0.0145 m in case the train speed is 0.1vcr, 0.25 vcr, 0.5vcr and vcr, 
respectively. In other words, with the increase in the magnetic field 
intensity applied to the bridge, it is seen that the maximum displacement 
of the train body decreases by 48% on average. In addition, as the train 
speed increases, the maximum vertical displacement is further away 
from the starting position of the bridge. For example, in Fig. 4a–c, the 
train’s maximum vertical displacement value is when the train is on the 
bridge, while in Fig. 4d, this value occurs after the train leaves the 

Fig. 3. Comparisons of the train body’s dynamic responses, where a 4 DOF quarter-railway model is used and the dynamic responses of the bogie are compared. The 
dashed line represents the result of the reference work, and the solid line the present work a) Displacement of bogie in vertical direction b) Velocity of bogie in 
vertical direction c) Acceleration of bogie in vertical direction d) Rotation of the bogie. 

Table 4 
For different dimensionless magnetic field intensities Hm

x , the first three fre-
quency parameters; λi = ωiL2

̅̅̅̅̅̅̅̅̅̅̅̅̅
ρA/EI

√
.    

λ1 

Hm
x ∗10− 6 ηhH2

x(nN /m) Ref. [69] Present study 
0 0.0000 9.86310 9.5296 
1 58.6081 164.8512 164.7532 
3 175.8242 285.1898 285.2505 
5 293.0403 368.0904 368.1256 
7 410.2564 435.4858 435.8915  

Table 5 
The critical velocity of the associated train-track-bridge system and the first four 
vibration mode frequencies of the right and left bridge beams.  

Mod Num. 1 2 3 4 

Right Bridge Beam L=50 m     
f (Hz) 0.91 3.62 8.14 14.46 
vcr (m/s) 18.08 72.32 162.72 289.28 
Left Bridge Beam L=50 m     
f (Hz) 0.94 3.75 8.43 14.99 
vcr (m/s) 18.73 74.93 168.59 299.72  
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bridge. The time during which the maximum amplitudes also differs 
according to the magnetic field intensity. Especially in Fig. 4b and d, as 
the magnetic field intensity increases, the maximum vertical displace-
ment of the train appears to be where the bridge is closer to the initial 
reference. It is known that the magnetic field’s intensity affects the 
frequency of the bridge beam’s natural vibration. 

When the train body’s vertical acceleration in Fig. 5 is analyzed, as in 
the previous graph, the maximum acceleration decrease as the magnetic 
field intensity increases. For instance, when Hm

x =0, the root mean square 
(RMS) of the vertical acceleration of the train are 0.0089, 0.0409, 
0.1172 and 0.328 m/s2 if the train speed is 0.1vcr, 0.25vcr, 0.5vcr and vcr, 
respectively. When Hm

x =30, the RMS value of the vertical acceleration of 
the train becomes 0.0034, 0.0375, 0.0463, and 0.231 m/s2 if the train 
speed is 0.1vcr, 0.25vcr, 0.5vcr, and vcr, respectively. As a result, the ac-
celeration values decrease as the magnetic field intensity applied to the 
steel bridge increases. In Fig. 5a, when the magnetic field is applied, the 
RMS of the acceleration value decreases by 61.8%, while it decreases by 
8, 60, and 29% in Fig. 5b, Fig. 5c, and Fig. 5d, respectively. It is seen that 
the decrease in Fig. 5b and Fig. 5d is smaller than the others. This is 
because vcr =72.32 m/s is considered the second critical speed in this 
study. Since the train speed is at the crucial speed in Fig. 5d, the vertical 
acceleration values are high even if the magnetic field is applied. In 

Fig. 5b, the train speed is 0.25vcr, and since this speed is close to the first 
critical speed according to Table 5, the acceleration values in this graph 
did not decrease much due to the magnetic field application. It is un-
derstood from this that if the train speed moves at critical speeds, even in 
the case of applying a magnetic field, the maximum dynamic responses 
are high. However, if the train speed is outside of the critical speeds, the 
dynamic responses are considerably reduced if a magnetic field is 
applied. 

Similarly, as the train’s speed increases, it is seen that the maximum 
vertical acceleration value is further away from the reference position of 
the bridge. Also, in the case of the maximum magnetic field effect, when 
the train speed is 0.5 vcr, the maximum vertical acceleration value of the 
train is 0.078 m/s2, while if the train speed is vcr, it is 0.522 m/s2. In 
other words, resonance occurs since the train is at the critical speed of 
the train-bridge system, and the maximum acceleration value increases 
approximately seven times. 

In Figs. 6 and 7, the pitch and roll motion of the train is examined in 
the case of different magnetic field intensities and four different train 
speeds, v=0.1, 0.25, 0.5, and 1vcr. When Fig. 6–c are examined carefully; 
it is seen that the pitch motion of the train is almost similar regardless of 
the train speed, while the pitch motion of the train is relatively high in 
Fig. 6d compared to the other graphs. In addition, with the increase of 

Fig. 4. Time dependant response of the vertical displacement of train body for various dimensionless magnetic field intensity Hm
x =0, 5, 10, 20, 30. (a) v=0.1vcr (b) 

v=0.25vcr (c) v=0.5vcr (d) v=vcr; for dimensionless time x(t)/L, L=50 m, where the analysis results of the full train model with the track at four different speeds and 
five different dimensionless magnetic field intensities are given in colour graphics. Here, the graph Hm

x =0 is represented in red, the graph Hm
x =5 in green, the graph 

Hm
x =10 in blue, the graph Hm

x =20 in magenta, and the graph Hm
x =30 in cyan. 
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magnetic field effect in Fig. 6d, it is seen that the pitch motion of the 
train decreases considerably to other graphs. For example, when the 
magnetic field is not taken into account, the maximum pitch motion of 
the train body is 11.8 × 10− 4 rad, while it is 4.4 × 10− 4 rad when the 
dimensionless magnetic field intensity is Hm

x =30. 
When the roll motion of the train body given in Fig. 7 is examined, 

unlike the previous graphs, the maximum roll motion decreases as the 
train speed increases. Another important detail is that in Fig. 7a–c, the 
magnetic field intensity does not significantly change the roll motion, 
while in Fig. 7d when the magnetic field intensity increases, the roll 
motion of the train decreases considerably. This is because in Fig. 7d if 
the train is at the critical speed and in the absence of magnetic field 
intensity, the roll motion is relatively high. In other words, in the case of 
a railway bridge exposed to the magnetic field effect, even if the vehicle 
moves at critical speeds, it can considerably decrease the train’s dy-
namic response. 

Fig. 8 shows the displacement of the bridge’s midpoint in the case of 
four different velocities and five different magnetic field intensities. In 
the given graphs, the horizontal axis shows the dimensionless time as in 
the previous graphs. On the other hand, the vertical axis shows the 
maximum vertical dimensionless displacement of the bridge midpoint as 
the dynamic amplification factor (DAF). Here, it can be expressed with 

the formula DAF=wmax(L/2,t)/wst, and also, the expression specified as wst 
in the formula is the static displacement value of the middle point of the 
bridge due to the train mass and is determined by the formula wst=FL3/ 
48EI. When Fig. 8 is examined, the value and time of the maximum 
displacement of the bridge midpoint increase as the train speed in-
creases. In Fig. 8d, when the magnetic field intensity is zero, the 
maximum DAF value of the bridge midpoint is 1.32, while if the mag-
netic field intensity is Hm

x =30, the maximum DAF value is 0.72. In other 
words, as it approaches the critical speed, DAF exceeds 1, and DAF de-
creases with increasing magnetic field intensity. 

4.3. Effect of variable train velocity 

In Figs. 9–11, the displacement of the railway bridge’s midpoint and 
the train body’s dynamic responses are given when the train speed 
changes in the range of 1/vcr from 0 to 2vcr. The speed parameter is given 
as µ=v/vcr in the graphs. The train’s maximum vertical displacement and 
acceleration occurred at critical speeds, as shown in Fig. 9. Also, the 
maximum vertical displacement is reduced by half in the presence of the 
magnetic field. There are peaks in two different places according to the 
train body’s maximum vertical displacement and acceleration. These 
occurred where the velocity parameter is close to µ=0.25 and µ=1. 

Fig. 5. Time dependant response of the vertical acceleration of train body for various dimensionless magnetic field intensity Hm
x =0, 5, 10, 20, 30. (a) v=0.1vcr (b) 

v=0.25vcr (c) v=0.5vcr (d) v=vcr; for dimensionless time x(t)/L, L=50 m, where the analysis results of the full train model with the track at four different speeds and 
five different magnetic field intensities are given in colour graphics. Here, the graph Hm

x =0 is represented in red, the graph Hm
x =5 in green, the graph Hm

x =10 in blue, 
the graph Hm

x =20 in magenta, and the graph Hm
x =30 in cyan. 
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According to Table 5, It can be observed that these speed parameters are 
quite near to the system’s first two critical speeds. In addition, according 
to Fig. 9, if the magnetic field intensity increases, the maximum 
displacement and acceleration values decrease, and the velocity 
parameter increases at that moment. For example, in Fig. 9a, while the 
maximum displacement value of the train body is 0.029 m at µ=0.79 for 
Hm

x =0. This value is 0.0165 m at µ=1.05 for Hm
x =30. When Fig. 9b is 

examined, in case of an increase in magnetic field intensities, the 
maximum acceleration values increase but occur at a higher speed 
parameter. It is understood that the magnetic field intensity increases 
the critical speeds of the train-bridge system by changing the vibration 
characteristics of the bridge through which the train passes. 

In Fig. 10, the roll and pitch motions of the train body are given 
according to five different dimensionless magnetic field intensities. In 
Fig. 10a, the pitch motion peaked in two different places as in the pre-
vious graphs; these values are pretty near to the train-bridge system’s 
critical speeds. Similarly, as the dimensionless magnetic field intensity 
increases, while the maximum pitch motion decreases by half, the ve-
locity parameter at which it occurs also increases. In Fig. 10b, while the 
roll motion is relatively high at low train speeds, it suddenly decreases as 
the speed increases and then takes its almost constant value. In addition, 

in the presence of a dimensionless magnetic field, the roll motion of the 
train body is reduced by a minimal amount. The most significant 
displacement of the railway bridge’s midpoint, modeled using the Euler- 
Bernoulli beam theorem and subjected to five different dimensionless 
magnetic field strengths as Hm

x =0, 5, 10, 20, and 30 are shown in Fig. 11. 
According to the graph, the bridge beam’s vibration amplitudes 

decrease as the magnetic field intensity rises, and it behaves as if it were 
a more rigid bridge. In addition, in the absence of magnetic field in-
tensity, the maximum DAF value of the bridge beam is at µ=0.9 and 
exceeds 1.3, while in the case of the maximum magnetic field intensity, 
the DAF value is at µ=1.27 and 0.73. In other words, with magnetic field 
intensity, the bridge beam’s natural frequencies increase, and the crit-
ical speeds of the train-bridge system increase. Additionally, it can be 
shown that increasing stiffness reduces the bridge beam’s vibration 
amplitudes. 

4.4. Effect of random track irregularity 

Until this part of the paper, there is no irregularity in the system, and 
it has been neglected. In this section, the responses in the case of a track 
irregularity and the bridge in the magnetic field will be examined. The 

Fig. 6. Time dependant response of the pitch motion of train body for various dimensionless magnetic field intensity Hm
x =0, 5, 10, 20, 30. (a) v=0.1vcr (b) v=0.25vcr 

(c) v=0.5vcr (d) v=vcr; for dimensionless time x(t)/L, L=50 m, where the analysis results of the full train model with the track at four different speeds and five 
different magnetic field intensities are given in colour graphics. Here, the graph Hm

x =0 is represented in red, the graph Hm
x =5 in green, the graph Hm

x =10 in blue, the 
graph Hm

x =20 in magenta, and the graph Hm
x =30 in cyan. 
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track irregularities are known as secondary sources of bridge vibrations, 
the primary source of bridge vibrations being train vibrations. Track 
irregularities can be investigated in the random category and created 
with the inverse Fourier transform as follows [79]. 

r(x) =
∑N

k=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Ar(ωk/ωo)
− 2Δω

√

cos(ωkx − φk) (10)  

Here r(x) represents the irregularity profile, Ar is a magnitude param-
eter. ωk=kΔω and ωo=1/2π represent the number of waves and fre-
quency of discontinuity, respectively. Δω, frequency increment, x 
represents the position of the train relative to the bridge, and φk repre-
sents a random number generated between 0 and 2π. N denotes the total 
number of terms used to calculate rail surface roughness. The inde-
pendent right and left track irregularity obtained from these data are 
given in Fig. 12. 

The obtained track profile is added to the wb(x,t) formula, which 

represents the vertical movement of the rail in the energy equations of 
the TTBi system in Appendix A, as in the equation below. In this case, the 
beam displacement, velocity, and acceleration equations are given as 
follows. 

y = wb(x, t) + r(x) (11)  

dy
dt

=
∂wb

∂x
dx
dt

+
∂wb

∂t
+

dr
dx

dx
dt

(12)  

d2y
dt2 =

∂2wb

∂x2

(
dx
dt

)2

+ 2
∂2wb

∂x∂t
dx
dt

+
∂2r
∂x2

(
dx
dt

)2

+
∂wb

∂x
d2x
dt2 +

∂2wb

∂t2 +
dr
dx

d2x
dt2

(13) 

Fig. 13 shows the dynamic displacement and acceleration of the train 
in the vertical direction as it crosses the bridge in the case of both track 
irregularity and five different dimensionless magnetic field intensities. 
When the figure is examined, the dynamic displacement is almost the 

Fig. 7. Time dependant response of the roll motion of train body for various dimensionless magnetic field intensity Hm
x =0, 5, 10, 20, 30. (a) v=0.1vcr (b) v=0.25vcr (c) 

v=0.5vcr (d) v=vcr; for dimensionless time x(t)/L, L=50 m, where the analysis results of the full train model with the track at four different speeds and five different 
magnetic field intensities are given in colour graphics. Here, the graph Hm

x =0 is represented in red, the graph Hm
x =5 in green, the graph Hm

x =10 in blue, the graph 
Hm

x =20 in magenta, and the graph Hm
x =30 in cyan. 
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same as the graph in Fig. 4d, where there is no track irregularity. 
However, when the graph is examined carefully, it is seen that there is a 
fluctuation in the displacement of the train body at about 0.5 and around 
the dimensionless time in Fig. 13a. The same situation occurs in regions 
where dimensionless time is 1.8. In addition, thanks to the magnetic 
field applied to the bridge, vertical displacements in this figure can be 
reduced considerably. When the vertical acceleration of the train body is 
examined in Fig. 13b, it is seen that the acceleration graph is quite 
different from the one in Fig. 5d in the case of random track irregularity. 
For example, when Hm

x =0, the RMS (root mean square) of the acceler-
ation in Fig. 5d is 0.1384 m/s2, while the RMS of the graph in Fig. 13b is 
0.3665 m/s2 in case of track irregularity. In other words, when the ir-
regularity is applied to the system, as in Fig. 12, the RMS of the accel-
eration of the train body increases approximately 2.6 times. As the 
dimensionless magnetic field intensity increases, the vertical accelera-
tion of the train body can be partially reduced. 

When the pitch and roll movements of the train body are examined in 
Fig. 14, it is seen that the movements of the train body are highly 
affected when there is track irregularity. For example, according to 
Fig. 6d, when Hm

x =0, and there is no irregularity in the system, the 
maximum pitch movement of the train body was 1.18 × 10− 3. In 
contrast, when there was an irregularity, the maximum pitch movement 
was 1.35 × 10− 3 and increased by about 15%. In Fig. 14b, the roll 
motion of the train body is heavily affected by the track irregularity, and 
the effect of the magnetic field intensity is almost unclear. For example, 
according to Fig. 7d, the maximum roll movement of the train body is 
1.87 × 10− 5, while in Fig. 14b, this value is 3.28 × 10− 4. In other words, 
in the case of track irregularity, the maximum roll motion of the train 
body increases approximately 17.5 times. 

Fig. 8. Time dependant response of the midpoint of bridge beam for various dimensionless magnetic field intensity Hm
x =0, 5, 10, 20, 30. (a) v=0.1vcr (b) v=0.25vcr (c) 

v=0.5vcr (d) v=vcr; for dimensionless time x(t)/L, L=50 m, where the analysis results of the full train model with the track at four different speeds and five different 
magnetic field intensities are given in colour graphics. Here, the graph Hm

x =0 is represented in red, the graph Hm
x =5 in green, the graph Hm

x =10 in blue, the graph 
Hm

x =20 in magenta, and the graph Hm
x =30 in cyan. 
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5. Conclusion 

In this study, a high-speed train with 24 degrees of freedom oper-
ating in a magnetic field interacts dynamically with a simply supported 
railway bridge that can be described using the Euler-Bernoulli beam 
theorem. The high-speed train is modeled in 3D, and the track structure 
between the train and the bridge is also considered. In this manuscript, 
the bridge beam is in the magnetic field effect in the horizontal direc-
tion, and the Lorentz force in the vertical direction due to this effect is 
included in the motion equation of the bridge beam. The motion equa-
tions of the examined train-track-bridge model are obtained using the 
Lagrangian method, and then with the use of state-space forms, these 
equations are reduced to first-order differential equations. The dynamic 
behaviors of the railway bridge and train body exposed to different 
magnetic field intensities are examined in detail using the fourth-order 

Runge-Kutta method. 
In general, it has been observed that the magnetic field intensity 

applied to the railway bridge significantly affects the dynamic behavior 
of the train. Because when the magnetic field intensity applied to the 
bridge beam in the axial direction is increased, the induced Lorentz force 
increases, and the movement of the beam in the magnetic field becomes 
stiffer. Therefore, the beam begins to behave more rigidly, and its nat-
ural frequency increases. An increase in the natural frequency means a 
further away from the critical region. Thus, the dynamic displacements 
of the beam and the train are reduced due to increased beam stiffness 
and deviation from the critical velocity. For instance, it was observed 
that the vertical displacement of the train body decreased considerably 
after applying a magnetic field to the railway bridge. For example, in 
Fig. 4, if the dimensionless magnetic field coefficient increases from 
Hm

x =0 to Hm
x =60, the displacement of the train body in the vertical 

Fig. 9. Velocity dependant change of the maximum displacement of train body for various dimensionless magnetic field intensity Hm
x =0, 5, 10, 20, 30. (a) Vertical 

displacement of train body (b) Vertical acceleration of train body, where the analysis results of the full train model with the track at speed parameter µ between 0 and 
3, and five different magnetic field intensities and when it passes over a 50 m long bridge are given in colour graphics. Here, the graph Hm

x =0 is represented in red, 
the graph Hm

x =5 in green, the graph Hm
x =10 in blue, the graph Hm

x =20 in magenta, and the graph Hm
x =30 in cyan. 

Fig. 10. Velocity dependant change of the maximum pitch motion of train body for various dimensionless magnetic field intensity Hm
x =0, 5, 10, 20, 30. (a) Pitch 

motion of train body (b) Roll motion of train body, where the analysis results of the full train model with the track at speed parameter µ between 0 and 3, and five 
different magnetic field intensities and when it passes over a 50 m long bridge are given in colour graphics. Here, the graph Hm

x =0 is represented in red, the graph 
Hm

x =5 in green, the graph Hm
x =10 in blue, the graph Hm

x =20 in magenta, and the graph Hm
x =30 in cyan. 
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direction is reduced by almost 50%. 
The train’s speed determines the train’s excitation frequency on the 

bridge. When this excitation frequency equals the beam’s vibration 
frequency, the train reaches a critical speed. At this speed, the bridge 
starts to vibrate at maximum amplitude. Vibration amplitudes are 
maximum when the train speed is at the excitation frequency of the 
train-bridge system. In this context, when Fig. 5 is examined, it is seen 
that the vertical acceleration of the train body is quite high if the train 
speed is at critical velocities. For example, in Fig. 5a, since the speed of 
the train is far from the second critical speed, the vibration amplitudes 
can be reduced by 60% thanks to the magnetic field, while in Fig. 5d, 
when the train speed is taken the same as the second critical speed, even 

in the case of the magnetic field, the vertical acceleration values are only 
%29 was reduced. In addition, another detail in Fig. 5b is that when the 
train speed is 0.25vcr, the vertical acceleration of the train body de-
creases by about 8%. The reason for this decrease is that it is remarkably 
close to the first critical speed of the train-bridge system. 

However, the critical speeds of the train-bridge system are not con-
stant due to the magnetic field effect. As the magnetic field intensity 
increases, the maximum amplitudes decrease significantly, and the ve-
locity parameter at which it occurs increases. If the magnetic field in-
tensity is zero, the maximum displacement of the bridge midpoint at 
critical speeds is more than the static displacement, that is, DAF exceeds 
1, half thanks reduce the DAF of the midpoint of the bridge to the 
magnetic field. 

The train-track-bridge interaction can be analyzed in detail using the 
proposed method. In addition, the magnetic field intensity can be used 
to control the system’s dynamic behavior. In other words, the vibration 
responses of the train can be controlled by keeping the rigidity of the 
railway bridge at the desired level. 
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Fig. 11. Velocity dependant change of the maximum displacement of the 
midpoint of bridge beam for various dimensionless magnetic field intensity 
Hm

x =0, 5, 10, 20, 30, where the analysis results of the full train model with track 
at speed parameter µ between 0 and 3, and five different magnetic field in-
tensities and when it passes over a 50 m long bridge are given in colour 
graphics. Here, the graph Hm

x =0 is represented in red, the graph Hm
x =5 in green, 

the graph Hm
x =10 in blue, the graph Hm

x =20 in magenta, and the graph Hm
x =30 

in cyan. 

Fig. 12. Random track irregularity (a) Right track irregularity (b) Left track irregularity, where the horizontal axis shows the train’s position relative to the bridge. 
When x(t)/L=1, the train has left the bridge. 
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Appendix A 

In Appendix (A.1-A.3), the kinetic energy, potential energy, and Rayleigh damping function of the TTBi system are given. In this study, the symbol 
R in the parameter indices represents the right, while the symbol L represents the left. For example, the parameters μR,r, μR,b, μL,r, and μL,b represent the 
mass per unit length of the right rail, right bridge, left rail and left bridge, respectively. Similarly, the parameters wR,r, wR,b, wL,r, and wL,b represent the 
vertical displacement of the right rail, right bridge, left rail and left the bridge at a given time t. The flexural stiffness of the right and left rail beams and 
bridge beams are represented by the values ER,rIR,r, EL,rIL,r, ER,bIR,b, and EL,bIL,b. On the other hand, (A.3) may be used to determine the dissipation 
function of the complete railway car model and the associated flexible structure system. The right and left Euler-Bernoulli rail beam and bridge beam’s 
corresponding viscous damping coefficients are represented by the parameters cR,r, cL,r, cR,b, and cL,b given in (A.3). 

Fig. 13. Time dependant response of the vertical displacement and acceleration of train body for various dimensionless magnetic field intensity and random track 
irregularity Hm

x =0, 5, 10, 20, 30. (a) v=vcr and vertical displacement of train body (b) v=vcr and vertical acceleration of train body; for dimensionless time x(t)/L, 
L=50 m, where the analysis results of the full train model with the track at four different speeds and five different dimensionless magnetic field intensities are given in 
colour graphics. Here, the graph Hm

x =0 is represented in red, the graph Hm
x =5 in green, the graph Hm

x =10 in blue, the graph Hm
x =20 in magenta, and the graph Hm

x =30 
in cyan. 

Fig. 14. Time dependant response of the pitch and roll motion of train body for various dimensionless magnetic field intensity and random track irregularity Hm
x =0, 

5, 10, 20, 30. (a) v=vcr and vertical displacement of train body (b) v=vcr and vertical acceleration of train body; for dimensionless time x(t)/L, L=50 m, where the 
analysis results of the full train model with the track at four different speeds and five different dimensionless magnetic field intensities are given in colour graphics. 
Here, the graph Hm

x =0 is represented in red, the graph Hm
x =5 in green, the graph Hm

x =10 in blue, the graph Hm
x =20 in magenta, and the graph Hm

x =30 in cyan. 
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Ek =
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫L

0

μR,r

[
ẇ2

R,r(x, t)
]
dx +

∫L

0

μR,b

[
ẇ2

R,b(x, t)
]
dx +

∫L

0

μL,r

[
ẇ2

L,r(x, t)
]
dx +

∫L

0

μL,b

[
ẇ2

L,b(x, t)
]
dx

+mcṙ2
cy + mcṙ2

cz + Iczθ̇
2
cz + Icxθ̇

2
cx + mb1 ṙ2

b1y + mb1 ṙ2
b1z + Ib1zθ̇

2
b1z + Ib1xθ̇

2
b1x + mb2 ṙ2

b2y + mb2 ṙ2
b2z

+Ib2zθ̇
2
b2z + Ib2xθ̇

2
b2x + mwṙ2

w1y + mwṙ2
w1z + Iw1xθ̇

2
w1x + mwṙ2

w2y + mwṙ2
w2z + Iw2xθ̇

2
w2x + mwṙ2

w3y

+mwṙ2
w3z + Iw3xθ̇

2
w3x + mwṙ2

w4y + mwṙ2
w4z + Iw4xθ̇

2
w4x + mR,sẇ2

R,s + mR,baẇ2
R,ba + mL,sẇ2

L,s + mL,baẇ2
L,ba

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.1)  

Ep =
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫L

0

ER,rIR,r

[
w′′2

R,r(x, t)
]
dx +

∫L

0

ER,bIR,b

[
w′′2

R,b(x, t)
]
dx +

∫L

0

EL,rIL,r

[
w′′2

L,r(x, t)
]
dx +

∫L

0

EL,bIL,b

[
w′′2

L,b(x, t)
]
dx

+kb1y
[
rcy − rb1y + θczlb1 − θcxa + θb1xa

]2
+ kb1y

[
rcy − rb1y + θczlb1 + θcxa − θb1xa

]2

+kb2y
[
rcy − rb2y − θczlb2 − θcxa + θb2xa

]2
+ kb2y

[
rcy − rb2y − θczlb2 + θcxa − θb2xa

]2

+kw1y
[
rb1y − rw1y + θb1zlw1 − θb1xd + θw1xd

]2
+ kw1y

[
rb1y − rw1y + θb1zlw1 + θb1xd − θw1xd

]2

+kw2y
[
rb1y − rw2y − θb1zlw2 − θb1xd + θw2xd

]2
+ kw2y

[
rb1y − rw2y − θb1zlw2 + θb1xd − θw2xd

]2

+kw3y
[
rb2y − rw3y + θb2zlw3 − θb2xd + θw3xd

]2
+ kw3y

[
rb2y − rw3y + θb2zlw3 + θb2xd − θw3xd

]2

+kw4y
[
rb2y − rw4y − θb2zlw4 − θb2xd + θw4xd

]2
+ kw4y

[
rb2y − rw4y − θb2zlw4 + θb2xd − θw4xd

]2

+2kbz[rcz − rb1z − θcxhc − θb1xhb]
2
+ 2kbz[rcz − rb2z − θcxhc − θb2xhb]

2
+ 2kwz[rb1z − rw1z − θb1xhw]

2

+2kwz[rb1z − rw2z − θb1xhw]
2
+ 2kwz[rb2z − rw3z − θb2xhw]

2
+ 2kwz[rb2z − rw4z − θb2xhw]

2
+ kp

[
wr,l − ws,l

]2

+kp
[
wr,r − ws,r

]2
+ kb

[
ws,l − wba,l

]2
+ kb

[
ws,r − wba,r

]2
+ kf

[
wba,l − wb,l

]2
+ kf

[
wba,r − wb,r

]2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.2)  

D =
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫L

0

cR,rẇ2
R,r(x, t)dx +

∫L

0

cR,bẇ2
R,b(x, t)dx +

∫L

0

cL,rẇ2
L,r(x, t)dx +

∫L

0

cL,bẇ2
L,b(x, t)dx

+cb1y
[
ṙcy − ṙb1y + θ̇czlb1 − θ̇cxa + θ̇b1xa

]2
+ cb1y

[
ṙcy − ṙb1y + θ̇czlb1 + θ̇cxa − θ̇b1xa

]2

+cb2y
[
ṙcy − ṙb2y − θ̇czlb2 − θ̇cxa + θ̇b2xa

]2
+ cb2y

[
ṙcy − ṙb2y − θ̇czlb2 + θ̇cxa − θ̇b2xa

]2

+cw1y
[
ṙb1y − ṙw1y + θ̇b1zlw1 − θ̇b1xd + θ̇w1xd

]2
+ cw1y

[
ṙb1y − ṙw1y + θ̇b1zlw1 + θ̇b1xd − θ̇w1xd

]2

+cw2y
[
ṙb1y − ṙw2y − θ̇b1zlw2 − θ̇b1xd + θ̇w2xd

]2
+ cw2y

[
ṙb1y − ṙw2y − θ̇b1zlw2 + θ̇b1xd − θ̇w2xd

]2

+cw3y
[
ṙb2y − ṙw3y + θ̇b2zlw3 − θ̇b2xd + θ̇w3xd

]2
+ cw3y

[
ṙb2y − ṙw3y + θ̇b2zlw3 + θ̇b2xd − θ̇w3xd

]2

+cw4y
[
ṙb2y − ṙw4y − θ̇b2zlw4 − θ̇b2xd + θ̇w4xd

]2
+ cw4y

[
ṙb2y − ṙw4y − θ̇b2zlw4 + θ̇b2xd − θ̇w4xd

]2

+2cbz[ṙcz − ṙb1z − θ̇cxhc − θ̇b1xhb]
2
+ 2cbz[ṙcz − ṙb2z − θ̇cxhc − θ̇b2xhb]

2
+ 2cwz[ṙb1z − ṙw1z − θ̇b1xhw]

2

+2cwz[ṙb1z − ṙw2z − θ̇b1xhw]
2
+ 2cwz[ṙb2z − ṙw3z − θ̇b2xhw]

2
+ 2cwz[ṙb2z − ṙw4z − θ̇b2xhw]

2
+ cp

[
ẇr,l − ẇs,l

]2

+cp
[
ẇr,r − ẇs,r

]2
+ cb

[
ẇs,l − ẇba,l

]2
+ cb

[
ẇs,r − ẇba,r

]2
+ cf

[
ẇba,l − ẇb,l

]2
+ cf

[
ẇba,r − ẇb,r

]2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.3) 

The Lagrangian expression is the difference between the potential and kinetic energy provided in Eqs. (A.1) and (A.2), where ϕk is the generalized 
coordinates of the train [80]. 

L = Ek − Ep (A.4)  

d
dt

(
∂L

∂ϕ̇k(t)

)

−
∂L

∂ϕk(t)
+

∂D
∂ϕ̇k(t)

= 0, k = 1, 2, ...., 24, (A.5) 

Using (Eq. A.5), the motion equations of the train are determined. 

Appendix B 

Using the variables listed in Appendix B, second-order equations have been transformed into first-order equations. 
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x1 = rcyẋ1 = ṙcy = x2x16 = θ̇b1xẋ16 = θ̈b1xx31 = rw2yẋ31 = ṙw2y = x32x46 = ṙw4zẋ46 = r̈w4z
x2 = ṙcyẋ2 = r̈cyx17 = rb2yẋ17 = ṙb2y = x18x32 = ṙw2yẋ32 = r̈w2yx47 = θw4xẋ47 = θ̇w4x = x48
x3 = rczẋ3 = ṙcz = x4x18 = ṙb2yẋ18 = r̈b2yx33 = rw2zẋ33 = ṙw2z = x34x48 = θ̇w4xẋ48 = θ̈w4x
x4 = ṙczẋ4 = r̈czx19 = rb2zẋ19 = ṙb2z = x20x34 = ṙw2zẋ34 = r̈w2zx49 = q1ẋ49 = q̇1 = x50
x5 = θczẋ5 = θ̇cz = x6x20 = ṙb2zẋ20 = r̈b2zx35 = θw2xẋ35 = θ̇w2x = x36⋮
x6 = θ̇czẋ6 = θ̈czx21 = θb2zẋ21 = θ̇b2z = x22x36 = θ̇w2xẋ36 = θ̈w2xx48+4n = q̇nẋ48+4n = q̈n
x7 = θcxẋ7 = θ̇cx = x8x22 = θ̇b2zẋ22 = θ̈b2zx37 = rw3yẋ37 = ṙw3y = x38x48+4n+1 = γ1ẋ48+4n+1 = γ̇1
x8 = θ̇cxẋ8 = θ̈cxx23 = θb2xẋ23 = θ̇b2x = x24x38 = ṙw3yẋ38 = r̈w3y⋮
x9 = rb1yẋ9 = ṙb1y = x10x24 = θ̇b2xẋ24 = θ̈b2xx39 = rw3zẋ39 = ṙw3z = x40x48+8n = γ̇nẋ48+8n = γ̈n
x10 = ṙb1yẋ10 = r̈b1yx25 = rw1yẋ25 = ṙw1y = x26x40 = ṙw3zẋ40 = r̈w3zx48+8n+1 = ψ1ẋ48+8n+1 = ψ̇
x11 = rb1zẋ11 = ṙb1z = x12x26 = ṙw1yẋ26 = r̈w1yx41 = θw3xẋ41 = θ̇w3x = x42⋮
x12 = ṙb1zẋ12 = r̈b1zx27 = rw1zẋ27 = ṙw1z = x28x42 = θ̇w3xẋ42 = θ̈w3xx48+12n = ψ̇nẋ48+12n = ψ̈n
x13 = θb1zẋ13 = θ̇b1z = x14x28 = ṙw1zẋ28 = r̈w1zx43 = rw4yẋ43 = ṙw4y = x44⋮
x14 = θ̇b1zẋ14 = θ̈b1zx29 = θw1xẋ29 = θ̇w1x = x30x44 = ṙw4yẋ44 = r̈w4yx48+12n+1 = ϕ1ẋ48+12n+1 = ϕ̇
x15 = θb1xẋ15 = θ̇b1x = x16x30 = θ̇w1xẋ30 = θ̈w1xx45 = rw4zẋ45 = ṙw4z = x46x48+16n = ϕ̇nẋ48+16n = ϕ̈

(B.1) 

The following results are obtained when equations are written in a state-space form using state variables provided by Eq. (B.1) together with 
equation movements corresponding to other coordinates. 

Ẋ(t) = A(t)X(t) + f (t), (B.2)  

X(t) = {x1x2...x48+(16n− 1)x48+16n}
T
, (B.3) 

For the differential equation system, which consists of a total of sixty-two first-order differential equations, four repeating coefficients of the Runge- 
Kutta technique are stated as follows. 

ki
1(1) = f (ti, x1(i), x2(i), x3(i), ..., x48+16n(i)),

⋮
ki

1(48+16n) = f (ti, x1(i), x2(i), x3(i), ..., x48+16n(i)),

(B.4)  

ki
2(1) = f

(

ti +
1
2

Δt, x1(i) +
1
2
ki

1(1)Δt, x2(i) +
1
2
ki

1(2)Δt, x3(i) +
1
2

ki
1(3)Δt, ..., x48+16n(i) +

1
2

ki
1(48+16n)Δt

)

,

⋮

ki
2(48+16n) = f

(

ti +
1
2

Δt, x1(i) +
1
2
ki

1(1)Δt, x2(i) +
1
2
ki

1(2)Δt, x3(i) +
1
2

ki
1(3)Δt, .., x48+16n(i) +

1
2

ki
1(48+16n)Δt

)

,

(B.5)  

ki
3(1) = f

(

ti +
1
2

Δt, x1(i) +
1
2
ki

2(1)Δt, x2(i) +
1
2
ki

2(2)Δt, x3(i) +
1
2

ki
2(3)Δt, ..., x48+16n(i) +

1
2

ki
2(48+16n(i))Δt

)

,

⋮

ki
3(48+16n) = f

(

ti +
1
2

Δt, x1(i) +
1
2
ki

2(1)Δt, x2(i) +
1
2
ki

2(2)Δt, x3(i) +
1
2

ki
2(3)Δt, ..., x48+16n(i) +

1
2

ki
2(48+16n)Δt

)

,

(B.6)  

ki
4(1) = f

(
ti + Δt, x1(i) + ki

3(1)Δt, x2(i) + ki
3(2)Δt, x3(i) + ki

3(3)Δt, ..., x48+16n(i) + ki
3(48+16n)Δt

)
,

⋮
ki

4(48+16n) = f
(
ti + Δt, x1(i) + ki

3(1)Δt, x2(i) + ki
3(2)Δt, x3(i) + ki

3(3)Δt, ..., x48+16n(i) + ki
3(48+16n)Δt

)
,

(B.7)  

x1(i+1) = x1(i) +
Δt
6
(
ki

1(1) + 2ki
2(1) + 2ki

3(1) + ki
4(1)

)

x2(i+1) = x2(i) +
Δt
6
(
ki

1(2) + 2ki
2(2) + 2ki

3(2) + ki
4(2)

)

⋮

x(48+16n)(i+1) = x(48+16n)(i) +
Δt
6
(
ki

1(48+16n) + 2ki
2(48+16n) + 2ki

3(48+16n) + ki
4(48+16n)

)

(B.8)  

Appendix C 

By using Appendix A, the motion equations of the train are determined as follows. The following are the methods for obtaining the car’s body’s 
motion equations: 

r̈cy =
1

mc

[
− 2cb1y

[
ṙcy − ṙb1y + θ̇czlb1

]
− 2cb2y

[
ṙcy − ṙb2y − θ̇czlb2

]

− 2kb1y
[
rcy − rb1y + θczlb1

]
− 2kb2y

[
rcy − rb2y − θczlb2

]

]

(C.1)  

r̈cz =
1

mc

[
− 2cbz[2ṙcz − ṙb1z − ṙb2z − 2θ̇cxhc − θ̇b1xhb − θ̇b2xhb]

− 2kbz[2rcz − rb1z − rb2z − 2θcxhc − θb1xhb − θb2xhb]

]

(C.2)  

M. Eroğlu et al.                                                                                                                                                                                                                                  



International Journal of Mechanical Sciences 242 (2023) 108023

17

θ̈cz =
1
Icz

[
− 2cb1ylb1

[
ṙcy − ṙb1y + θ̇czlb1

]
+ 2cb2ylb2

[
ṙcy − ṙb2y − θ̇czlb2

]

− 2kb1ylb1
[
rcy − rb1y + θczlb1

]
+ 2kb2ylb2

[
rcy − rb2y − θczlb2

]

]

(C.3)  

θ̈cx =
1
Icx

[
− 2cb1ya2[θ̇cx − θ̇b1x] − 2cb2ya2[θ̇cx − θ̇b2x]

− 2kb1ya2[θcx − θb1x] − 2kb2ya2[θcx − θb2x]

]

(C.4) 

The equations of motion of the front bogie have been written as Eq. (7f-ı): 

r̈b1y =
1

mb1

⎡

⎢
⎢
⎣

2cb1y
[
ṙcy − ṙb1y + θ̇czlb1

]
− cw1y

[
2ṙb1y − φi(ξ1R, t)q̇i − φi(ξ1L, t)q̇i + 2θ̇b1zlw1

]

− cw2y
[
2ṙb1y − φi(ξ2R, t)q̇i − φi(ξ2L, t)q̇i − 2θ̇b1zlw2

]
+ 2kb1y

[
rcy − rb1y + θczlb1

]

− kw1y
[
2rb1y − φi(ξ1R, t)qi − φi(ξ1L, t)qi + 2θb1zlw1

]

− kw2y
[
2rb1y − φi(ξ2R, t)qi − φi(ξ2L, t)qi − 2θb1zlw2

]

⎤

⎥
⎥
⎦ (C.5)  

r̈b1z =
1

mb1

[
2cbz[ṙcz − ṙb1z − θ̇cxhc + θ̇b1xhb] − 2cwz[2ṙb1z − ṙw1z − ṙw2z − 2θ̇b1xhw]

+2kbz[rcz − rb1z − θcxhc + θb1xhb] − 2kwz[2rb1z − rw1z − rw2z − 2θb1xhw]

]

(C.6)  

θ̈b1z =
1

Ib1z

⎡

⎢
⎢
⎣

cw2ylw2
[
2ṙb1y − φi(ξ2R, t)q̇i − φi(ξ2L, t)q̇i − 2θ̇b1zlw2

]

− cw1ylw1
[
2ṙb1y − φi(ξ1R, t)q̇i − φi(ξ1L, t)q̇i + 2θ̇b1zlw1

]

− kw1ylw1
[
2rb1y − φi(ξ1R, t)qi − φi(ξ1L, t)qi + 2θb1zlw1

]

+kw2ylw2
[
2rb1y − φi(ξ2R, t)qi − φi(ξ2L, t)qi − 2θb1zlw2

]

⎤

⎥
⎥
⎦ (C.7)  

θ̈b1x =
1

Ib1x

⎡

⎢
⎢
⎣

2cb1ya2[θ̇cx − θ̇b1x] + cw1yd[2θ̇w1xd − φi(ξ1R, t)q̇i + φi(ξ1L, t)q̇i − 2θ̇b1xd]
+cw2yd[2θ̇w2xd − φi(ξ2R, t)q̇i + φi(ξ2L, t)q̇i − 2θ̇b1xd] + 2kb1ya2[θcx − θb1x]

+kw1yd[2θw1xd − φi(ξ1R, t)qi + φi(ξ1L, t)qi − 2θb1xd]
+kw2yd[2θw2xd − φi(ξ2R, t)qi + φi(ξ2L, t)qi − 2θb1xd]

⎤

⎥
⎥
⎦ (C.8) 

The equations of motion of the rear bogie are given as follows: 

r̈b2y =
1

mb2

⎡

⎢
⎢
⎣

2cb2y
[
ṙcy − ṙb2y − θ̇czlb2

]
− cw3y

[
2ṙb2y − φi(ξ3R, t)q̇i − φi(ξ3L, t)q̇i + 2θ̇b2zlw3

]

− cw4y
[
2ṙb2y − φi(ξ4R, t)q̇i − φi(ξ4L, t)q̇i − 2θ̇b2zlw4

]
+ 2kb2y

[
rcy − rb2y − θczlb2

]

− kw3y
[
2rb2y − φi(ξ3R, t)qi − φi(ξ3L, t)qi + 2θb2zlw3

]

− kw4y
[
2rb2y − φi(ξ4R, t)qi − φi(ξ4L, t)qi − 2θb2zlw4

]

⎤

⎥
⎥
⎦ (C.9)  

r̈b2z =
1

mb2

[
2cbz[ṙcz − ṙb2z − θ̇cxhc − θ̇b2xhb] − 2cwz[2ṙb2z − ṙw3z − ṙw4z − 2θ̇b2xhw]

+2kbz[rcz − rb2z − θcxhc − θb2xhb] − 2kwz[2rb2z − rw3z − rw4z − 2θb2xhw]

]

(C.10)  

θ̈b2z =
1

Ib2z

⎡

⎢
⎢
⎣

cw4ylw4
[
2ṙb2y − φi(ξ4R, t)q̇i − φi(ξ4L, t)q̇i − 2θ̇b2zlw4

]

− cw3ylw3
[
2ṙb2y − φi(ξ3R, t)q̇i − φi(ξ3L, t)q̇i + 2θ̇b2zlw3

]

kw4ylw4
[
2rb2y − φi(ξ4R, t)qi − φi(ξ4L, t)qi − 2θb2zlw4

]

− kw3ylw3
[
2rb2y − φi(ξ3R, t)qi − φi(ξ3L, t)qi + 2θb2zlw3

]

⎤

⎥
⎥
⎦ (C.11)  

θ̈b2x =
1

Ib2x

⎡

⎢
⎢
⎣

2cb2ya2[θ̇cx − θ̇b2x] + cw3yd[2θ̇w3xd − φi(ξ3R, t)q̇i + φi(ξ3L, t)q̇i − 2θ̇b2xd]
+cw4yd[2θ̇w4xd − φi(ξ4R, t)q̇i + φi(ξ4L, t)q̇i − 2θ̇b2xd] + 2kb2ya2[θcx − θb2x]

+kw3yd[2θw3xd − φi(ξ3R, t)qi + φi(ξ3L, t)qi − 2θb2xd]
+kw4yd[2θw4xd − φi(ξ4R, t)qi + φi(ξ4L, t)qi − 2θb2xd]

⎤

⎥
⎥
⎦ (C.12) 

The equations of motion of wheelsets are given by Eqs. (C.13)–(15). (for k=1, 2 j=1 and for k=3, 4 j=2) 
Vertical motion: 

r̈wky =
1

mw

[
2cwky

[
ṙbjy − ṙwky + θ̇bjzlwk

]
+ 2kwky

[
rbjy − rwky + θbjzlwk

]]
(C.13) 

Lateral motion: 

r̈wkz =
1

mw

[
2cwz

[
ṙbjz − ṙwkz − θ̇bjxhw

]
+ 2kwz

[
rbjz − rwkz − θbjxhw

]]
(C.14) 

Roll motion: 

θ̈wkx =
1

Iwkx

[
cwkyd

[
2θ̇bjxd − φi(ξkL, t)q̇i + φi(ξkR, t)q̇i − 2θ̇wkxd

]

+kwkyd
[
2θbjxd − φi(ξkL, t)qi + φi(ξkR, t)qi − 2θwkxd

]

]

(C.15) 

The 24 s-order differential equations of the 3D high-speed train are given above. In order to analyze the entire train-track-bridge coupled system, 
differential equations of the track and the bridge should be obtained. The Euler-Bernoulli beam theorem is used to simulate the rail and bridge in the 
track subsystem. The equations below give the 4th-degree motion equations of the rail and the bridge, respectively [81]. 

ErIr
∂4wr(x, t)

∂x4 + μr
∂2wr(x, t)

∂t2 + 2μrωr
∂wr(x, t)

∂t
= −

∑n

i=1
[Fiδ(x − xi) − Fl] (C.16)  

M. Eroğlu et al.                                                                                                                                                                                                                                  



International Journal of Mechanical Sciences 242 (2023) 108023

18

EbIb
∂4wb(x, t)

∂x4 + μb
∂2wb(x, t)

∂t2 + 2μbωb
∂wb(x, t)

∂t
= −

∑n

i=1

[
kf (wba − wb)+ cf (ẇba − ẇb)

]
δ(x − xi) (C.17)  

x1 = vt, x2 = vt − 2lw, x3 = vt − lb1 − lb2, x4 = vt − lb1 − lb2 − 2lw, (C.18) 

In the given equations, F represents the wheel force applied to the rail by the train, δ the Dirac-Delta function, ωr, and ωb represent the circular 
damping frequency of the rail and the bridge beam, respectively. xi represents the position of the force acting on the rail and bridge relative to the left 
reference of the beam. The displacement of any x point on the beam at any time t is expressed using the Galerkin functions [82] wR,r(x,t), wL,r(x,t), wR, 

b(x,t), and wL,b(x,t), respectively. 

wR,r(x, t) =
∑n

i=1
φi(x)qi(t), wL,r(x, t) =

∑n

i=1
φi+n(x)qi+n(t),

wR,b(x, t) =
∑n

i=1
φi(x)ϕi(t), wL,b(x, t) =

∑n

i=1
φi+n(x)ϕi+n(t),

(C.19)  

ẇR,r(x, t) =
∑n

i=1
φi(x)q̇i(t), ẇL,r(x, t) =

∑n

i=1
φi+n(x)q̇i+n(t),

ẇR,b(x, t) =
∑n

i=1
φi(x)ϕ̇i(t), ẇL,b(x, t) =

∑n

i=1
φi+n(x)ϕ̇i+n(t),

(C.20)  

w′′
R,r(x, t) =

∑n

i=1
φ′′

i(x)qi(t), w′′
L,r(x, t) =

∑n

i=1
φ′′

i+n(x)qi+n(t),

w′′
R,b(x, t) =

∑n

i=1
φ′′

i(x)ϕi(t), w′′
L,b(x, t) =

∑n

i=1
φ′′

i+n(x)ϕi+n(t),
(C.21)  

φi(x) =
̅̅̅
2
L

√

sin
(

iπx
L

)

, i = 1, 2, ..., n. (C.22)  

Here, the parameters q and ϕ represent the generalized coordinates for the displacement of the rail and bridge beam structure, respectively, and φ 
stands for the oscillation form produced with the beam’s easily supported boundary conditions. The parameter n defines the simply supported beam’s 
mode number. 

The orthogonality conditions of mode shape the oscillations are shown in Eq. (C. 23), where ẟij stands for Kronecker delta. Also, while the first 
subscript represents the right rail beam, the second represents the left rail beam [26]. 

∫L

0

μ1,2φ1,2 i(x)φ1,2 j(x)dx = N1,2 iδ1,2 ij,

∫L

0

(EI)1,2φ′′
1,2 i(x)φ′′

1,2 j(x)dx = Π1,2 iδ1,2 ij (C.23) 

The vertical motion of the rail or bridge, wr,b(x,t), denotes the displacement of any x point on the beam at any t time in relation to the train’s entry 
point into the bridge. Only vertical dynamic behaviors are considered, and lateral displacements are neglected. 

d
dt

(
∂L

∂λ̇i(t)

)

−
∂L

∂λi(t)
+

∂D
∂λ̇i(t)

= Qi, i = 1, 2, ...., 32, (C.24)  

Qi =

∫L

0

φi(x)fci(x, t)dx, i = 1, 2, ...., 32, (C.25) 

The generalized coordinates of the track and beam are given as follows. This study considers the first four vibration modes of track parts, along with 
the rail and bridge beams. 

λ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

q1(t)q2(t)q3(t)q4(t)q5(t)q6(t)q7(t)q8(t)
γ1(t)γ2(t)γ3(t)γ4(t)γ5(t)γ6(t)γ7(t)γ8(t)

ψ1(t)ψ2(t)ψ3(t)ψ4(t)ψ5(t)ψ6(t)ψ7(t)ψ8(t)
ϕ1(t)ϕ2(t)ϕ3(t)ϕ4(t)ϕ5(t)ϕ6(t)ϕ7(t)ϕ8(t)

⎫
⎪⎪⎬

⎪⎪⎭

T

,

q→ Rail beam
γ→ Sleeper
ψ→Ballast

ϕ→ Bridge beam

(C.26) 

The motion equation of the track subsystem given in Fig. 1d is produced using the beam displacement specified in Eq. (C. 23), and the Galerkin’s 
approach, together with the orthogonality constraints provided in Eq. (C. 21). The equations of motion for the right rail beam, right sleeper, right 
ballast and, right bridge beam are given below: 

The motion equation of the right rail beam is given by Eq. (C. 27): 
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q̈i(t) = − S1,iqi(t) /N1,i − c1q̇i(t) /N1,i

+φi(ξ1R, t) /N1,i

⎡

⎢
⎢
⎢
⎢
⎣

cw1y

[

ṙb1y −
∑n

i=1
φi(ξ1R, t)q̇i + θ̇b1zlw1 − θ̇b1xd + θ̇w1xd

]

+kw1y

[

rb1y −
∑n

i=1
φi(ξ1R, t)qi + θb1zlw1 − θb1xd + θw1xd

]

− fg1

⎤

⎥
⎥
⎥
⎥
⎦

+φi(ξ2R, t) /N1,i

⎡

⎢
⎢
⎢
⎢
⎣

cw2y

[

ṙb1y −
∑n

i=1
φi(ξ2R, t)q̇i − θ̇b1zlw2 − θ̇b1xd + θ̇w2xd

]

+kw2y

[

rb1y −
∑n

i=1
φi(ξ2R, t)qi − θb1zlw2 − θb1xd + θw2xd

]

− fg2

⎤

⎥
⎥
⎥
⎥
⎦

+φi(ξ3R, t) /N1,i

⎡

⎢
⎢
⎢
⎢
⎣

cw3y

[

ṙb2y −
∑n

i=1
φi(ξ3R, t)q̇i + θ̇b2zlw3 − θ̇b2xd + θ̇w3xd

]

+kw3y

[

rb2y −
∑n

i=1
φi(ξ3R, t)qi + θb2zlw3 − θb2xd + θw3xd

]

− fg3

⎤

⎥
⎥
⎥
⎥
⎦

+φi(ξ4R, t) /N1,i

⎡

⎢
⎢
⎢
⎢
⎣

cw4y

[

ṙb2y −
∑n

i=1
φi(ξ4R, t)q̇i − θ̇b2zlw4 − θ̇b2xd + θ̇w4xd

]

+kw4y

[

rb2y −
∑n

i=1
φi(ξ4R, t)qi − θb2zlw4 − θb2xd + θw4xd

]

− fg4

⎤

⎥
⎥
⎥
⎥
⎦

(C.27) 

The symbol expressed as Fl in Eq. (C.27) and specified as Lorentz force was found in Eq. (5) and integrated into the differential equation of the 
bridge. 

The motion of the equation of the right sleeper is obtained as follows: 

ẅs,r =
1

ms

[
kp
[
wr,r − ws,r

]
− kb

[
ws,r − wba,r

]
+ cp

[
ẇr,r − ẇs,r

]
− cb

[
ẇs,r − ẇba,r

]]
(C.28) 

The motion of the equation of the right ballast is rewritten below: 

ẅba,r =
1

mba

[
kb
[
ws,r − wba,r

]
− kf

[
wba,r − wb,r

]
+ cb

[
ẇs,r − ẇba,r

]
− cf

[
ẇba,r − ẇb,r

]]
(C.29) 

Following is a description of the right bridge beam’s equation of motion. 

ϕ̈i(t) = − Sb1,iϕi(t) /Nb1, i − cbϕ̇i(t) /Nb1,i + Fl /N1,i − cf φi(ξR, t) /Nb1,i

[

ẇba,R −
∑n

i=1
φi(ξR, t)ϕ̇i

]

− kf φi(ξR, t) /Nb1,i

[

wba,R −
∑n

i=1
φi(ξR, t)ϕi

] (C.30) 

The right rail beam’s second-order equation is provided in Eq. (C. 27). The fg symbol, in this instance, depicts the train’s static forces on the bridge 
beam. 
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