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Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous type of cancer and current treatment options limit successful therapy 
outcomes. Photodynamic therapy (PDT) has attracted attention as an alternative approach in the treatment of different types 
of cancer. However, there is no study in the literature regarding the effect of PDT on HCC, in vitro. Therefore, the aim of 
this study was to determine the cytotoxic and apoptotic effects of 5-aminolevulinic acid (5-ALA)/PDT on two different HCC 
cell lines in terms of hepatitis B virus (HBV) infection. The therapeutic effects of 5-ALA-based PDT on HCC cell lines 
(Huh-7 and SNU-449) were evaluated by PpIX-fluorescence accumulation, WST-1 analysis, Annexin V analysis, and acridine 
orange/ethidium bromide staining after irradiation with different light doses through diode laser. The results showed that 
1 mM 5-ALA displayed higher PpIX fluorescence in the SNU-449 cell line than the Huh-7 cell line after 4 h of incubation. 
After irradiation with different light doses (3, 6, 9, and 12 J/cm2), 5-ALA significantly reduced the proliferation of HCC cells 
and induced apoptotic cell death (p < 0.01). Furthermore, SNU-449 cells were more responsive to 5-ALA-based PDT than 
Huh-7 cells due to possibly its molecular features as well as viral HBV status. Our preliminary data obtained from this study 
may contribute to the development of 5-ALA/PDT-based treatment strategies in the treatment of HCC. However, this study 
could be improved by the elucidation of the molecular mechanisms of cell death induced by 5-ALA/PDT in HCC cells, the 
use of different photosensitizer, light sources, and in vivo experiments.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
types of cancer worldwide that ranks fourth among cancer-
related causes of death. Several treatment options, includ-
ing curative resection, liver transplantation, radiofrequency 

ablation, chemoembolization, radioembolization, and 
systemic targeted agents, are available for HCC patients. 
Despite significant improvements in surgical and regional 
treatments over the past few years, recurrent disease remains 
a significant concern. Therefore, the success of HCC treat-
ment depends on tumor stage, patient performance status, 
liver function reserve, and hepatitis B virus (HBV) infection, 
which is the main cause of HCC and requires multidiscipli-
nary new approaches [1–5].

Photodynamic treatment (PDT) is a clinically approved, 
minimally invasive procedure and exerts cytotoxic activity 
against malignant cells. PDT involves applying a photosen-
sitizer (PS) followed by irradiation at wavelengths within the 
PS absorption band. In this mechanism, PS absorbs photons 
from the light source and extracts electrons from the outside. 
During this process, free radicals, also known as singlet oxy-
gen, damage the cellular structures through oxidation with-
out recycling. 5-Aminolevulic acid (5-ALA) is a commonly 
used PS for PDT applications. However, 5-ALA is not light 
sensitive on its own. This sensitivity is achieved through 
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protoporphyrin IX (PpIX) within the mitochondria. Some 
clinical studies show that PDT can improve the survival rate 
and the quality of life for patients with non-surgical cancer 
[6–9].

In general, oxygen, light, and photosensitizer alone have 
no toxic effect on cancer and normal cells. With the PDT 
therapy, combined photochemical reactions result in the 
death of the targeted cell by different signaling pathways 
and cell death types, including apoptosis, necrosis, and 
autophagy. The type of cell death in PDT is regulated by the 
type, the physiochemical properties and concentration of PS, 
the position of the cell, the oxygen concentration, the wave-
length and intensity and source of light (laser light sources 
with monochrome wavelengths and non-polychromatic laser 
sources with broadband wavelengths), and the cell type. 
Laser light sources have advantages in light transmission 
for providing fiber optic equipment, limiting irradiation time 
due to monochromatic wavelength. Therefore, the effects of 
PDT on cancer cells are regulated by different parameter. For 
instance, PDT induces more apoptotic cells at lower light 
doses, whereas higher light doses can result in more necrotic 
cells [10, 11]. Therefore, the optimal conditions for each 
type of cancer should be identified for effective PDT treat-
ment. In this context, the aim of this study was to investigate 
the therapeutic role of 5-ALA based PDT in HCC in vitro in 
terms of HBV status.

Material and method

Cell culture

In this study, SNU-449 (ATTC® CRL-2234) infected with 
HBV cell line was obtained from the American Type Culture 
Collection (ATCC). The Huh-7 (ATTC ® HB-8065) cell 
line was gifted by Associate Professor Yasemin Eraç of the 
Department of Pharmacology at the Faculty of Pharmacy at 
Ege University.

The medium for the SNU-449 cell line was prepared 
in RPMI 1640 medium containing sodium bicarbonate 
(2.0 g/L) and L-glutamine (0.3 g/L) by adding 10% FBS and 
1% penicillin/streptomycin. For Huh-7 cell line, the DMEM 
medium was prepared by adding 10% FBS and 1% penicil-
lin/streptomycin. Huh-7 and SNU-449 cells were cultured 
in suitable media at 37 °C in an incubator with 5% carbon 
dioxide  (CO2).

5‑ALA application and cell light sensitization

5-Aminolevulinic acid hydrochloride (5-ALA, Sigma, 
A3785) was dissolved with water. The cells were seeded at 
a density of 2 ×  104 per well in a 96-well plate in appropriate 
medium and incubated for 24 h. After incubation, the cells 

were incubated at 37 °C for 4 h with freshly prepared 5-ALA 
at a concentration of 1 mM in DMEM without FBS. After 
the incubation, the medium was changed with fresh medium 
containing FBS and laser applications were performed. Con-
trol cells were incubated in fresh medium without 5-ALA 
administration and irradiation. Additionally, after incubating 
1 mM 5-ALA for 4 h, the intracellular PpIX levels before 
irradiation was observed with EVOS Cell Imaging System 
(Thermo Fisher Scientific, USA) at 628 ± 40 nm red filter 
and analyzed by Image J program.

Photodynamic treatment application

In the experiments, the wavelength of the laser light source 
was used at 635 nm [12]. Laser irradiation was applied using 
continuous wave (CW) mode at 3 J/cm2, 6 J/cm2, 9 J/cm2, 
and 12 J/cm2. The exposure time to laser light was 100, 200, 
300, and 400 s, respectively. Optical power verification was 
performed by power meter and spectrometer (PM100 and 
C series spectrometer, Thorlabs, Germany) for wavelength 
spectrum verification. The power output from the laser 
device was 30 mW/cm2.

Cell viability assay

The cytotoxic effects of 5-ALA on HCC cells were deter-
mined by WST-1 (BioVision, San Francisco, CA, ABD). 
For the WST-1 experiment, the cells were seeded on 96-well 
plates at 2 ×  104 cells in each well. After treatment with 
1 mM 5-ALA for 4 h, the laser irradiation at 3 J/cm2, 6 J/
cm2, 9 J/cm2, and 12 J/cm2 were performed. Following 24-h 
incubation, the WST-1 solution was added and incubated in 
the incubator for 45 min. After incubation, the absorbance 
was measured at 450 nm wavelength. The viability of the 
control group, which was not treated with 5-ALA, was con-
sidered 100% viable, and the viability rates of the irradiated 
cells were calculated as % compared to the control.

Annexin V analysis

To detect the apoptotic effect of 5-ALA on the cells after 
irradiation by the most effective irradiation doses (9 and 
12 J/cm2) according to WST-1 data, Annexin V analysis was 
performed. After the incubation with 1 mM 5-ALA for 4 h, 
the laser irradiation at 9 and 12 J/cm2 was performed. After 
24 h of incubation, the cells were removed with trypsin and 
centrifuged at 1500 rpm for 5 min. The supernatant was 
removed and the cell pellet was suspended in PBS and incu-
bated with 100 µL Muse® Annexin V and Dead Cell Assay 
Kit for 30 min at room temperature in the dark. Stained cells 
were analyzed in the Muse® Cell Analyzer (Merck Mil-
lipore, Germany).
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Acridine Orange/Ethidium Bromide staining

AO/EB staining was performed to evaluate the morphologi-
cal effect of 5-ALA on HCC cells. After the incubation with 
1 mM 5-ALA for 4 h, the laser irradiation at 9 and 12 J/cm2 
was performed. After the application, 1 mL of 4% paraform-
aldehyde was added to each well for fixation. After fixation, 
each well was washed three times with PBS. Then, AO/EB 
solution (100 mg/ml) was added to each well and incubated 
for 30 min in the dark. After staining, the cells were visu-
alized by the EVOS Cell Imaging System (Thermo Fisher 
Scientific, USA).

Statistical analysis

The GraphPad Prism 6.0 program was used for statistical 
analysis s. The differences between groups were assessed 
by One Way ANOVA (Post-hoc Tukey) analysis. p < 0.05 
was considered statistically significant. Experiments were 
repeated three times.

Results

Determination of the intracellular PpIX levels in HCC 
cell lines

Our results showed that the intracellular PpIX level consid-
erably increased in HCC cells treated with 1 mM 5-ALA for 
4 h compared with the control group (p < 0.01). The level 
of intracellular PpIX in cells was 22,559.35 ± 2858.5 and 
27,335.86 ± 2787.5 in Huh-7 and SNU-449 cells, respec-
tively, compared with control cells. Therefore, the amount of 
intracellular PpIX level was significantly higher in SNU-449 
cells compared to Huh-7 cells (Fig. 1).

Evaluation of the cytotoxic effects of 5‑ALA/PDT 
on HCC cells

The WST-1 analysis was performed to determine the cyto-
toxic effect of 5-ALA on the cells after laser irradiation 
with 3, 6, 9, and 12 J/cm2 as summarized in Fig. 2. After 
laser irradiation with 3, 6, 9, and 12 J/cm2 in Huh-7 cells, 
the cell viability reduced to 79.56 ± 0.35%, 79.96 ± 1.22%, 
65.00 ± 3.32%, and 71.85 ± 3.39%, respectively (p < 0.01; 
Fig.  2A). Furthermore, the viability of SNU-449 cells 
significantly reduced to 85.39 ± 2.11%, 77.53 ± 1.19%, 
63.78 ± 1.87%, and 59.46 ± 1.55% at 3, 6, 9, and 12 J/cm2 
laser irradiation, respectively. As a result, 5-ALA treatment 
resulted in a significant cytotoxic effect on HCC cell lines. 
Additionally, the most cytotoxic effects of 5-ALA were 
observed at 12 J/cm2 in SNU-449 cells.

Apoptotic effects of 5‑ALA on HCC cell lines 
after laser irradiation

Annexin V analysis was performed to determine the apop-
totic effect caused by laser radiation in HCC cells treated 
with 5-ALA, and the obtained findings were summarized 
in Fig. 3. The apoptotic death in the cells induced by 1 mM 
5-ALA significantly increased after the laser irradiation at 
9 and 12 J/cm2 in HCC cells (p < 0.01) compared with the 
control. The total apoptotic cell death rates increased to 
34.66 ± 1.04% and 26.24 ± 1.09, at 9 and 12 J/cm2, respec-
tively, in the Huh-7 cell line (p < 0.01). On the other hand, 
34.79 ± 1.25% and 41.31 ± 1.40% of the total apoptotic cell 
death were detected at 9 and 12 J/cm2, respectively, in SNU-
449 cells. 1 mM 5-ALA treatment caused more apoptotic 
death in SNU-449 cells than Huh-7 cells at 12 J/cm2 laser 
irradiation. For this reason, SNU-449 cells were more sensi-
tive to 5-ALA-based PDT than Huh-7 cells.

The morphological changes in HCC cell lines 
after treatment with 5‑ALA/PDT

The effect of 5-ALA-based PDT on HCC cell morphology 
was evaluated by AO/EB staining (Fig. 4). In general, DNA 
fragmentation, chromatin condensation, cell shrinkage, and 
nuclear fragmentation were observed in HCC cells treated 
with 1 mM 5-ALA after irradiation with 9 and 12 J/cm2 
compared to control groups. Additionally, more pronounced 
nuclear fragmentation was observed in SNU-449 cells com-
pared to Huh-7 cells.

Discussion

In the current study, we assessed the anticancer activity of 
5-ALA mediated PDT in HCC cells and analyzed the dif-
ferences between two HCC cells in response to 5-ALA-PDT 
treatment in terms of HBV status. Our preliminary findings 
demonstrated that 5-ALA treatment inhibited the prolifera-
tion of HCC cells after irradiation with particularly 9 and 
12 J/cm2 through apoptosis. Additionally, SNU-449 cells 
were more sensitive to 5-ALA than Huh-7 cells due to HBV 
status and its molecular features. Huh-7 cell line is an epi-
thelial-originated, aggressive, resistant, and heterogeneous 
group, whereas the SNU-449 cell line is a mesenchyme cell 
line [13]. Additionally, Huh-7 cells have a point mutation 
in the p53 gene. p53 is a transcription factor that regulates 
the cell cycle and thus, p53 mutations are observed in dif-
ferent types of cancer. Furthermore, CDKN2A gene dele-
tion is identified in SNU-449 cells. The CDKN2A codes 
p16 (INK4A) and p14 (ARF) proteins, which are the INK4 
family member, and thus suppress the cell cycle [14–16]. 
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Therefore, these molecular features could affect the response 
of HCC cells to 5-ALA-mediated PDT.

PDT is based on PS and causes cell death in the presence 
of oxygen. Additionally, the wavelength used is depend-
ent on the PS. In the literature, the therapeutic effects of 
5-ALA/PDT on the treatment of different types of cancer 
(breast, prostate, pancreas, colon) have been investigated 
[17–20]. However, there is no study exploring the antican-
cer effects of 5-ALA/PDT on HCC cells in terms of HBV 
status. Therefore, we firstly investigated the intracellular 
PpIX accumulation and then irradiated HCC cells with a 
diode laser to assess the therapeutic potential of PDT in 
HCC treatment. In our study, the intracellular PpIX lev-
els were significantly increased after treatment with 1 mM 

5-ALA for 4 h. Additionally, the level of PpIX was higher 
in SNU-449 cells than Huh-7 cells. In our previous study, 
the intracellular level of PpIX was higher in MDA-MB-231 
triple negative breast cancer cells than MCF-7 Luminal A 
breast cancer cells [21]. Additionally, Tsai et al. (2004) state 
that the intracellular PpIX level is lower in MCF-7/ADR-
resistant cells than MCF-7 breast cancer cells [22]. Morito 
et al. (2019) note that the level of PpIX is different in the 
subtypes of breast cancer cells [23]. Therefore, the conver-
sion of 5-ALA to PpIX could be different according to cell 
types and subtypes.

5-ALA-based PDT has been approved for clinical use in 
the USA and Europe to treat solar keratosis and skin can-
cer [24–26]. In this context, it is essential to determine the 

Fig. 1  Intracellular PpIX levels 
in 1 mM 5-ALA treated Huh-7 
and SNU-449 cells after 4 h 
incubation. A Images of intra-
cellular PpIX amount in HCC 
cells compared with control 
groups. B Statistical compari-
son of the level of intracellular 
PpIX fluorescence in the cells 
(p < 0.01**) (The scale bar is 
100 μm)

Control 1 mM 5-ALA

Huh-7

SNU-449

A

B
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application protocol of PDT for each cancer type. In pre-
clinical studies, the cytotoxic, apoptotic, and/or autophagic 
effects of 5-ALA/PDT on particularly different cancer cells 
are determined [21, 27–29]. Our previous findings show that 
the effects of 5-ALA on different sub-types of breast cancer 
are different [21]. According to WST-1 results, the prolif-
eration of breast cancer cells is significantly decreased at 9 
and 12 J/cm2 laser irradiation and 1 mM 5-ALA treatment is 
more effective in MDA-MB-231 cells compared to MCF-7 
cells [21]. In another study, 0.1–4 mM 5-ALA treatment 
at 5 J/cm2 laser irradiation reduces the viability of HeLa 
cervical cancer cell, and the most effective concentration of 
5-ALA is 1 mM for the treatment of cervical cancer [24]. In 
the study of Osaki et al. (2017), KLN205 lung cancer cells 
are treated with 0.6, 1.2, 2.5, and 5 mM 5-ALA for 4 h and 
irradiated with 630 nm laser (1.5 and 10 J/cm2). They show 

that 5-ALA significantly reduces the viability of the cells 
and the efficacy of 5-ALA is higher in the presence of met-
formin [28]. Abo-Zheid et al. (2018) evaluate the cytotoxic 
effect of 0.5 and 1 mM 5-ALA on HepG2 and MCF-7 cells 
by irradiating a He–Ne laser for 4 min at 60 J/cm2 power 
density using 633 nm wavelength. According to their find-
ings, the survival rate is considerably decreased in both cell 
lines due to the increasing concentration of 5-ALA [29]. In 
our study, the viability of both HCC cell lines remarkably 
reduced after 6, 9, and 12 J/cm2 laser irradiation (p < 0.01). 
However, the response of SNU-449 cells to 5-ALA/PDT was 
higher than Huh-7 cells. Therefore, the response of HCC 
cells to 5-ALA mediated PDT was different, and these dif-
ferences could be related to the different characteristics of 
the cells and HBV status.

Furthermore, several studies investigate the apop-
totic effect of 5-ALA/PDT on different cancer types in 
the literature [21, 28]. As a result of stimulation with red 
(600–740 nm) and green light (450–580 nm), hydroxyl radi-
cals cause apoptotic cell death by the production of ROS 
such as singlet oxygen, hydrogen peroxide, and superoxide 
formed by photochemical reaction [30, 31]. In our previ-
ous study, we found that 5-ALA-induced apoptotic death 
depends on the increasing power density and concentra-
tion of 5-ALA (p < 0.05) [21]. In the study of Osaki et al. 
(2017), the combination of 5-ALA/PDT and metformin 
cause autophagic death as well as apoptosis in lung cancer 
cells [28]. Additionally, several studies demonstrate that 
5-ALA treatment results in apoptosis in different types of 
cancer cells through increased the number of micronucleus 
in cells, the disrupted structure of the cell membrane, chro-
matin condensation, and the over-expression of Bax protein 
level [28, 29, 32]. Our findings showed that 5-ALA/PDT 
caused a significant apoptotic death in HCC cells and this 
death was more profound in SNU-449 cells compared to 
Huh-7 cells. Furthermore, 5-ALA-induced apoptosis was 
observed by AO/EB staining. Although the highest apop-
totic effect of 5-ALA on Huh-7 cells was determined at 9 J/
cm2 laser irradiation, 5-ALA treatment induced more apop-
tosis in SNU-449 cells at 12 J/cm2 laser irradiation. In this 
context, further studies should be performed to elucidate the 
molecular mechanism of apoptotic death induced by differ-
ent power densities.

Diode lasers are used as the most practical method for 
PDT for many applications due to less costly than previ-
ously used lasers. Since the laser is monochromatic, all 
waves are parallel to each other and can apply high energy 
even to a minimal area and thus laser as a light source 
is more effective for PDT applications. Additionally, the 
laser provides a greater penetration depth compared to 
LEDs [33]. Therefore, we used a diode laser system in 
this study and its efficacy for different irradiation was 
analyzed. However, the cytotoxic and apoptotic effects of 

Fig. 2  Results of WST-1 analysis of viability percentages of A Huh-7 
and B SNU-449 cells after laser irradiation with different power 
intensity (p < 0.01**)
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5-ALA on HCC cells changed in different laser irradiation. 
Therefore, the efficacy of different light sources (LEDs, 
etc.) on 5-ALA based PDT at different irradiation needs 
to further investigations.

Conclusions

In conclusion, we, for the first time, explored the cytotoxic 
and apoptotic effects of 5-ALA/PDT on HCC cell lines with 

Fig. 3  5-ALA treatment resulted 
in apoptotic cell death. A The 
results of Annexin V analysis in 
Huh-7 and SNU-449 cell lines 
(a) Control, (b) 9 J/cm2, and (c) 
12 J/cm2. B Statistical compari-
son of total apoptotic death rates 
in Huh-7 and SNU-449 cells 
(p < 0.01**)

b

Huh-7 SNU-449

a

c

A

B
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different properties in vitro. According to the obtained data, 
5-ALA treatment significantly suppressed the viability of 
the HCC cells and caused apoptotic death. Additionally, 
SNU-449 cells were more responsive to 5-ALA than Huh-7 
cells. Our preliminary data can contribute to developing new 
5-ALA/PDT-based treatment strategies in the treatment of 
HCC. However, further studies are required to elucidate 
the molecular mechanisms of cell death induced by 5-ALA 

in HCC cell lines and to determine the effects of different 
PS and light sources on the viability of HCC, in vitro and 
in vivo experiments.
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Fig. 4  The morphological 
changes of HCC cells after laser 
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