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Abstract
In this study, fractional order form of a chaotic system based on a two degrees of freedom nonlinear mechanical system is

considered for the first time in the literature. Firstly, the state variables of the fractional order chaotic attractor are obtained

numerically with Grünwald–Letnikov (GL) method. Circuit implementation of the fractional order chaotic attractor is

carried out based on the approximated the transfer function of fractional integration. Moreover, a PRNG is designed using

the LSB of the state variables. The NIST statistical results of designed PRNG shows that it has adequate randomness. Also,

an audio encryption application is realized with the designed PRNG. The performance analysis of the encryption appli-

cation shows that the designed PRNG can be used in other engineering fields like data security.

Keywords Chaos � Fractional order systems � RNG � Electronic circuits � Mechanical systems � Two degrees of freedom

1 Introduction

Chaos and chaos-based applications have become one of

the most popular subjects of the literature in the recent

years. Chaos or chaotic systems have been employed on

many different engineering areas such as communication

[1], image processing [2], DC-DC converters [3], fuzzy

logic [4], control [5], optimization [6] and especially ran-

dom number generations [7, 8] and data encryption [9, 10].

The reason why chaos is usually preferred in random

number generations and data encryption is that chaotic

signals are aperiodic, noise like signals and difficult to

predict.

Most of the chaotic systems used in the literature are

purely mathematical which do not model a physical system

or phenomenon. However, some nonlinear physical sys-

tems may exhibit chaotic behaviour for certain system

parameters’ values and initial conditions. In the literature,

there are studies where physical system models were used

and analysed [11–13]. For example, non-linear mechanical

systems were used in studies [14, 15]. In these studies,

chaotic behaviour was analysed by applying non-linear

inputs to the systems. In this regard, a chaotic system

derived from an actual physical system is considered in this

study. The chaotic system used in the study models a two

degrees of freedom nonlinear mechanical system and given

in [16].

Chaotic systems can be categorized as integer order and

fractional order chaotic systems. In the integer order

chaotic systems, the order of the derivatives are integer

numbers whereas in the fractional order chaotic systems,

the order of the derivatives can be any real positive num-

ber. In the literature, there is a great number of studies

which involve integer order chaotic systems and their

applications. On the other hand, fractional order chaotic

systems have attracted great attention in the recent years

because the fractional order systems have higher nonlin-

earity and can exhibit more complex dynamical behaviour

than integer order systems.

In this paper, the fractional order form of the chaotic

system obtained from a two degree of freedom nonlinear

mechanical system is studied. To the best of author

knowledge, the fractional order chaotic system based on an

two degrees of freedom nonlinear mechanical system is

never studied in the literature. The state variable of the

fractional order system numerically calculated with a GL
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fractional order derivative definition-based algorithm.

From calculated values of the state variables of the frac-

tional order chaotic system pseudo random numbers are

generated. Then, the NIST 800-22 statistical tests [17] are

performed on the generated random numbers to assess the

randomness of the generated numbers. Later, as an engi-

neering application, an audio encryption application is

carried out with the generated random numbers. Moreover,

the circuit realization of the fractional order chaotic system

is carried out.

The paper is so organized that, Sect. 2 provides Two

Degrees of Freedom Nonlinear Mechanical System, Sect. 3

contains Fractional Order Chaotic Attractor, Sect. 4 con-

tains Circuit Implementation of the Fractional Order

Chaotic Attractor, Sect. 5 contains PRNG Implementation

and Audio Encryption Applications, and Sect. 6 offers

Conclusion.

2 Two degrees of freedom nonlinear
mechanical system

In this section, the chaotic system derived from the

mechanical system is mentioned. The two degrees of

freedom nonlinear mechanical system with a nonlinear

spring (k2) is given in Fig. 1. The function that defines the

nonlinear spring k2 is given in (1).

fk2ðtÞ ¼ k2½xðtÞ�2 ð1Þ

Using the function given in (1) , the mathematical

expression of the system given in Fig. 1 is obtained as in

(2) [18]

m1 €x1ðtÞ þ b1 _x1ðtÞ þ k1x1ðtÞ þ k2½x1ðtÞ � x2ðtÞ�2 ¼ 0

m2 €x2ðtÞ þ b2 _x2ðtÞ þ k2½x2ðtÞ � x1ðtÞ�2 ¼ f ðtÞ
ð2Þ

The equation system given in (2) has two second order

nonlinear differential equations. The equation system can

be expressed as a 4D differential equation system by using

state variables. Moreover, the order of the differential

equations becomes the first order by using state variables.

As a first step, to move the system to state space, the

mathematical model of the system rearranged as in (3) and

the state variables given in (4).

€x1ðtÞ ¼ � b1
m1

_x1ðtÞ �
k1
m1

x1ðtÞ �
k2
m1

½x1ðtÞ � x2ðtÞ�2

€x2ðtÞ ¼
1

m2

f ðtÞ � b2
m2

_x2ðtÞ �
k2
m2

½x2ðtÞ � x1ðtÞ�2
ð3Þ

x ¼ x1ðtÞ; y ¼ x2ðtÞ; z ¼ _x1ðtÞ; w ¼ _x2ðtÞ ð4Þ

Using (3) and (4) the system given in (2) can be redefined

as in (5).

_x ¼ z

_y ¼ w

_z ¼ � b1
m1

z� k1
m1

x� k2
m1

ðx� yÞ2

_w ¼ 1

m2

f ðtÞ � b2
m2

w� k2
m2

ðy� xÞ2

ð5Þ

Now, the system parameters can be defined as follows:

b1
m1

¼ a;
k1
m1

¼ b;
k2
m1

¼ q;
b2
m2

¼ r;
k2
m2

¼ f ð6Þ

Since the applied function is a unit step function the term
1
m2
f ðtÞ can be defined as a separate system parameter.

f ðtÞ
m2

¼ c ð7Þ

When the defined parameters given in (6) and (7) are

substituted in (5), the equation system can be expressed as

in (8)

_x ¼ z

_y ¼ w

_z ¼ �az� bx� qðx� yÞ2

_w ¼ c� rw� fðy� xÞ2

ð8Þ

The system given in (8) will exhibit chaotic behaviour for

certain parameter and initial condition values and the

fractional form of the system will be discussed in the next

section.

3 Fractional order chaotic attractor

In this section, fractional order form of the system in (8) is

given. To study fractional order systems, fractional order

derivative or integral operator must be defined. There areFig. 1 A two degrees of freedom nonlinear mechanic system
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many fractional order derivative or integral definitions in

the literature. The most common used ones are the Rie-

mann–Liouville (RL), Caputo and Grünwald–Letnikov

(GL) definitions. The RL fractional order derivative defi-

nition is [19]

RL
aD

q
t f ðtÞ ¼

1

Cðn� qÞ
dn

dtn

Z t

a

f ðsÞ
ðt � sÞq�nþ1

ds ð9Þ

The Caputo fractional order derivative definition is [19]

C
aD

q
t f ðtÞ ¼

1

Cðn� qÞ

Z t

a

f ðnÞðsÞ
ðt � sÞq�nþ1

ds ð10Þ

and the GL fractional order derivative is [19]

GL
aD

q
t f ðtÞ ¼

1

hq

Xðt�aÞ=h

i¼0

cif ðt � ihÞ ð11Þ

where ci is the ith binomial coefficient and it is calculated

as

c0 ¼ 1; ci ¼
�
1� qþ 1

i

�
ci�1; i ¼ 1; 2; . . . ð12Þ

In all the equations above D is the fractional order

derivative operator, q is the fractional order, a is the initial

value, C is the gamma function, n is the smallest integer

greater than fractional order q and h is the step size. In this

study, GL definition is employed for the numerical solution

of the fractional order chaotic system.

The fractional form of the system (8) is given in (13)

dqx

dtq
¼ z

dqy

dtq
¼ w

dqz

dtq
¼ �az� bx� qðx� yÞ2

dqw

dtq
¼ c� rw� fðy� xÞ2

ð13Þ

Here fractional order is selected as q ¼ 0:99, the system

parameters are set as

a ¼ 1; b ¼ 12; c ¼ 1:2; r ¼ 8; f ¼ 25; q ¼ 25, and ini-

tial conditions are x0 ¼ y0 ¼ z0 ¼ w0 ¼ 0. For these val-

ues, time series of the fractional order system is given in

Fig. 2 and phase portraits of the fractional order chaotic

system is given in Fig. 3. As seen in these figures, frac-

tional order chaotic system exhibits chaotic behaviour for

the specified parameter and initial condition values.

Also, Lyapunov exponents analysis is performed to

show the fractional order system exhibits chaotic behaviour

for the given parameter and initial condition values. The

Fig. 2 The time series of the

fractional order chaotic system

for the fractional order

q ¼ 0:99, the system parameters

a ¼ 1; b ¼ 12; c ¼ 1:2; r ¼
8; f ¼ 25; q ¼ 25 and initial

conditions are

x0 ¼ y0 ¼ z0 ¼ w0 ¼ 0
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number of Lyapunov exponents of a system equals to that

of system dimension. For a 4D system to show chaotic

behaviour, two of the obtained exponents must be negative,

one of them must be positive, and the last one must be zero.

For the system parameters

a ¼ 1; b ¼ 12; c ¼ 1:2; r ¼ 8; f ¼ 25; q ¼ 25, and ini-

tial conditions x0 ¼ y0 ¼ z0 ¼ w0 ¼ 0, the Lyapunov

exponent spectrum with respect to the fractional order q is

given in Fig. 4. As seen in Fig. 4, the system exhibits

chaotic behaviour for the values of the fractional order q

are in between 0.5 and 1.

4 Circuit implementation of the fractional
order chaotic attractor

In this section, circuit implementation of the fractional

order chaotic system is given. To realize circuit imple-

mentation of the fractional order chaotic system a

Fig. 3 The phase portraits of the fractional order chaotic system for the fractional order q ¼ 0:99, the system parameters

a ¼ 1; b ¼ 12; c ¼ 1:2; r ¼ 8; f ¼ 25; q ¼ 25, and initial conditions are x0 ¼ y0 ¼ z0 ¼ w0 ¼ 0
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fractional order integrator circuit is needed. However,

fractional order integrator circuit cannot be realized with

analog discrete components directly. To overcome this

setback, approximated transfer function of fractional order

integrator is used. Since this problem is solved with

approximated transfer function, the fractional integration is

handled in frequency domain.

Let f(t) a function defined in time domain and F(s) to be

the Laplace transform of f(t). Then, the Laplace transform

of fractional-order integral of f(t) is

1

sq
FðsÞ ð14Þ

where q is the fractional order of the integration [20]. Then,

the transfer function of the fractional order integrator is

1

sq
ð15Þ

This transfer function cannot be realized directly with

analog discrete components. The bode plot of the transfer

function given in (15) has slope of �20q dB/dec. Charef

et.al [21] approximate this bode plot as zig-zag lines which

have slopes of 0 dB/dec and �20 dB/dec. The approxi-

mated the transfer function is [21]

1�
1þ s

pt

�q �
QN�1

i¼0

�
1þ s

zi

�
QN

i¼0

�
1þ s

pi

� ð16Þ

where pt is the corner frequency (or 1=pt is the relaxation

time), zi and pi are the zeros and poles of the approximated

transfer function respectively and are calculated as

p0 ¼ pt10
y=20q

zi ¼
�
10y=10qð1�qÞ�i10y=10ð1�qÞp0

pi ¼
�
10y=10qð1�qÞ�ip0

ð17Þ

Here y is the maximum error in dB between the actual and

the approximated lines. The value of N given in Eq. 16 is

calculated as [21]

N ¼ Integer

�
log

�
wmax

p0

�
y

10qð1�qÞ

�
þ 1 ð18Þ

In this paper, the fractional order is q ¼ 0:99, the maxi-

mum error y ¼ 0:3 dB, the corner frequency pt ¼ 0:01 rad/

s, the maximum frequency wmax ¼ 100 rad/s. With these

values the approximated transfer function of the fractional

order (q ¼ 0:99) integrator becomes

1:137s2 þ 12640sþ 130700

s3 þ 11920s2 þ 132300sþ 1369
ð19Þ

This transfer function can be realized with analog discrete

components. The realized fractional order integrator for

q ¼ 0:99 is given in Fig. 5 with normalized component

values.

However, the component values in Fig. 5 are not prac-

tical. As a next step, magnitude scaling process is applied

to the fractional order integrator. Magnitude scaling is a

process in which all the impedances in a network are scaled

with the same scaling factor so that the transfer function of

the network remains the same. For magnitude scaling,

scaling factor is selected as km ¼ 4� 105. After magnitude

scaling process, frequency scaling process is applied to the

integrator circuit. Frequency scaling is the process of

shifting the frequency response of a network up or down

the frequency axis while leaving the impedance the same.

For an RC network, the value of capacitors decreases with

the scaling factor while that of resistors remain unchanged

in frequency scaling process. Frequency scaling factor is

selected as kf ¼ 2500. The component values after apply-

ing both magnitude and frequency scaling processes are

given in Fig. 6.

As it is seen in Fig. 2, the amplitude values of the state

variable of the fractional order chaotic system are very low.

The amplitude of the state variables x, y, z and w is

between 0.2 and 1. Thus, the state variables of the system

are firstly scaled up to increase their amplitude values.

After scaling process, the electronic circuit of the fractional

order chaotic system is simulated in ORCAD-PSpice.

Then, the fractional order chaotic system is realized with

real electronic circuit components and the phase portraits

of the system is obtained via an oscilloscope.

The state variable x is scaled up by the factor of 20, the

state variable y is scaled up by the factor of 25, the state

variable z is scaled up by the factor of 5, and the state

variable w is scaled up by the factor of 15. For the state

variable scaling process, let X ¼ 20x, Y ¼ 25y, Z ¼ 5z, and

W ¼ 15w and then the scaled state variables X, Y, Z, andW

is substituted in (13), the fractional order chaotic system

becomes

dqx

dtq
¼ Z=5

dqy

dtq
¼ W=15

dqz

dtq
¼ �aZ=5� bX=20� qðX=20� Y=25Þ2

dqw

dtq
¼ c� rW=15� fðY=25� X=20Þ2

ð20Þ

Since X ¼ 20x, Y ¼ 25y, Z ¼ 5z, and W ¼ 15w, the rela-

tion given in (21) can be written for the fractional order

derivatives
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dqX

dtq
¼ 20

dqx

dtq

dqY

dtq
¼ 25

dqy

dtq

dqZ

dtq
¼ 5

dqz

dtq

dqW

dtq
¼ 15

dqw

dtq

ð21Þ

By combining (20) and (21) the scaled fractional order

chaotic system can be written as

dqX

dtq
¼ 20Z=5

dqY

dtq
¼ 25W=15

dqZ

dtq
¼ �5aZ=5� 5bX=20� 5qðX=20� Y=25Þ2

dqW

dtq
¼ 15c� 15rW=15� 15fðY=25� X=20Þ2

ð22Þ

Finally, the scaled fractional order chaotic system will be

Fig. 4 Lyapunov exponent

spectrum of the fractional order

chaotic system with respect to

the fractional order q

Fig. 5 Normalized fractional order integrator circuit for the fractional

order is q ¼ 0:99, the maximum error y ¼ 0:3 dB, the corner

frequency pt ¼ 0:01 rad/s, and the maximum frequency wmax ¼ 100

rad/s

Fig. 6 The fractional order integrator circuit after applying magnitude

and frequency scaling processes. (The fractional order is q ¼ 0:99, the
maximum error y ¼ 0:3 dB, the corner frequency pt ¼ 25 rad/s, and

the maximum frequency wmax ¼ 250 krad/s)
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Fig. 7 Electronic circuit implementation of the fractional order chaotic system
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dqX

dtq
¼ 4Z

dqY

dtq
¼ 5W=3

dqZ

dtq
¼ �aZ=5� bX=4� 5qðX=20� Y=25Þ2

dqW

dtq
¼ 15c� rW � 15fðY=25� X=20Þ2

ð23Þ

The electronic circuit correspond to the scaled system

given in (23) is shown in Fig. 7. The circuit contains both

passive and active elements which are resistors, capacitors,

operational amplifiers (OPAMPs) and analog multiplier

integrated circuits (ICs). The circuit is realised for

parameter values

a ¼ 1; b ¼ 12; c ¼ 1:2; r ¼ 8; f ¼ 25; q ¼ 25, and ini-

tial conditions are x0 ¼ y0 ¼ z0 ¼ w0 ¼ 0.

The active elements used in the circuit are OPA404 Op-

amps and the AD633 analog multiplier ICs. The values of

the passive elements as follow: R1 ¼ R5 ¼ R9 ¼ R19 ¼
2:5X;R2 ¼ R6 ¼ R10 ¼ R20 ¼ 2:58 kX;R3 ¼ R7 ¼ R11 ¼
R21 ¼ 38:2 MX;R4 ¼ R17 ¼ R18 ¼ R23 ¼ R26 ¼ 100 kX;
R8 ¼ 239:5kX;R12 ¼ 200 kX;R13 ¼ 80 kX;R14 ¼ 128 kX;
R15 ¼ 133:33 kX;R16 ¼ 400 kX;R22 ¼ 42:66 kX;R24 ¼
26:66 kX;R25 ¼ 66:66 kX;R27 ¼ 50 kX;R28 ¼ 33:33 kX;
and C1 ¼ C4 ¼ C7 ¼ C10 ¼ 0:77 pF, C2 ¼ C5 ¼ C8 ¼ C11

¼ 0:72 pF and C3 ¼ C6 ¼ C9 ¼ C12 ¼ 0:99 nF.

The time series and the phase portraits of the scaled

fractional order chaotic system obtained from ORCAD-

PSpice simulation are given in Figs. 8 and 9, respectively.

The time series and the phase portraits shown in Figs. 2

and 3 are very similar to the time series and the phase

portraits shown in Figs. 8 and 9. This shows that the

scaling processes are correctly performed. Moreover, the

Fig. 8 The time series of the scaled fractional order chaotic system obtained in ORCAD-PSpice for the fractional order q ¼ 0:99, the system

parameters a ¼ 1; b ¼ 12; c ¼ 1:2; r ¼ 8; f ¼ 25; q ¼ 25, and initial conditions are x0 ¼ y0 ¼ z0 ¼ w0 ¼ 0
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phase portraits obtained from real circuit implementation

are given in Fig. 10. The oscilloscope results shown in

Fig. 10 and the simulation results shown in Fig. 9 are very

similar to each other.

5 Engineering applications

In this section, pseudo random number generator (PRNG)

based on the fractional order chaotic system and an audio

encryption application with the generated random numbers

are presented.

5.1 PRNG implementation

Random number generators (RNGs) are used in many

different engineering fields such as numerical analysis,

game theory, statistics, simulation and especially encryp-

tion and data security. One of the most important factors in

data security and encryption applications is the randomness

of the keys. Since chaotic signals are aperiodic, noise like

signals and difficult to predict, it is possible to design

RNGs based on chaotic system which will have sufficient

randomness for encryption applications. In this section,

design steps of chaos based RNG, and its NIST-800-22 test

results are presented. The block diagram of PRNG design

is given in Fig. 11. In the PRNG design, the continuous

Fig. 9 The phase portraits of the scaled fractional order chaotic system obtained from ORCAD-PSpice for the fractional order q ¼ 0:99, the
system parameters a ¼ 1; b ¼ 12; c ¼ 1:2; r ¼ 8; f ¼ 25; q ¼ 25, and initial conditions are x0 ¼ y0 ¼ z0 ¼ w0 ¼ 0
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time fractional order chaotic system is discretized with GL

algorithm as a first step. Then, the numerically calculated

state variables with GL algorithm are converted from

floating point format into binary format. Then, the last least

significant bit (LSB) of every converted binary number is

selected. Since there are four state variables, in each iter-

ation total 4 bits are selected and added to the bit series.

When the total bit number of the array is reached to a

million, the NIST tests can be performed (The NIST-800-

22 test suit require a bit series consists of one million bits).

The NIST-800-22 statistical tests consist of 16 different

tests. If the bit series fail even one of any NIST-800-22

tests, the RNG design process must be redone by changing

system parameters and/or initial conditions.

The results of NIST-800-22 statistical tests are assessed

according to the defined P value. If the predetermined P

value is 0.001, the resultant P values must be greater than

or equal to predefined value 0.001 (P� 0:001) to pass the

test successfully for all the 16 tests. The results of the NIST

800-22 tests are given in Table 1 for the designed PRNG.

As it is seen in Table 1, the designed PRNG has passed all

the 16 statistical tests successfully. The generated numbers

can be used in applications that need high security like

encryption since they passed the NIST-800-22 tests.

5.2 Audio encryption application

In this section, an example audio encryption application

which utilizes the designed chaos based PRNG is pre-

sented. In Fig. 12, the block diagram of the audio

encryption and decryption processes is shown. For the

encryption process, the amplitude value of the audio data in

Fig. 10 The phase portraits of the scaled fractional order chaotic system obtained from oscilloscope for the fractional order q ¼ 0:99, the system
parameters a ¼ 1; b ¼ 12; c ¼ 1:2; r ¼ 8; f ¼ 25; q ¼ 25, and initial conditions are x0 ¼ y0 ¼ z0 ¼ w0 ¼ 0
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floating point format is converted into binary format. Then,

the binary bits of the converted audio data are XORed with

the random bits generated from the fractional order chaotic

system. Then, the resultant bit series are converted back to

floating format to obtained encrypted audio data. In the

audio decryption process, the encrypted audio data in

floating point format is converted into binary format. Then,

the decryption process is performed by XORing the bits

Fig. 11 The block diagram of

chaos PRNG design

Table 1 NIST-800-22 test

results of designed PRNG
Statistical Tests P value Result

Frequency (Monobit) Test 0.448450982733033 Successful

Block-Frequency Test 0.415232118095908 Successful

Cumulative-Sums Test 0.698898965106277 Successful

Runs Test 0.612453155069222 Successful

Longest-Run Test 0.158253951739692 Successful

Binary Matrix Rank Test 0.599229102250439 Successful

Discrete Fourier Transform Test 0.354009839268338 Successful

Non-Overlapping Templates Test 0.003858187857881 Successful

Overlapping Templates Test 0.118100273951313 Successful

Maurer’s Universal Statistical Test 0.269768360616614 Successful

Approximate Entropy Test 0.122875059468984 Successful

Random-Excursions Test (x ¼ � 4) 0.193928910985971 Successful

Random-Excursions Variant Test (x ¼ � 9) 0.703739874119503 Successful

Serial Test-1 0.270373206413360 Successful

Serial Test-2 0.127429195257392 Successful

Linear-Complexity Test 0.145190935638397 Successful
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obtained from the audio data and the bit series generated

from the fractional chaotic system. After XOR operation,

the resultant bit series are converted to floating point for-

mat to obtain the decrypted audio data in its original

waveform.

In the encryption and decryption application, a 1.8-

second-long male audio data is used. The waveforms of the

original, encrypted, and decrypted audio data are given in

Fig. 13. As it is seen in Fig. 13, the waveform of the

encrypted audio data is completely different from those of

the original and decrypted audio data while the waveforms

of the original and decrypted audio data are exactly the

same. This is a good indicator that the encryption and the

decryption processes are carried out with high accuracy

and performance.

For furthermore performance evaluation of the encryp-

tion and decryption processes, frequency domain analysis

of the original, encrypted, and decrypted audio data is

performed by applying the fast Fourier transform (FFT).

The frequency spectrum of the original, encrypted, and

decrypted audio data is given in Fig. 14. As it is seen in

Fig. 14, the spectrum of the encrypted audio data is com-

pletely different from the spectrums of the original and

decrypted audio data whereas there is no difference in the

spectrums of the original and decrypted audio data.

Moreover, the spectrum of the encrypted audio data is

uniformly distributed across the spectrum. This is another

indicator that the encryption and decryption processes have

sufficient and acceptable performance.

As a next analysis, bit error rate (BER) calculations are

performed with respect to the different fractional order of

the system. Different keys are generated by changing the

fractional order of the system between 0.9 and 1 with 0.01

step size. The keys are generated as described in Sect. 5.1

for each different fractional order. Then the encrypted bit

series of the audio signal is decrypted with the obtained

keys. Then BER is calculated by comparing the original

data and the decrypted data. BER is calculated by using

formula given in (24)

Fig. 12 The block diagram of

the audio encryption and

decryption processes
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PL
i¼1 Di

L
;Di ¼

1; deci 6¼ origi

0; deci ¼ origi

�
ð24Þ

Here deci and origi is the ith bit of the decrypted and

original data respectively, and L is the total number of bits.

In the calculations the total number of bits L is selected as

100,000.

The BER results are given in Fig. 15. The BER values

are very close to 0.5 as shown in the figure. The lowest

obtained BER value is 0.488 while the highest one is 0.511.

When the encrypted data is decrypted with the correct keys

which are obtained when the fractional order of the chaotic

system equals 0.99, the BER results is zero as expected.

This indicates that decryption process is successful. How-

ever, if the fractional order of the chaotic system is chan-

ged for the generation of the keys, the BER results are quite

high. This also indicates a very good security performance

of the encryption process that even small change in the

Fig. 13 The waveforms of the

original (left), encrypted(right),

and decrypted (bottom) audio

data

Fig. 14 The frequency spectrum

of the original (left),

encrypted(right), and decrypted

(bottom) audio data
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fractional order causes the decrypted data and original data

to be very different.

As a final analysis, entropy and correlation analysis are

carried out and their results are given in Table 2 for the

original, encrypted, and decrypted audio data. As it is seen

in Table 2, the entropy and correlation values of the orig-

inal and decrypted audio data is the same while the entropy

and the correlation values of the encrypted audio data is

different than those of the original and decrypted audio

data. From all these performed analysis on the original,

encrypted, and decrypted audio data, it can be concluded

that the use of designed fractional order chaotic system

based PRNG is suitable for the data security applications.

6 Conclusion

In this study, a fractional order form of a chaotic system

based on two degrees of freedom mechanical system is

considered. One of the most important aspect of the paper

is that a fractional order chaotic system based on an actual

two degrees of freedom nonlinear mechanical system is

studied for the first time in the literature. Moreover, the

circuit implementation of the fractional order chaotic sys-

tem is realized. In order to evaluate the accuracy of the

circuit realization, the fractional order chaotic system is

numerically solved with GL method. The time series and

phase portraits obtained from numerical solution and cir-

cuit implementation are in good accordance. This shows

that the circuit implementation of the fractional order

chaotic system is successful. Moreover, a PRNG based on

this fractional order chaotic system is designed and an

audio encryption application is realized with the designed

PRNG. The NIST tests are applied to the designed PRNG

to evaluate the randomness of the generated numbers. The

designed PRNG passes all the NIST-800-22 statistical tests

successfully. This shows the generated numbers have suf-

ficient randomness. Finally, an audio encryption and

decryption are performed to show that the fractional order

chaotic system can be used engineering applications.

Data availability Data sharing is not applicable to this article as no

datasets were generated or analyzed during the current study.
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