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1. Materials

All reagents and solvents were of reagent grade quality obtained from commercial
suppliers. The homogeneity of the products was tested in each step by TLC. The
solvents were stored over molecular sieves. All solvents were dried and purified as

described by Perrin and Armarego.!

2. Equipment

IR spectra were recorded on a Perkin Elmer Spectrum One FT-IR (ATR sampling
accessory) spectrophotometer, electronic spectra on Shimadzu UV-1280
spectrophotometer. 'H NMR and 3C NMR spectra were recorded on Agilent VNMRS
300 MHz and the spectrum was referenced internally by using the residual solvent
resonances (d = 7.26 for CDCIz in 'H NMR) and chemical shifts were reported
relative to MesSi as internal standard. Mass analyses were recorded on a Bruker
MALDI-TOF (Matrix-Assisted Laser Desorption/lonization-Time-Of-Flight mass,
Rheinstetten, Germany) spectrometer using alpha-cyano-4-hydroxy-cinnamic acid
(CHCA) and dithranol (DIT) as matrix materials. Elemental analyses were performed
in TUBITAK Marmara Research Centre. Fluorescence spectra were measured using
a Varian Eclipse spectrofluorometer using 1 cm path length cuvettes at room
temperature. Photo-irradiations were measured using a General Electric quartz line
lamp (300W). A 600 nm glass cut-off filter (Schott) and a water filter were used to
filter off ultraviolet and infrared radiations respectively. An interference filter (Intor,
700 nm with a bandwidth of 40 nm) was additionally placed in the light path before
the sample. Light intensities were measured with a POWER MAX5100 (Mol electron
detector incorporated) power meter. Bandelin Ultrasonic RK 100 H was used for

ultrasound irradiation.
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3. Characterization
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Figure S1. FT-IR spectrum of phthalonitrile compound 1.
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Figure S2. *H NMR spectrum of phthalonitrile compound 1 in CDCls.
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Figure S3. 3C NMR spectrum of phthalonitrile compound 1 in CDCla.
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Figure S4. FT-IR spectrum of metal-free phthalocyanine (2).
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Figure S5. The MALDI-TOF mass spectrum of metal-free phthalocyanine (2).
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Figure S6. FT-IR spectrum of gallium phthalocyanine (3).
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Figure S7. The MALDI-TOF mass spectrum of gallium phthalocyanine (3).
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Figure S8. FT-IR spectrum of indium phthalocyanine (4).
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Figure S9. The MALDI-TOF mass spectrum of indium phthalocyanine (4).

4. Photophysical and photochemical parameters

Fluorescence excitation and emission spectra were recorded on a Shimadzu
spectrofluorometer using a 1 cm path length cuvette at room temperature.
Fluorescence quantum yields (®r) are determined in DMSO by the comparative

method using equation 1.23

FxAgtq*n?
Fsta*A Mg

Op = Pp, 1)

where F and Fsw are the areas under the fluorescence emission curves of the
samples (4 and 5) and the standard, respectively. A and Asw are the respective
absorbances of the samples and standard at the excitation wavelengths,
respectively. n? and nZ, are the refractive indices of solvents used for the sample
and standard, respectively. Reference (unsubstituted) ZnPc (®r = 0.20)* was
employed as the standard in DMSO. The absorbance of the solutions at the
excitation wavelength ranged between 0.04 and 0.05. Both the samples and

standards were excited at the same wavelength.
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Singlet oxygen quantum yield (®a) determinations were carried out by using the
experimental set-up described in the literature.>" Typically, a 3 mL portion of the
respective unsubstituted zinc (ll) phthalocyanine (ZnPc) and the studied
phthalocyanine solutions (C= 1x10° M) containing the singlet oxygen quencher was
irradiated in the Q band region with the photo-irradiation set-up described in
references.®° Singlet oxygen quantum yields (®a) were determined in THF using the
relative method with unsubstituted zinc (lI) phthalocyanine (ZnPc) as a reference.
DPBF was used as the chemical quencher for singlet oxygen in DMSO. Equation 2

was employed for the calculations:

Std

Rx1
CI) — CI) Std abs (2)
A A Rstd labs

where ®3 is the singlet oxygen quantum yield for the standard unsubstituted zinc
(1) phthalocyanine. R and Rst are the DPBF photobleaching rates in the presence of
studied phthalocyanine compounds and standard, respectively. I, and IS{,‘Z are the
rates of light absorption by the studied phthalocyanine compounds and standard,
respectively. To avoid chain reactions induced by DPBF in the presence of singlet
oxygen, the concentration of quencher (DPBF) was lowered to ~5x10° M. Solutions
of sensitizers (C= 1x10°® M) containing DPBF were prepared in the dark and
irradiated in the Q band region using the photoirradiation setup. DPBF degradation at
417 nm was monitored. The light intensity 7.05 x 10*® photons s* cm was used for
@, determinations. The absorption band of DPBF is reduced by light irradiation
(Figure 3). For sono-photochemical studies, the sample (the compound+DPBF) was
monitored after each 10 s irradiation (5 s by light intensity of 7.05 x 101® photons s

cm2 and 5 s by ultrasound at a frequency of 35 kHz).

Photodegradation quantum yields were determined by the comparative method using

equation 3.

_ (Co—Cp)*V=Nyp
o I ps*S*t

Dy (3)

where Co and C: are the sample concentrations before and after irradiation

respectively, V is the reaction volume, Na is the Avogadro’s constant, S is the
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irradiated cell area, t is the irradiation time, I, is the overlap integral of the radiation
source light intensity and the absorption of the samples. A light intensity of 7.05 x
10% photons s cm2 and/or ultrasound at a frequency of 35 kHz was employed to

determine photodegradation was employed for ®x determinations.1°
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Figure S10. Absorption spectra of GaPc (3) in THF at different concentrations: 6 x10
6 (A), 3 x10®¢ (B), 1.5 x10° (C), 7.5 x107 (D), 3.25 x10°" (E) and 1.63 x10~" mol.dm-3
(F). Figure S10 shows the UV-vis spectra of GaPc (3) in THF at various
concentrations. The lack of aggregation was proved by absorption studies performed
at a range of concentrations. For the verification of the Lambert-Beer law, an analysis
of linear regression between the intensity of the Q-band and the concentration of the
GaPc (3) showed R? value. The Q-band strictly followed the Lambert-Beer law,
suggesting that it is essentially free from aggregation in THF.
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Figure S11. Emission spectra of the phthalocyanines (2-4) in DMSO.
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Figure S12. A typical spectrum for the determination of photodegradation of metal-
free phthalocyanine (2) in DMSO.

5. Theoretical calculations

Table S1. Computational results, gas phase//THF.

Compound Eo, A.U. Eo+ZPE, A.U. AE, E(HOMO/LUMO), AE, eV/
kcal/ A.U. TDDFT,
mol eV

B3LYP/6-31G*
2,A -3360.237506// | -3359.212222// | 0.0// | -0.16758/-0.09220// 2.05/
-3360.261201 -3359.236064 0.0 -0.17859/ -0.10418 | 2.02/1.882,
1.80°
2,3A -3360.202715// | -3359.180169// | 21.83// | -0.13272/-0.08334
-0.20823/ -0.12756//
-3360.226600 -3359.204304 21.71 -0.14602/ -0.09608
-0.21972/ -0.14020
3, 1A -5742.364802// | -5741.358695// | 0.0// -0.17164/ -0.09698// 2.03/ 11
-5742.390846 -5741.385189 0.0 -0.18328/ -0.10985 2.00/1.83%,
1.75°
3, %A -5742.328484/] | -5741.324834// | 22.79// | -0.13676/ -0.09255
-0.21805/ -0.13389//
-5742.356626 -5741.352933 21.47 -0.15050/ -0.10598
-0.22692/ -0.14656
B3LYP/Gen
4, 1A, -9536.632095// | -9535.627731// 0.0// -0.17353/ -0.09874// 2.041 1/
-9536.658298 -9535.654090 0.0 -0.18340/ -0.10969 2.01/1.83.2
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1.76°

4,3A, -9536.596048 | -9535.593975// | 22.62// | -0.13853/-0.09332
5i// -0.21812/ -0.13540//
-9536.623459 -9535.621520 | 21.86 -0.15044/ -0.10546
-0.22608/ -0.14678
4, A, -3821.248692 -3820.244581 -0.18382/-0.11037
B3LYP/
[In:SDD;
C,H,O,N,CI:
6-31G*]
B3LYP/6-311G(d,p)
2, A -3361.033976// | -3360.016073// | 0.0// | -0.17598/-0.10100// 2.04/ 11
-3361.059169 -3360.041319 0.0 -0.18668/ -0.11260 | 2.02/1.86%
2,%A -3360.998970// | -3359.983645// | 21.97// | -0.14187/-0.09192
-0.21722/ -0.13626//
-3361.025134 -3360.009778 21.36 -0.15460/ -0.10402
-0.22823/ -0.14834
3, 1A -5745.083911// | -5744.085517// | 0.0// | -0.18047/-0.10602// 2.03/ /1
-5745.113126 -5744.114750 0.0 -0.19106/-0.11778 | 1.99/1.82%,
3,°A -5745.047843// | -5744.051852// | 22.63// | -0.14599/-0.10140
-0.22685/ -0.14284//
-5745.078198 -5744.082075 | 21.92 -0.15881/-0.11392
-0.23552/ -0.15467
B3LYP/Genl
4,1A -9537.524414/] | -9536.527383// | 0.0// | -0.18239/-0.10775// 2.03/ /1
-9537.553624 -9536.556778 0.0 -0.19129/ -0.11765 2.00/
4,3A -9537.488638// | -9536.493771// | 22.45// | -0.14788/-0.10207
-0.22730/ -0.14433//
-9537.518602 -9536.523927 21.98 -0.15903/ -0.11297
-0.23480/ -0.15465
TD-B3LYP
bTD-wB97XD
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Table S2. TDDFT results for the compounds 2-4, implicit THF, TD-B3LYP//TD-

®B97XD.

Excited state

E, eV

A, NM

Oscillator strength,
f

Transition(s)

1.8811//
1.8008

659.11//
688.50

0.7216//
0.7517

HOMO — LUMO
HOMO — LUMO+1//
HOMO-9 —» LUMO
HOMO — LUMO
HOMO — LUMO+1

1.9121//
1.8307

648.43//
677.24

0.7187//
0.8129

HOMO-9 - LUMO
HOMO — LUMO
HOMO — LUMO+1//
HOMO — LUMO
HOMO — LUMO+1

2.7069//
3.3821

458.0//
366.59

0.0000//
0.2601

HOMO-4 - LUMO
HOMO-1 - LUMO
HOMO-1 - LUMO+1/
HOMO-9 — LUMO
HOMO-6 - LUMO
HOMO-3 - LUMO
HOMO-2 - LUMO
HOMO-2 - LUMO+1
HOMO-1 - LUMO+2

1.8258//
1.7471

679.05//
709.64

0.6460//
0.7123

HOMO — LUMO
HOMO — LUMO+1//
HOMO-13 - LUMO+1

HOMO — LUMO

1.8263//
1.7475

678.86//
709.51

0.6459//
0.7129

HOMO — LUMO
HOMO — LUMO+1//
HOMO-13 - LUMO+1
HOMO — LUMO+1

2.8047//
3.5592

442.06//
348.35

0.1314//
0.0003

HOMO-5 - LUMO
HOMO-5 - LUMO+1
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HOMO-3 —» LUMO
HOMO-2 —» LUMO
HOMO-1 - LUMO
HOMO-1 —» LUMO+1/
HOMO-7 - LUMO
HOMO-7 - LUMO+1
HOMO-6 - LUMO
HOMO-6 - LUMO+1
HOMO — LUMO+2
HOMO — LUMO+3

1.8345//
1.7553

675.83//
706.35

0.6611//
0.7301

HOMO — LUMO
HOMO — LUMO+1//
HOMO-13 - LUMO+1
HOMO — LUMO
HOMO — LUMO+1

1.8349//
1.7555

675.69//
706.25

0.6610//
0.7297

HOMO — LUMO
HOMO — LUMO+1//
HOMO-13 - LUMO+1
HOMO — LUMO
HOMO — LUMO+1

2.7725//
3.5280

447.20//
351.43

0.1280//
0.0032

HOMO-5 - LUMO
HOMO-3 - LUMO
HOMO-1 — LUMO//
HOMO-8 - LUMO+2
HOMO-7 - LUMO
HOMO-7 - LUMO+1
HOMO-6 - LUMO
HOMO-6 - LUMO+1
HOMO-5 - LUMO
HOMO-2 - LUMO+1
HOMO — LUMO+2
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Figure S13. Molecular orbitals from HOMO-4 to LUMO+4 for the compounds 2 (a),
3 (b), and 4 (c), calculated in the implicit THF with the B3LYP/6-31G* (B3LYP/Gen)
approach.
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Figure S14. Selected NBO charges (left) and plots of molecular electrostatic
potential (right) for the compounds 2 (a), 3 (b), and 4 (c), computed at the
B3LYP/6-31G* (B3LYP/Gen) level in the implicit THF.
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6. In vitro studies

Sonophotodynamic therapy (SPDT) uses the light of a particular wavelength and
sound of a particular frequency to activate sono-photosensitizers to generate reactive
oxygen species in the presence of molecular oxygen that lead to cancer cell death.
However, light or ultrasound alone did not produce a therapeutic effect.!! Various
doses of ultrasound or light applied alone did not affect the cell viability of MKN-28
gastric cancer cells (Figure S15).
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Figure S15. The cell viabilities of MKN-28 gastric cancer cells in (a) ultrasound alone
and (b) light alone groups.

The Muse Oxidative Stress Kit® was used to show the amount of intracellular ROS.
The assay provides the relative percentage of cells that are ROS negative and
positive in both adherent cells and cells in suspension on the Guava Muse Cell
Analyzer. A significant increase in intracellular ROS was found in the MKN-28 gastric
cancer cells after they were treated with PDT, SDT, and SPDT when compared to the

control (Figure S16).
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Figure S16. The quantitative measurement of cells undergoing oxidative stress was
evaluated by cytometry, using the Muse Oxidative Stress Kit. The graph showed the
positive ROS percentage in the different groups.

The effect of various concentrations of phthalocyanines (2,5,10,20,40 uM) and their
treatment groups (SDT, PDT, and SPDT) on cell viabilities of MKN-28 gastric cancer
cell lines was shown in Table S3. The 40 uM of GaPc (3) and InPc (4) reduced cell
viability of MKN-28 gastric cancer cells 1074.38t1 % and 54.63+2%, respectively
while the same concentration of HzPc (2) decreased cell viability of gastric cancer
cells to 95.22+1%. The results show that metal ions affect the cell viabilities of
phthalocyanines. Furthermore, treatments groups decreased the cell viabilities of
gastric cancer cells. After the ultrasound or /and light treatments, both Hz2Pc (2) and
GaPc (3) showed the cytotoxic effect to MKN-28 cancer cells with InPc (3) highly

cytotoxic at all concentrations.
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Table S3. Cell viability results of various concentration of H2Pc (2), GaPc (3) and
InPc (4) alone with only drug groups and phthalocyanines mediated treatment groups
(Mean = standard error of the mean)

Concent Only Drug SDT PDT SPDT
H,Pc GaPc InPc H,Pc GaPc InPc H,Pc GaPc InPc H,Pc GaPc InPc
UM
97.56 92.33 92.25 97.0 85,25 90,11 87,56 87,75 79.0 86,22 84,75 74.0
2
+3 +3 +3 +3 +3 +2 +4 +4 *2 +4 *2 +1
97.0 87.0 82.56 96.88 80,5 83,22 85,78 83,25 68.75 81.0 81,5 65.5
5
+3 +3 +1 +3 +4 +1 4 +3 +3 +3 +3 +2
96.89 85.75 80.0 96,11 76,38 78,11 84,89 79,25 65.0 80,89 73,75 58,67
10
+2 +3 +1 +3 +2 +2 4 +3 +1 +2 +2 +3
96.11 76.0 76.63 94,33 73,13 74.85 82,56 72.57 51.28 76,11 69,88 41.0
20
+1 +3 +3 +2 +2 +3 +2 +3 +2 +2 +3 +2
95.22 74.38 54.63 93.38 72,88 49,44 80,89 71.5 47.0 74,33 67,63 374
40
+1 +1 +2 +3 +1 +1 +2 +2 +1 +1 +2 +2

Photodynamic therapy (PDT), sonodynamic therapy (SDT) and sonophotodynamic
therapy (SPDT) demonstrate their effects by generating ROS that lead to cell death.
Therefore, ROS level is an important parameter to evaluate the effects of the
treatments. InPc (4) mediated photo-, sono-, sonophoto-dynamic therapies
significantly increase the ROS production on MKN28 gastric cancer cells (Figure
S17). When the results are examined, it is seen that ultrasound and light alone do not
have a significant difference compared to the control. After adding the InPc (4), it is
seen that the light and ultrasound applications have a significant difference compared

to the control.
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Figure S17. The percentage of ROS in the application groups. P values equal or
less than 0.05 were considered as statistically significant versus untreated control (*p
<; 0.05, **p<; 0.01, **p <; 0.001, ****p<; 0.0001).
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