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Abstract Cell studies play an important role in the basis of studies on cancer diagnosis and treatment. Reli-
able viability assays on cancer cell studies are essential for the development of effective drugs. Lens-free dig-
ital in-line holographic microscopy has become a powerful tool in the characterization and viability analysis
of microparticles such as cancer cells due to its advantages such as high efficiency, low cost, and flexibility to
integrate with other components. This study is designed to perform viability tests using fractal dimensions
of alive and dead cancer cells based on digital holographic microscopy and machine learning. In the in-line
holography configuration, a microscopy assembly consisting of inexpensive components was built using an
LED source, and the images were reconstructed using computational methods. The standard US Air Force
Resolution Target was used to evaluate the capability of our imaging setup then holograms of stained can-
cer cells were recorded. To characterize individual cells, 19 different rotational invariant fractal dimension
values were extracted from the images as features. An artificial neural network technique was employed
for the classification of fractal features extracted from cells. The artificial neural network was compared
with four other machine learning techniques through five different classification performance measures. The
empirical results indicated that artificial neural networks performed better than compared classification
techniques with accuracies of 99.65%. The method proposed in this paper provides a new method for the
study of cell viability which has the advantages of high accuracy and potential for laboratory application.

1 Introduction

Cellular sensitivity, response and drug studies per-
formed in-vitro in laboratory environments are the first
step activities in achieving clinical success. Imaging
and analyzing cells and micro-particles in laboratory
environments and extracting meaningful relationships
from the results are very important in the development
of effective drugs and the conduct of clinical diagno-
sis and treatment processes [1]. In studies with cancer
cell cultures, monitoring the population of cells and
examining the cytotoxic effects of various drugs can
be done by various methods. In current technological
developments, viability analyzes are performed with cell
analyzers, flow cytometry or optical microscopes [2,3].
These equipments consist of specialized optical com-
ponents, taking into account the types of analysis to
be performed. Analysis equipment has many disadvan-
tages due to its low accuracy rate, high cost, bulky,
specialized equipment, and the results cause expert-
dependent subjective evaluations [4,5].
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In recent years, the development of semiconductor
sensor technologies at the micro-nano level has brought
innovations in many fields. Digital in-line holographic
microscopy (DIHM) technologies are one of the most
important examples of these innovations that can be
used in the medical field. DIHM is widely popular for
its simple arrangement. DIHM can be used in the med-
ical field for imaging and analysis of cancer cell lines,
hemogram tests, urine tests, examining pathological
samples, and determining the three-dimensional posi-
tions of microparticles [6–10]. DIHM systems are built
with a light source and imaging sensor. Charge Coupled
Device (CCD) or Complementary Metal-Oxide Semi-
conductor (CMOS) can be used as an imaging sensor.
CMOS sensors are more commonly preferred due to the
sensitivity, small pixel size and sensitivity they provide
[11]. Laser, laser diode or light emitting diodes (LED)
can be used as light sources. Laser sources are widely
used due to their high temporal and spatial coherence.
However, too high coherence can degrade the quality
of the resulting images and cause speckle noise. LED
light sources, on the other hand, are frequently used in
the imaging of medical microparticles, because they do
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not cause these noises and are easy to operate [9,12].
The pinhole used with LED sources makes the inco-
herent source partially coherent and provides sufficient
interference of the sample plane.

Cell viability assays are used to identify conditions
that cause cell death as a result of the physical or chem-
ical processes that cells are exposed to. Cells exposed to
cytotoxic substances may die as a result of events, such
as apoptosis, autophagy and necrosis, or the cell may
lose its proliferation properties for various reasons [13].
Due to this situation, various morphological and func-
tional changes occur in the structures of cells. To deter-
mine the viability with the help of chemicals, calori-
metric, luminescence and enzymatic methods are pre-
ferred [14]. Staining with trypan blue, which is one of
the chemical processes, is known as one of the most reli-
able methods in viability analysis [15]. There are many
feature-based methods in the literature for the auto-
mated measurement and evaluation of cellular changes
resulting from the application of these methods [16–
19]. Feature extraction can be done over the amplitude
and phase components of the images obtained from
DIHM systems. Morphological or optical features, such
as area, roundness, major axis, refractive index, absorp-
tion of holographically transformed cells can be used as
cell fingerprints [20]. Obtained features can be classified
using machine learning methods or statistical methods
[21,22].

The study of the development of the proportions of
details existing in nature or a designed structure can
be explained as fractal dimension calculation. As the
fractal dimension value of the shape increases, so do
the details [23,24]. As the calculated fractal dimension
approaches 1, it indicates that the shape of the object
approaches Euclidean geometry and the structure is not
fractal. In other words, the larger the value of the frac-
tal dimension, the more developed the properties of the
object at different scales [25–29]. Briefly, fractal dimen-
sion values provide a relationship between fractal con-
tinuity and information richness (depth and detail). If
the detail and richness of the image are high, the frac-
tal dimension value is also high. Therefore, the fractal
dimension emerges as a function of the image. Using
this function, fractal dimension values, which are the
distinguishing features of the image, can be calculated
and used as feature values. In this way, image recogni-
tion can be realized. Artificial neural networks, machine
learning algorithms and deep neural networks are very
powerful tools in the classification of features obtained
from images.

In this study, a fractal dimension-based method is
proposed that can perform viability analyzes of can-
cer cell lines with high accuracy and low loss rate.
A microcomputer-based lens-free digital holographic
microscopy setup was designed for imaging and via-
bility analysis of cancer cell lines, and holograms of
stained cancer cell cultures were collected. Captured
holograms were numerically reconstructed, and ampli-
tude images of cells were obtained. The US Air Force
(USAF) target was used to evaluate the capability of
our imaging setup and algorithms. The resulting images

are divided into sub-images with the help of image pro-
cessing algorithms. Individual cell images are labelled
as live and dead. By rotating the cropped images at
different angles, the angular independence of the fea-
tures to be extracted is ensured. Fractal dimension cal-
culations of all labelled cell images were made and 19
different features were calculated. Artificial neural net-
work architecture is designed to classify using fractal
features of cells. Artificial neural network architecture
is designed to classify cells according to their calcu-
lated fractal features. The designed model was evalu-
ated with various performance metrics and the results
were compared with other machine learning algorithms
frequently used in the literature. The artificial neural
network model showed more success in many perfor-
mance criteria compared to Random Forest, support
vector machines, K-nearest neighbours and Decision
Tree classifiers.

2 Materials and methods

2.1 Fractal

In Euclidean geometry, lines, circles, lines, polygons,
cone-cylinders, and other forms with integer values of
one, two, or three are shapes. With Euclidean geome-
try, it is often not possible to understand and math-
ematically express the complex structures that exist
in nature. The concept of Fractal geometry was intro-
duced by Mandelbrot to model shapes that do not fit
Euclidean geometry. The term fractal is a word of Latin
origin and means irregular, fragmented, divided and
broken. Again, the term fractal is a general name given
to complex or complex shapes that have the feature of
resembling or repeating themselves in the field of math-
ematics. The term fractal is defined as a shape consist-
ing of parts that resemble a whole. For this reason, the
term fractal is the phenomenon of finding similar struc-
tures in the shape when looking at the overall shape.
As a result, the parts that make up the shape in a frac-
tal structure resemble each other and, therefore, the
whole shape. These pieces can be thought of as replicas
of the similarity. Although there are repetitive struc-
tures in fractal geometry, these structures can have a
constantly growing or shrinking feature. In this case,
the concept of fractal dimension comes into play. Each
small piece is a copy or similar of the whole piece. The
fractal dimension represents a measure of self-similarity.

Fractals can be formed by the repetition of geome-
tries with similar shapes, or they can also be formed by
the repetition of geometries with shapes that are not
similar to themselves randomly. In this case, fractal
structures are divided into different categories within
themselves. Fractals are divided into three categories as
self-similarity, semi-similarity and statistical similarity
[30]. Fractal shapes with a geometric structure formed
by random repetition are generally found in nature.
However, according to Sertöz, there is a limit to these
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Fig. 1 Example fractal
structures that can be
encountered in nature or
produced in computer
environment, a Koch
spline, b snail shell, c
Sierpinski triangle, d
Sierpinski carpet, e lung
airways, f digitally created
fractal structure

repetitions [31]. Some fractal images encountered in the
literature are given in Fig. 1.

Fractal geometry is used in many fields from medicine,
economy, biology, engineering, architecture, music, ast-
ronomy to geography, physics to art. Particularly, it
can be noticed when looking carefully that an object
consists of parts that are the same as a whole, or that
the disorder of the whole is similar to the irregularity
of the parts, which is encountered in many elements
found in nature. For example, when the coastline of
lands is examined, there are indentations and protru-
sions in any part of the coast, just as in the whole [32].
Such fractal structures are rivers, rivers, clouds, branch-
ing of trees, leaf patterns, snowflakes, capillaries, lung
airways, fault lines, nerve fibres or tornado, etc. found in
nature [24,33]. Considering the application areas, frac-
tals are used in a wide range. Uyar et al. they used
fractal geometry to study landforms [32]. Bayrak et al.
performed fractal analysis on thyroid ultrasound images
in their study [25]. Sezer et al. used fractal analysis to
measure the strength of some materials [27].

2.2 System setup

A digital in-line holographic microscopy setup based on
LED illumination and CMOS imaging sensor was built
to capture holograms of cells. The experimental setup
is shown in Fig. 2. The sample plane was illuminated by
the LED light source and the interference pattern from
the sample plane was captured by the CMOS sensor
and the holograms were digitally recorded. LED sources
are widely preferred in lens-free imaging systems due to
their ease of use and cost. The used LED light source
has a central wavelength of 405 nm. The spatial consis-
tency of the light source is required to achieve interfer-

Fig. 2 Schemes of the digital in-line holographic micro-
scope (DIHM)

ence. For this purpose, the LED light source is focused
on a 300 µm pinhole. The use of pinhole in the setup
makes the incoherent LED source to partially coher-
ent and provides spatial filtering. The distance between
the pinhole and sample (z1) was fixed at approximately
60 mm. Sony IMX219PQ CMOS imaging sensor was
used to capture holograms. The CMOS-sensor chip has
a 3280 × 2464 pixel active area with 1.12 µm pixel
size. The CMOS sensor was commercially available and
easy to assemble and disassemble. Medical specimens
are placed directly on the imaging sensor. The distance
between the sample plane and the CMOS sensor (z2) is
less than 1 mm. Parameters such as the exposure time of
the CMOS imaging sensor, ISO and white balance are
manually adjusted. The PWM signal was controlled by
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the microcomputer to synchronize the LED light source
during the hologram capture. Since the CMOS imaging
sensor has a BAYER filter, the captured holograms are
RGB images and only the green channel is used in the
recording processes. The recorded holographic images
were transferred to the computer for reconstruction,
fractal features extraction and classification.

2.3 Holography

The concept of holography was first proposed by Gabor.
By definition, in-line holography is expressed as the
sharing of the same optical axis between the waves of
the object and the reference waves emitted from the
light source [34]. Compared to methods, such as off-
axis holography, in-line holography configurations can
record the diffraction pattern with simpler experimen-
tal setups. In the holographic recording process, the
complex amplitude of the diffraction pattern of the sam-
ple is recorded, in other words, the phase and amplitude
information of the sample light wave is obtained simul-
taneously. Therefore, the holographic data contains all
the information of the sample. The digital hologram can
be recorded by photosensitive sensors, such as CMOS.
In the hologram plane, the object wave and the refer-
ence wave produce an interference pattern (|I(x, y)|2)
with a two-dimensional intensity distribution:

|I(x, y)|2 = |R + O|2 = |R|2 + |O|2 + R∗O + O∗R (1)

Here, R2 is the reference wave, O2 is the zero-order
diffraction of the object and is negligibly small. R∗O is
the real image, O∗R is the twin image, R∗ and O∗ rep-
resent complex conjugates of waves. The interference
pattern should be normalized to eliminate the inhomo-
geneous light distribution, noise-like dust particles or
sensor sensitivity caused by illumination on the sensor
plane and other effects [35]. Normalization can also be
done by dividing the interference pattern by the refer-
ence wave or by subtracting the image obtained with-
out a sample between the sensor and the light source.
In this study, the image obtained without the object
was extracted from the hologram image. After the nor-
malization process:

|I(x, y)|2
|R|2

∼= 1 +
R∗O + O∗R

|R|2 (2)

The twin-image remaining in the equation as a result
of the normalization process reduces the signal-to-noise
ratio (SNR) in digital in-line holography and, therefore,
negatively affects the quality of the obtained image.
Many iterative or non-iterative methods have been
proposed to overcome this problem [36,37]. All cell
images obtained in this study contain twin-images. This
effect was considered as background noise in fractal fea-
ture extraction and machine learning processes. There-
fore, phase retrieval or twin-image elimination was not
applied to the hologram obtained in the study.

2.4 Hologram reconstruction

The in-line hologram recorded by the CMOS sensor
must be digitally processed by back-propagation of the
optical field. There are many numerical methods for
reconstructing the digital hologram [38]. These methods
aim to solve the diffraction integral of the field propa-
gation. The angular spectrum method, also known as
the double Fourier transform method, is widely used in
DIHM systems due to its small sensor-to-sample dis-
tance. Compared to other methods, the angular spec-
trum method can be calculated using the Fourier trans-
form without using any approximation. The angular
spectrum is advantageous in terms of straightforward
processing path resulting in low computational load and
short calculation time, high efficiency especially in the
paraxial regime, high fidelity and good discretization.
In our DIHM setup, we directly back propagate the
image from the sensor plane to the object plane with
the angular spectrum method. The propagation func-
tion:

H(fx, fy, z)

=

⎧
⎨

⎩

exp

[

iz 2π
λ .

√

1 − (λfx)
2 − (λfy)

2
]

, (λfx)
2 + (λfx)

2 < 1,

0, otherwise

⎫
⎬

⎭

(3)

where H(fx, fy, z) is the transfer function in the Fourier
space, z is the propagation distance, λ is the wavelength
of the light source, i is the complex number and (fx, fy)
is the coordinates in the Fourier space. The generated
transfer function is multiplied by the hologram data
converted to Fourier space and then converted back to
real space:

I(x, y, z2) = �−1 {�{I(x, y, 0)} H(fx, fy, z2)} (4)

Here, I(x, y, z2) is the back propagated field, I(x, y, 0) is
the hologram at sensor plane, H(fx, fy, z2) is the trans-
fer function at sample plane, � and �−1 denote the
2D-Fourier transform and its invers form, respectively.
The resulting back propagated field contains phase and
amplitude information. In this study, only amplitude
images were used.

In some cases, the distance between the sensor and
the sample (z2) may not be known precisely. To solve
this situation, there are many autofocus metrics with
or without reference image in the literature [39]. In
this study, to find the optimum focusing distance, the
transfer function was solved numerically by looping at
1 µm intervals. The individual Tamura coefficients of
the images multiplied by the transfer function were
calculated and the maximum value was chosen as the
best focusing distance. A positive USAF 1951 resolu-
tion target was used to demonstrate the capability of
our DIHM setup and to determine its resolution. The
normalized raw hologram was converted to grey level
and then interpolated. Images of USAF 1951 resolution
target are given in Fig. 3a, b. In Fig. 3c, pixel intensity
profiles are given.
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Fig. 3 Reconstruction of positive USAF 1951 resolution test target, a view of Group 4 and 5 of the raw hologram after
normalization, b reconstructed image of ROI, c horizontal and vertical intensity profile through Element 6 of Group 7 (see
colored bars in b)

Fig. 4 Flow chart illustrating hologram reconstruction and data preparation, a raw hologram of cancer cells, b raw
hologram of selected ROI, c reconstructed of b, d reconstructed alive cell, e reconstructed dead cells, f binary format of
alive cell, g binary format of dead cell

3 Data collection

In this study, the MCF-7 cancer cell line, which is fre-
quently used in the literature, was used to demonstrate
the usability of fractal features in viability tests. MCF-
7 cell line was supported with 10% fetal bovine serum
and 1% penicillin and incubated at 37 ◦C with 5% CO2.
The cell line was transferred to ep-tubes and left at
room temperature. These cell lines eventually died nat-
urally over time. Cells were stained with trypan blue
solution for viability analysis. Trypan blue was added
to the cells in a ratio of 1:1 for 1 min. After injecting the
5 µL stained cells onto the glass, the chip was inserted
into our DIHM setup.

Cells imaged with our DHM system were recorded
as described above and reconstructed using the angular
spectrum method. After reconstructing, the cells were
individually sub-imaged to extract the fractal proper-
ties of each cell. In Fig. 4, cell images obtained with
our DIHM system and data set preparation processes

are given. To separate each cell individually from the
whole sample image, all frame cell images were thresh-
olded, binarized, holes filled, and finally, a morpholog-
ical opening was applied. The centre of each cell was
found in the binarized image and finally, we cropped
individual holographic images of cells with a window of
250 × 250 pixels, as shown in Fig. 4d, e. The cropped
grey level images were converted to black and white
format by determining the adaptive threshold value for
fractal feature extraction. 600 dead and 550 alive cells
were identified on the reconstructed digital hologram
and individually confirmed by researchers as ground
truth. As a result, the data set contains a total of 1150
labelled cells.

4 Fractal dimension

The study of the development of the proportions of
details existing in nature or in a designed structure can
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Fig. 5 Counting of full and empty boxes for fractal dimension calculation

Table 1 Number of full and empty boxes obtained by cal-
culating the fractal dimension

Filled boxes Empty boxes

1th iteration 4 0
2nd iteration 13 3
3rd iteration 35 29
4th iteration 95 161
5th iteration 268 756
6th iteration 814 3282
7th iteration 2836 13,548
8th iteration 10,977 54,559

be explained as fractal dimension calculation. As the
fractal dimension value of the shape increases, so do the
details [23,24,28,29]. As the calculated fractal dimen-
sion approaches 1, it indicates that the shape of the
object approaches Euclidean geometry and the struc-
ture is not fractal. In other words, the larger the value
of the fractal dimension, the more developed the prop-
erties of the object at different scales [23–25]. There-
fore, the fractal dimension emerges as a function of the
image. The curling and box-counting methods are used
to calculate the fractal dimension in the image. The
curling method is a probability-based iterative process
[40]. Since it depends on the probability of the coin, the
resulting end continues until it reaches the equilibrium
point. On the other hand, the box counting method is
an iterative method based on counting the filled boxes
on the image at different scales [30]. In the first itera-
tion, the image is divided into segments and the filled
boxes on the shapes are counted. In the 2nd iteration,

the box size is reduced to 2 halves. The steps for each
iteration are given in Fig. 5.

Filled boxes that fall on the shapes again are counted.
Fractal dimensions are calculated using Eqs. (5) or
(6). Briefly, fractal dimension values provide a relation-
ship between fractal continuity and information rich-
ness (depth and detail). If the detail and richness of
the image is high, the fractal dimension value is also
high [29]. The results obtained are given in Table 1.
In addition, fractal values calculated in each iteration
using this value are given in Eq. (6):

D =

log

(
filled boxes at

present iteration

)

−
(

filled boxes at

previous iteration

)

log

(
sum of the all boxes at

present iteration

)

−
(
sum of the all boxes at

previous iteration

) (5)

Di+1,i =
log (Ni+1) − (Ni)

log (2i+1) − (2i)
(6)

D1,2 =
log (13) − log(4)
log (4) − log(2)

= 1.7004

D2,3 =
log (35) − log(13)
log (16) − log(4)

= 1.4288

D3,4 =
log (95) − log(35)
log (64) − log(16)

= 1.4406

D4,5 =
log (268) − log(95)
log (128) − log(64)

= 1.4962

D5,6 =
log (814) − log(265)
log (256) − log(128)

= 1.6028
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Fig. 6 Fractal values of the cell rotated and calculated at 10◦ intervals between −90◦ and 90◦

D6,7 =
log (2836) − log (814)
log (512) − log (256)

= 1.8008

D7,8 =
log (10977) − log (2836)
log (1024) − log (512)

= 1.9526 (7)

In order for the obtained images to be independent of
the angle, each image was rotated between −90◦ and
90◦ with 10◦ angles and their fractal values were calcu-
lated. The fractal values of a cell whose fractal value is
calculated using this method are given in Fig. 6. The
image taken from each cell was rotated at different
angles in this way and 19 different fractal values were
calculated. In addition, the data taken from each cell

was shifted to increase the data. Therefore, 19 different
fractal values were produced from 1 cell image. As an
example, the expression of the data is given in Table 2.
A total of 550 dead cells and 600 live cells were used.
21,850 number of data were produced with the data of
these cells shifted at different angles. Moreover, using
the obtained images, the different cells in the data set
and their fractal values are briefly shown in Fig. 7.

4.1 Classification

Artificial neural networks are mathematical models
inspired by the structure and functions of biological
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Table 2 Fractal values of cells used and prepared in the data set

Number of data

1 2 3 ... 19 20 ... 21,850
Subjects
1 2 ... 1150

Angle

−90◦ 1.985 1.9864 1.9834 ... 1.9832 1.9691 1.9693
−80◦ 1.9832 1.985 1.9864 ... 1.9829 1.9653 1.9687
−70◦ 1.9829 1.9832 1.985 ... 1.9821 1.9619 1.9785
−60◦ 1.9821 1.9829 1.9832 ... 1.9821 1.9575 1.9678
−50◦ 1.9821 1.9821 1.9829 ... 1.9816 1.9652 1.9659
−40◦ 1.9816 1.9821 1.9821 ... 1.9816 1.9596 1.9729
−30◦ 1.9816 1.9816 1.9821 ... 1.9821 1.9595 1.9721
−20◦ 1.9821 1.9816 1.9816 ... 1.9852 1.9655 1.9731
−10◦ 1.9852 1.9821 1.9816 ... 1.9849 1.9634 1.9742
0◦ 1.9849 1.9852 1.9821 ... 1.9836 1.9688 1.9709
10◦ 1.9836 1.9849 1.9852 ... 1.983 1.9653 1.9729
20◦ 1.983 1.9836 1.9849 ... 1.9814 1.9612 1.9773
30◦ 1.9814 1.983 1.9836 ... 1.9817 1.9590 1.9674
40◦ 1.9817 1.9814 1.983 .... 1.9819 1.9646 1.9654
50◦ 1.9819 1.9817 1.9814 ... 1.9817 1.9611 1.9708
60◦ 1.9817 1.9819 1.9817 ... 1.9832 1.9622 1.9734
70◦ 1.9832 1.9817 1.9819 ... 1.9834 1.9642 1.9761
80◦ 1.9834 1.9832 1.9817 ... 1.9864 1.9624 1.9709
90◦ 1.9864 1.9834 1.9832 ... 1.985 1.9696 1.9693

Fig. 7 Binary image and fractal values of randomly selected cells
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Fig. 8 Details of training and validation ANN, a graph of training accuracy and training loss during training of network,
b graph of validation accuracy and validation loss during validating of network

neural networks, which can learn and test with data.
Artificial neural networks are implemented in layers of
non-linear feature operations, which consist of heavily
interconnected processing units. As a basic rule mul-
tiplication, addition and activation functions they per-
form. The values taken as input are multiplied by a cer-
tain weight value, all obtained values are summed with
the bias term and an activation operation is applied in
the output layer. Today, artificial neural networks have
many application areas. Especially in the medical field,
it is frequently used for classification, pattern recogni-
tion, data mining, prediction and modelling [41–46]. It
offers advantages such as being able to learn many lin-
ear or non-linear inputs quickly with high performance
criteria and making stable generalizations. There are
many artificial neural network architectures in the lit-
erature to fulfil various tasks [36]. It can be adapted
to perform given tasks, such as classification, by chang-
ing the hyper-parameters contained in its architectural
structures. In this study, an artificial neural network
model was designed to maximize classification perfor-
mance. The results obtained were compared with the
machine learning methods frequently used in the liter-
ature. The classification performances of the features
are shown with various performance analyzes.

Training and validation are important tasks in ANN
applications. For this purpose, the data is divided into
two parts as train and validation data. For this purpose,
tenfold cross-validation methodology is applied to the
data set to split data into training and validation. For
the ANN classifier model, we used the back-propagation
algorithm with a multi-layer perceptron (MLP). Relu
activation function is used in the input and hidden lay-
ers. In order to stabilize the learning steps, a batch nor-
malization layer was added to the output of each hidden
layer. We used dropout of 0.1 after the hidden layers to
avoid overfitting. The sigmoid is used as the activation
function in the output layer. To optimize the weights,
the training were made in 300 batch sizes and 10,000
epochs. Figure 8 shows the accuracy and loss graphs of
the training and validation processes.

Other classification methods were also used to show
the success of fractal features and to compare the suc-
cess of the designed ANN architecture. Random Forest,
support vector machine, K-nearest neighbours (k = 10)
and Decision Tree classifiers were trained and tested
with the same data set. Classification results were eval-
uated with frequently used performance criteria, such as
Precision, Recall, F1-score, Accuracy, AUC (area under
the ROC Curve). In Table 3, the average performance
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Table 3 Classification performance measurements of machine learning algorithm

Classifier Accuracy (%) Precision Recall F1-score AUC

Random Forest 90.77 0.91 0.89 0.90 0.88
Support vector machines 87.60 0.87 0.85 0.86 0.85
K-nearest neighbours 89.39 0.90 0.87 0.88 0.87
Decision Tree 87.05 0.86 0.85 0.86 0.85
ANN 99.65 0.99 0.98 0.98 0.98

values obtained as a result of the validation process are
given.

Table 3 shows that Random Forest has an accuracy of
90.77%, support vector machines of 87.60%, K-nearest
neighbours of 89.39%, Decision Tree of 87.05% and
ANN of 99.65%. In addition, other performance criteria
show parallel results with accuracy criteria. This sug-
gests that the proposed ANN model has a clearly better
classification performance for cells via fractal dimen-
sion. The ANN classifier appears to be more success-
ful in classifying fractal dimension than other machine
learning algorithms.

5 Conclusion

Cancer cell line studies play an important role in the
clinical diagnosis, treatment and development of effec-
tive drugs. The novelty of this study is the angle-
invariant fractal dimension analysis of the captured
holographic images and the classification of cell viabil-
ity using deep learning. Cell diffraction patterns were
recorded with a low-cost, simple, easy-to-use LED light
source-based DIHM experimental setup. The diffraction
patterns were reconstructed using the angular spec-
trum method and the capability of the experimental
microscopy setup was demonstrated with a standard
USAF 1951 test target. 1150 cell images were recorded
and then individually labelled by researchers as ground
truth. The fractal dimension of each labelled image was
calculated at 19 different angles. Cells were classified
using these fractal features using ANN, Random For-
est, support vector machine, K-nearest neighbours and
Decision Tree machine learning algorithms. Classifier
performances are measured using accuracy, precision,
recall, F1-score and AUC metrics. Validation of results
has been carried out by tenfold cross-validation. The
highest classification accuracy of 99.65% was achieved
using ANN. In addition, the designed ANN model
showed higher performance in all measured metrics
compared to other machine learning algorithms. In the
proposed method, fractal features were shown to be like
a fingerprint in cell viability analyzes and it was seen
that they gave reliable results in cell viability analyses.
The presented method can be utilized in a wide range
of laboratory applications in cancer research.
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fraktal yapi analizi ve İMKB’de bir uygulama. Atatürk.
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