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THE EFFECT OF EMG-BASED ATTENTIONAL FOCUS ON 
HUMAN MACHINE INTERFACE APPLICATIONS  

SUMMARY  

It is well known that attentional focus instructions affect motor skills and learning of 
performers. These instructions are divided into two groups: internal focus and external 
focus. Many studies showed that external focus of attention enhances motor performance 
and learning but reduces muscular activity whereas, internal focus of attention increases 
it. The low muscular activity results in more efficient movements especially in case of 
sport performances. Nevertheless, low muscular activity is not always preferred in 
engineering field such as prosthetics, EMG-based robotics, Human Machine Interface 
applications.  
In this thesis, three different approaches, based on the effects of attentional focus 
strategies on muscular activity, are proposed.  
In the first step, several EMG mesurements were conducted. During the experiments, the 
participants performed weight-lifting (2 kg dumbbell) under control, no instuctions were 
given, internal, focusing on the active muscle and external, focusing on the dumbbell, 
focus of attentions. The EMG records via biceps brachii muscle of the participants were 
analysed statistically. The Wilcoxon Sign-Ranks tests results showed that, for RMS, 
MAV, IEMG and Integrated FFT parameters there was a significant difference (p = 0.05) 
between external and internal focus groups and internal focus enabled higher EMG 
activity. In addition, the main effect of attentional focus between control and external 
groups was also significant. However, there was no statistical difference between control 
and internal data.  
The second approach was based on classification of the EMG signals according to 
participants’ attentional focus preferences. For this purpose, six statistical features, 
namely, maximum, minimum, mean, standard deviation, RMS and variance of recorded 
EMG signals were extracted from both time and frequency domains. These feautures were 
used as inputs for Artificial Neural Network (ANN) classifiers. The classification rates of 
ANNs were found to be 87.54% for time-domain and 82.69% for frequency domain. 
These findings suggest that even though the origin of the signal belongs to same healthy 
person, just by changing the attentional focus preferences, EMG activity differed 
remarkably.  
Although these results were promising in the field of engineering, in case of EMG-based 
control mechanisms, the classifier performances would expected to be in very high 
accuracy. Consequently, the signals were classified using Deep Neural Networks (DNN) 
which can enable higher accuracy. Here, DNNs were designed using coefficients, 4th 
level, of DB4 and HAAR wavelets as inputs. The classification rates were found to be 
99.07% and 99.54%, respectively. Since these DNNs the attentional focusing types were 
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classified in a very high accuracy, here it was hypothesized that attentional focus 
preferences would be used as alternate inputs to HMIs.  
The third approach investigated the impacts of attentional focus strategies on hamstring 
muscles which are responsible for hip and knee movements in many sports. The 
experiment was designed to examine the EMG activity of hamstring muscles, the 
semitendinosus, the semimembranosus and the biceps femoris on amateur football 
players during leg curl exercises. The results of the experiments showed that while the 
EMG activity response of semitendinosus and semimembranosus were in line with 
literature in case of attentional focus preferences, the biceps femoris shows no significant 
response regarding change between attentional instructions. Since hamstring muscle 
injuries are the most common sports injury, these findings can help trainers for planning 
their exercise programs. Besides, these results also provides a better understanding of 
mind-muscle connection phenomena and highlights the outlier amongst the common 
acceptance. 
In summary, the findings of this thesis show that one’s focus of attention could be 
predicted using neural networks, during the performance. Hence, attentional focusing 
might be an important strategy not only for performance improvement to human 
movement but also for advancing the EMG-based control applications. Besides, it is also 
highlighted here that positive effect of verbal instructions via internal focus might also be 
useful for physicians to plan effective muscular rehabilitation treatment for patients who 
suffered a stroke or a disorder of lower or upper limb extremities. Furthermore, the results 
of attentional focus effects were not limited to only control mechanisms, but also in sport 
fields.  
Keywords: Attentional focus, Electromyography, EMG-based classification, HMI. 

 



xiv 

DİKKATLE ODAKLANMANIN EMG-TEMELLİ İNSAN MAKİNE 
ARAYÜZÜ UYGULAMALARINA ETKİSİ 

ÖZET  

Dikkatle odaklanma direktiflerinin motor becerilerini ve kişilerin öğrenmesini etkilediği 
iyi bilinmektedir. Bu direktifler genel olarak iki gruba ayrılır: iç odaklanma ve dış 
odaklanma. Birçok araştırma, hareketin etkisine odaklanan dış odaklanmanın, motor 
performansı ve öğrenmeyi artırdığını ancak bunun yanında kas aktivitesini azalttığını 
gösterirken, iç odaklamanın bunu artırdığını göstermiştir. Düşük kas aktivitesi, özellikle 
spor performanslarında daha verimli hareketler sağlasa da bunun yanısıra, özellikle protez 
çalışmaları, EMG tabanlı robotik, İnsan Makine Arayüzü uygulamaları gibi mühendislik 
alanlarında düşük kas aktivitesi her zaman tercih edilmemektedir. 
Bu tezde, dikkatle odaklanma stratejilerinin kas aktivitesi üzerindeki etkilerine dayanan 
üç farklı yaklaşım önerilmiştir. 
İlk adım olarak, birtakım EMG ölçümleri yapılmıştır. Deneylerde, katılımcılara kontrol 
(hiçbir talimatın verilmediği), iç odaklanma (aktif kasa odaklanma) ve dış odaklanma 
(dambıla odaklanma) durumları altında 2 kg’ lık dambıl kaldırma hareketleri 
yaptırılmıştır. Katılımcıların biseps brachii kasları üzerinden EMG kayıtları istatistiksel 
olarak analiz edilmiştir. Wilcoxon Sign-Ranks test sonuçları, RMS, MAV, IEMG ve 
Integrated FFT parametreleri için dış ve iç odak grupları arasında önemli bir fark 
olduğunu (p = 0.05) ve iç odaklamanın daha yüksek EMG aktivitesini sağladığını 
göstermiştir. Ek olarak, kontrol ve dış odaklanma grupları arasındaki dikkatle 
odaklanmanın ana etkisi de istatistiksel olarak önemli bulunmuştur. Bununla birlikte, 
kontrol ve iç odaklanma verileri arasında istatistiksel bir fark görülmemiştir. 
İkinci yaklaşım, katılımcıların dikkatle odaklanma tercihlerine göre EMG sinyallerinin 
sınıflandırılmasına dayandırılmıştır. Bu amaçla, kaydedilen EMG sinyallerinin 
maksimum, minimum, ortalama, standart sapma, RMS ve varyansı olmak üzere altı farklı 
istatistiksel özellikleri hem zaman hem de frekans alanlarından çıkarılmıştır. Bu 
özellikler, Yapay Sinir Ağı (YSA) sınıflandırıcıları için girdi olarak kullanılmıştır. YSA 
sınıflandırma oranları sırasıyla zaman alanı için % 87,54 ve frekans alanı için% 82,69 
olarak bulunmuştur. Bu bulgular, sinyalin kaynağı aynı sağlıklı kişiye ait olsa bile, 
kişilerin sadece dikkatle odaklanma tercihlerini değiştirerek, EMG aktivitelerinin önemli 
ölçüde farklı olabileceğini göstermiştir. 
Bu sonuçlar mühendislik alanı için ümit verici olsa da, yine de EMG tabanlı kontrol 
mekanizmaları düşünüldüğünde, sınıflandırıcı performanslarının çok yüksek doğrulukta 
olması beklenir. Bu nedenle, bir sonraki aşama olarak sinyaller, daha yüksek doğruluk 
sağlayabilen Derin Sinir Ağları (DNN) kullanılarak sınıflandırılmıştır. Burada DNN'ler, 
giriş olarak DB4 ve HAAR ana waveletlerin 4. seviye katsayıları kullanılarak 
tasarlanmıştır. Sınıflandırma başarı oranları sırasıyla DB4 için % 99,07 ve HAAR için % 
99,54 olarak bulunmuştur. Bu DNN'ler dikkatle odaklanma çeşitlerini çok yüksek bir 
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doğrulukla sınıflandırıldığından, burada kişilerin dikkatle odaklanma tercihlerinin İnsan- 
Makine Arayüzlerine alternatif girdiler olarak kullanılabileceği varsayılmıştır. 
Üçüncü yaklaşım olarak, birçok spor alanında kalça ve diz hareketlerinden sorumlu olan 
hamstring kasları üzerindeki dikkatle odaklanma stratejilerinin etkileri araştırılmıştır. 
Deneyler, amatör futbolcuların semitendinosus, semimembranosus ve biseps femoris 
hamstring kaslarının EMG aktivitelerini bacak kıvırma egzersizleri sırasında incelemek 
için tasarlanmıştır. Bu deneylerin sonuçları incelendiğinde, semitendinosus ve 
semimembranosus'un dikkatle odaklanma tercihleri durumlarındaki EMG aktivitelerinin 
literatürle uyumlu olduğu görülmüştür. Bunun yanısıra, biseps femoris kaslarının dikkatle 
odaklanma talimatlarına istatistiksel olarak önemli bir yanıt vermediğini tespit edilmiştir. 
Hamstring kasları yaralanmaları en yaygın spor yaralanmaları olduğundan, bu bulgular 
antrenörlerin egzersiz programlarını planlamalarına yardımcı olabilir. Ayrıca, bu sonuçlar 
aynı zamanda zihin-kas bağlantısı fenomeninin daha iyi anlaşılmasını sağlamış olup, 
ortak kabul edilmiş düşünceler içerisindeki aykırı yaklaşımı vurgulamıştır. 
Anahtar Kelimeler: Dikkatle odaklanma, Elektromiyografi, EMG tabanlı sınıflandırma, 
HMI. 
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CHAPTER 1. INTRODUCTION 

This chapter of the thesis is prepared for better understanding and easier following of the 

studies. The introduction of an attentional focus and detailing the relation of attentional 

focus with electromyography are the main purpose of this chapter. Additionally, summary 

information about Human Machine Interface and the recognition of research gaps are 

given here. Moreover, the methods and results of the earlier studies were investigated 

here. Finally, the aim of this thesis and hypothesis are also clarified in this section.   

1.1.  Attentional Focus 

Attentional focus is defined as the focus of a person’s attention at a specific moment. First 

studies about attentional focus have been demonstrated that verbal instructions and 

feedback through an individual’s focus of attention have an important influence on 

performance and learning of motor skills. 

Salmoni et al., conducted several experiments using a probe technique and movement 

types. Their results showed that the longer movements were less attention demanding 

than the shorter movements. They also concluded that movement time had no effect on 

the results (Salmoni et al., 1976). 

Newell and Hoshizaki studied attention, movement duration and velocity. Their 

experimental results showed that attention demands of movement can change according 

to movement velocity (Newell & Hoshizaki, 1980). 

Wulf et al., presented that if instructions or a feedback is given to a learner while he or 

she is performing, their learning may be enhanced. Besides, they also showed that the 

time needed to complete the performance can be reduced (Gabriele Wulf et al., 1998).  

Shea and Wulf investigated the effects of attentional focus instructions and feedback on 

motor learning. They concluded that type of instructions is a criteria for enhancing motor 

skill learning (Shea & Wulf, 1999). 
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Wulf et al., studied the effects of attentional focus in sport skill. Their experiments were 

based on practicing pitch shots in golf. Participants had no experience in playing golf. 

Their results showed that type of instructions had effects on the performance of the 

participants (Gabriele Wulf et al., 1999). 

As known, attentional instructions are given during or before the performance and contain 

information about the way of performing the skill. Besides, they may be related to the 

learning of difficult skills. For example, in case of sports, a learner’s focus of attention 

must be directed on the relevant features of the task. In order to achieve that kind of focus 

of attention, a learner is generally directed with information about the right placement of 

different body parts, dynamics or timing of the movements. However, a researcher must 

know what kind of information should be given to the performer.  

In order to provide better understanding about learning process, the effectiveness of 

different types of attentional focus instructions were investigated experimentally by Wulf 

et al. (Gabriele Wulf et al., 1998). Their results showed that the impact of attentional 

instructions is influenced by the way in which they are presented to the learner. Therefore, 

atttentional focus strategies were divided into two types: external and internal focus of 

attention.  

1.1.1. Internal focus vs. external focus 

An internal instruction directs a performer’s focus on body movements or the action itself 

whereas, an external instruction directs her/ his focus on apparatus, environment or the 

effect of the action. These definitions can be understood better with a dart throwing 

example (Lohse et al., 2014). If a performer focuses on her/his arm position or body 

orientation before throwing the dart, it is considered as an internal focus whereas, if she 

or he focuses on the target board itself, it is called an external focus. 

Wulf et al. demonstrated that attentional focus instructions might be more helpful for 

learning if they direct it to the learner’s attention to the effects of her or his movements 

(external focus) (Gabriele Wulf et al., 1998). In the following studies that were designed 

to compare the effectiveness of an internal and an external focus of attention on learner’s 

performance such as in golf, balance-based tasks, volleyball, etc. the significant 

differences were found between external and internal focus. Besides, external focus found 
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to be more effective and seemed to enhance learning skills (G. Wulf et al., 2002; Gabriele 

Wulf et al., 2001).  

In 2001, Wulf et al. explained the difference between external and internal focusing with 

“Constrained-Action Hypothesis” (Gabriele Wulf et al., 2001). According to this 

hypothesis, when a subject focuses externally during a performance, the subject’s motor 

system will be more natural and self-organized, whereas an internal focus may actually 

constrain automatic control processes that would normally regulate the movement. In 

order to test this hypothesis, they used a dynamic balance task in which the participants 

were directed to focus their attention either internally or externally. Consistent with the 

hypothesis, smaller balance errors were found in external focus group compare to internal 

focus group. Subsequent studies also supported this hypothesis by comparing the impact 

of effect-related (external) as opposed to movement-related (internal) focus of attention. 

For example Wulf et al., investigated the effectiveness of external focus feedback on 

learning. Their experimental results indicated that effect-related feedback (external) was 

more effective than movement-related (internal) on learning (G. Wulf et al., 2002). Mc 

Nevin et al., enlarged the research area by suggesting increasing the distance of an 

external focus. Their results demonstrated that more distance resulted more natural 

control of motor system (McNevin et al., 2003). Additionally, Wulf and Su investigated 

whether external focusing affects both beginners and experts in golf shot. Their 

experimental results showed that external focus enhanced the performance of experts as 

well (Gabriele Wulf & Su, 2007). 

The performance tasks can be evaluated under two categories. Movement effectiveness 

and movement efficiency (Gabriele Wulf, 2013). Movement effectiveness can be 

associated with reliability, balance, accuracy and consistency in achieving the goal of the 

movement. However, movement efficiency is linked with speed, endurance, movement 

kinematics, maximum force production and muscular activity.  

In this thesis, experimental tasks were based on examining movement efficiency. Here, 

attentional focus was investigated associated with muscular activity of performers during 

a movement. 
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1.1.2. Electromyography 

Electromyography (EMG) is a technique deals with recording and analysis of myoelectric 

signals which are produced in response to the nerve stimulation in muscles. The EMG 

signal is composed of the action potentials, which is resulted from depolarization and 

repolarization processes at muscle fiber membrane, from muscle fiber groups structured 

into motor units (MUs). In other words, the EMG signal is simply the summation of the 

Motor Unit Action Potentials (MUAPTs) of all recruited motor units as presented in 

Figure 1.1 (Stashuk, 2001).  

 
Figure 2.1 : Decomposition of the surface EMG signal. 

EMG signals can be measured by electrodes attached to the skin on top of the surface 

muscles. However, in order to detect maximum signal, the orientation of the electrodes 

must be perpendicular to the muscle fibers. Besides, the EMG sensor itself should be 

placed in the center of the muscle belly. Therefore, it will far away from the edge of the 

muscles and tendons as well. In Figure 1.2 a representation of EMG sensor orientation is 

displayed (Delsys, 2011). 
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Figure 2.2 : EMG sensor orientaion with respect to the muscle fibers. 

The voltage range for EMG signals is between µV to mV and they contain noise. 

Therefore, some filtering techniques are performed to the raw signals for processing 

EMGs. In addition, instrumentation amplifiers are used for noise reduction and signal 

amplification. A simple block diagram of surface EMG acquisition is given in Figure 1.3 

(Cavalcanti Garcia & Vieria, 2011).  

 
Figure 2.3 : Block diagram of surface EMG acquisition.  

In Figure 1.3, number 1 represents the detection of EMG signals and a reference electrode. 

Number 2 is amplification step whereas, number 3 is preprocessing phase which is analog 

filtering. Sampling of the signal into digital voltage values is done in number 4 and finally 

monitoring and storing the signal is displayed in number 5.   
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When the EMG signals are filtered and processed as required, then feature extraction can 

perform on the signals. In this way, valuable information presents in signals can be 

determined. 

In this thesis, EMG acquisition, EMG signal processing, monitoring and recording of the 

signals and feature extraction from EMG signals are explained step by step in Chapter 2. 

The relation between the muscular activity and attentional focus strategies is explained in 

the following section. 

1.1.3. EMG-based attention 

In order to learn whether the impact of attentional focusing type differences would also 

be established at neuromuscular level, electromyography (EMG) was used by Vance et 

al., for the first time (Vance et al., 2004). In their study, two experiments were conducted. 

In both experiments, participants were asked to perform biceps curl under various 

attentional focus instructions. Results of the first experiment showed that movements 

were performed faster under external focus condition compared to internal focus and 

Integrated EMG (IEMG) activity was also reduced when performers adopted externally. 

In the second experiment, movement time was controlled using a metronome and the 

results also showed that external focus reduced the EMG activity. Their findings may also 

be useful in sports in which maxiumum forces have to be producted. Therefore, the 

positive effect of external focus may be generalized to maximum force production tasks. 

Since external focus provides more automatic control processes, their results were in line 

with constrained-action hypothesis as well.  

Zachry et al., confirmed and extended previous findings by demonstrating focusing 

externally not only reduces EMG activity but also increases movement accuracy (Zachry 

et al., 2005).  

Marchant et al., added a control condition to their experiments to obtain maximum 

voluntary contraction (MVC) data and their results also showed that force production was 

higher and muscular activity was lower under external focus condition (Marchant et al., 

2009).  

Wulf et al., investigated neurophysiological mechanisms of external focus effect by using 

EMG on a jump and reach task. They measured muscular activity of anterior tibialis, 
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biceps femoris, vastus lateralis, rectus femoris and gastrocnemius muscles during jumps. 

They found that with an external focus, EMG activity was reduced in majority of the 

muscles. They concluded that external focusing led to an efficient and effective 

movement pattern production (Gabriele Wulf et al., 2010).  

Lohse et al., studied the effects of attentional focusing strategies on a force production 

task and they compare the agonist and antagonist muscles. Their results showed that EMG 

activity was lower in the antagonist (tibialis anterior) muscle. However, there was no 

effect of attention on the agonist (soleus) muscle (Lohse et al., 2011).  

Ardakani et al., conducted an experiment with older men (mean of age 70.7 + 2.6) in 

order to determine the influence of attentional focus and somato-sensory manipulation on 

postural control and muscular activity. Their results also showed that external focus 

reduced EMG activity (Ardakani et al., 2015). 

Ashraf et al., yielded similar results on effects of external focus with 20 children (8-10 

years old). They concluded that external focus improve both efficiency and effectiveness 

of children’s movement in a maximum force production task (Ashraf et al., 2017). 

Ay et al., conducted an experiment based on weight-lifting. Their results showed that the 

EMG activity was also was reduced when performers focused externally which was also 

in line with constrain-action hypothesis (Ay et al., 2019).  

Although the positive effect of external focus in movement effectiveness and efficiency 

appeared to be clear and consistent, still some questions remain in literature. Because, all 

these results underscore the performances and achievements of people with an external 

focus. 

This thesis brings a new perspective to the studies on the effects of attentional focusing 

strategies. Thus, here the impacts of attentional focus preferences on EMG-based Human 

Machine Interface applications are elaborated which is going to be a novel approach. 

1.2.  EMG-Based Human Machine Interface 

Although EMGs are generally used for identification of neuromuscular diseases, the 

EMG activity and the resulting movement has also investigated in many research by 
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analyzing the duration, magnitude and amplitude of the signals (Sharma & Dubey, 2012; 

Shobhitha et al., 2013).  

With the developed technology, it is also very common now to use EMGs as control 

signals in Human Machine Interface (HMI) interactions. An HMI is known as a 

component of a software application or device that allows humans to interact with 

machines. The main purpose of EMG-based control of HMIs is translating the user’s aim 

(as EMG signals) into relevant computer commands. There are many HMI applications 

that use EMG signals to control mechanisms such as smart wheelchairs, artificial hands 

and prosthetics (Naseer et al., 2018; Pan et al., 2019; Rafiee et al., 2011). Such EMG-

based control is possible with proper signal processing, feature extraction and accurate 

signal classification which is the most important part of designing EMG-based interfaces.  

Ibrahimy et al., designed an Artificial Neural Network (ANN) trained by Levenberg-

Marquardt algorithm for hand motion detection. Their network could classify the hand 

motions (left, right, up and down) from the EMG signal features with 88.4% accuracy. 

Therefore, they concluded that the classification efficiency would increase with enriched 

signals. (Ibrahimy et al., 2013).  

Ahmad et al., proposed a Deep Neural Network (DNN) classifier using EMG signals for 

finger pattern recognition. The purpose of their study was improving classification 

success rate for prosthetics control.  The results showed that the designed DNN was able 

to classify five fingers pattern with 99.3% of accuracy rate (Ahmad et al., 2018).  

Naseer et al., provided improved control of individual fingers, which are the thumb, 

index, middle, ring and little finger of robotic hand using EMGs. A Deep Neural Network 

(DNN) was designed as a classifier. The success rate of the classifier was found to be 

95%. They concluded that their work could be useful for hand rehabilitation as well 

(Naseer et al., 2018). 

Shi et al., presented a bionic hand which is controlled by hand gesture recognition based 

on EMG signal classification. In their study, they designed a prototype for hand posture 

recognition with the purpose of controlling the bionic hand using EMG signals. They 

preferred mean absolute value, slope sign change, zero crossing, and waveform length in 

their algorithm for extracting features and k-nearest-neighbors (KNN) as the classifier to 
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achieve hand-posture recognition. Their results showed that hand postures were 

recognized with a 94% accuracy of the classifier (Shi et al., 2018).  

Tavakoli et al., offered a support vector machine (SVM) classifier using EMG signals for 

hand gesture recognition. Their results showed that the system recognized hand closing 

and opening, wrist flexion, extention and double flexion gestures with the classifier 

accuracy of 95 -100% (Tavakoli et al., 2018).  

Nazmi et al., provided a classification system based on walking gait event detection 

especially in the stance and swing phases using EMGs. Their obtained results showed that 

the classifier with Levenberg-Marquardt algorithm performed with 87.4% accuracy 

(Nazmi et al., 2019). 

Although recent studies within the area of EMG-based HMI, robotic control and 

prosthetics seem to be advanced, most of the studies do not give enough importance to 

the environmental, physical or mental condition of a person during the measurements.  

This thesis has bridged the gap between attentional focus strategies during EMG 

measurements and EMG-based classifiers. 

1.3.  Aim of the thesis 

This thesis is based on implementing attentional focusing strategies into EMG 

measurements in order to get comparable muscular activities and classifying performers’ 

EMG signals according to his/her focus of attention preferences. Therefore, the 

classification results could be used as alternate inputs for EMG-based mechanism. With 

this new point of view, the useful inputs for the HMI applications would be doubled by 

type of attentional focus which is going to be a novel approach. 

It is well-known that Artificial Neural Networks (ANN) and Deep Neural Networks 

(DNN) are generally preferred for classification purposes. In this thesis, different 

experiments were designed for EMG measurements. The acquired EMG signals were 

processed and useful features were extracted out of the signals for classification purposes. 

As known, attentional focus is the ability of performers to select relevant stimuli while 

ignoring other stimuli in the environment. Since user status such as attention affects 
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performance of control mechanism, with these proposed ANN and DNN models, 

attentional focus-based EMG signals could be differentiated in very high accuracy. 

In literature, the importance of verbal instructions during performances are well 

established. As it was clarified in the previous sections, verbal instructions through 

external focus have shown a positive effect on movement outcomes of performers. 

Besides, low EMG activity, resulted external focus of attention, has many advantages 

such as enhancing the performer’s motor skills and learning. However, in case of 

performance of HMI mechanisms, high EMG activity, resulted internal focus, can also 

have several advantages such as better signal quality which has great benefit when these 

signals are used as inputs for EMG-based control mechanisms.  

Hypothetically, internal focusing might also have advantages especially when it is used 

by a therapist during a rehabilitation session. Since internal focus constrain the movement 

automaticity, the patient would generate more muscular activity to complete the 

movement.  As high EMG activity is required for better control mechanisms and variation 

in attention can modulate EMG signals both in time and frequency domain, an internal 

focus could also be beneficial particularly during a robot-assisted musculoskeletal 

rehabilitation. Therefore, when a patient, who has suffered a stroke or has a disorder in 

the upper extremities, can be instructed internally by a physical therapist during a 

rehabilitation session, the patient could perform the movement more successfully and 

accurately with the help of robot-assisted mechanism controlled by the patient’s EMG 

signals.  

In this thesis, in order to compare the effects of attentional focusing strategies, EMG 

activities of different muscles were compared. The first two experiments were designed 

according to performance of biceps brachii muscles whereas, the last experiment was 

based on muscular activities of hamstrings.   

As known, semitendinosus, semimembranosus and biceps femoris muscles are three 

major components of hamstrings. It is also hypothesized in this thesis that EMG response 

of hamstrings to attentional verbal instructions may be a distinctive feature between 

semitendinosus, semimembranosus and biceps femoris muscles. Therefore, sporting 

professionals and trainers can exploit the results to improve their training protocols. This 
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thesis also provides a deeper insight on the dynamics of hamstrings by exploring mind-

muscle connection one-step ahead which is also novelty of this thesis.   

Overall, this thesis opens up the avenue for further research on the usage of EMG 

activities of various muscles subjected to attentional focus on the engineering field.  
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CHAPTER 2.  MATERIALS AND METHODS  

In this chapter, the steps of designing process of the experiments are enlightened. For this 

thesis, three different experiments were performed. The first one was based on weigh-

lifting via biceps brachii muscles and the second one was basically extended version of 

the first experiment. The last one was based on leg curl exercices via hamstring muscles. 

The entire measurement process of each trial is explained in detail in the following 

sections. 

2.1.  Preliminary Experiment: Biceps Brachii Muscles 

The biceps brachii is one of the main muscles that is located on the front of the upper arm 

which acts on both the elbow joint and the shoulder joint. The biceps brachii on the muscle 

map is displayed in Figure 2.1 (EMGworks Acquisiton, 2010). 

 
Figure 2.1 : The right biceps brachii muscle on the muscle map. 
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The function of biceps is that it flexes the forearm (Scanlon & Sanders, 2007). During 

flexion, the opposing parts of the short and long heads of the biceps brachii muscle help 

stabilize the shoulder (Cael, 2010). 

Biceps curl is general name for a series strength exercises using dumbbell, resistance 

bands, etc. These exercises mainly target the biceps brachii muscles. There are many 

studies that used bicep curl tasks to determine muscular activity under different 

attentional focus conditions. In a study by Vance et al., directing performers to focus on 

their arms (internal) as opposed to the weight bar (external) resulted in higher muscular 

activity in biceps brachii muscles (Vance et al., 2004). In another study, it was also 

established that with an internal focus, the EMG activity was higher (Marchant et al., 

2009). 

In this thesis, the first experiment was designed to yield similar EMG activity results with 

literature based on attentional focusing strategies. With the purpose of getting comparable 

results, healthy participants were performed weight-lifting using a dumbbell and their 

EMG signals were measured via biceps brachii muscles under various attentional focus 

conditions.  

2.1.1. Participants 

8 healthy female and 8 healthy male university students (age = 22 ± 1.5 years, height = 

171 ± 7 cm, weight = 69 ± 14 kg) volunteered for the trials. They were naive to the 

experimental task and none of them were aware of specific purpose of the study. Informed 

consent was obtained from all participants before the experiments, in compliance with 

the university’s Institutional Review Board. 

2.1.2. Experimental procedure 

In order to measure EMG signals from the participants’ biceps brachii muscles, Delsys 

BagnoliTM EMG System was used. Besides, for acquiring, monitoring, processing and 

recording the signal via LabVIEW, NI-DAQmx card was connected.  

The performances were conducted in a quiet room. Each participant was requested to sit 

on a chair during the trials. For the experiment, they were asked to lift 2 kg dumbbell with 

their dominant hand. They were instructed to perform up-hold-down exercises. Each 
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position took 5 seconds and repeated 3 times for various attentional focus conditions. The 

representation of up-hold-down procedure of a participant was displayed in Figure 2.2. 

 
Figure 2.2 : The representation of up-hold-down procedure of a participant. 

The first measurements were performed as control condition. Under the control condition, 

the participants have performed weight-lifting without any instructions. The verbal 

instructions at the beginning of each measurements for internal focus were “In this trial, 

I would like you to focus only the contraction of your biceps muscles where the electrodes 

are placed” whereas, “In this trial, I would like you to focus only the dumbbell during all 

period” for external focus.  

In order to prevent fatiguing effects, participants rested for approximately 2-3 minutes 

between measurements (McAllister et al., 2014). One of a participant’s EMG 

measurement is displayed in Figure 2.3. 
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Figure 2.3 : One of a participant’s EMG measurement. 

In these experiments, the criteria for success was based on performing the exercises as 

regular as possible according to time intervals. Since all performers were individual, all 

analysis were based on within subject analysis.  

After acquiring the data from all participants, a developed algorithm was implemented to 

LabVIEW for preprocessing the signals.  

2.1.3. Preprocessing of EMG signals and data analysis 

Firstly, a Butterworth band pass filter which is a combination of low pass and high pass 

filter was used. Here, lower cutoff frequency was set to be 20 Hz to remove environmental 

noise whereas, higher cutoff frequency was set to be 500 Hz to attenuate DC offset noise 

voltage (Politti et al., 2016). 

As it is known, the Root Mean Square (RMS) value of a continuous time waveform is the 

square root of arithmetic mean of the squares of the original values. In this study, the 

RMS values of eact data sets were calculated with the help of simple RMS function in 

LabVIEW and their results were used for data analysis. Preprocessing of EMG signals 

and RMS calculation in LabVIEW is given in Figure 2.4 (Ay et al., 2019).  
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Figure 2.4 : Preprocessing of EMG signals and RMS calculation in LabVIEW. 

After getting comparable results with limited number of participants (results are given in 

Chapter 3), in agreement with literature, it was decided to extend the first experiments for 

further analysis.  

2.2.  Experiment 1 

The preliminary experiment was completed with 16 (8 female, 8 male) volunteers. After 

getting promising results from the first measurement, 19 (5 female, 14 male) new students 

also participated in the trials. 

2.2.1. Participants 

In total, 35 healty participants (age 21 ± 2 years, height = 172 ± 6 cm, weight = 69 ± 12 

kg) were involed in the study [dataset] (Ay & Yildiz, 2020). They were also naive to the 
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experimental task and none of them were aware of specific purpose of the study. Informed 

consent was also obtained from all participants before the experiments, in compliance 

with the university’s Institutional Review Board.  

2.2.2. Procedure 

The whole procedure was repeated exactly in the same way with the previous one. First 

trials were completed under control condition. The second trials were under internal focus 

condition with same instructions given and the last trials were under external focus as 

well. The block diagram of the experimental procedure and the data analysis are displayed 

in Figure 2.5.  
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Figure 2.5 : The block diagram of the experimental procedure and data analysis. 
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2.2.3. Data Analysis 

After acquiring the data, time and frequency-domain analyses were performed. In order 

to extract time-domain features, the root-mean-square (RMS), mean absolute values 

(MAV) and Integrated EMG (IEMG) values of the data were calculated for each data sets 

on LabVIEW and the results were recorded for statistical analysis (Singh, 2013). The 

following equations give RMS (2.1), MAV (2.2) and IEMG (2.3) values for ‘n’ samples 

where Xn represents the signal in a segment and N represents length of the signal. 

∑ =

N

n nxN 1

21 =Vrms  (2.1) 

∑ =

N

n nxN 1

1 =MAV  (2.2) 

∑ =

N

n nx1
 =IEMG  (2.3) 

With the purpose of analyzing the data in frequency domain, Fast Fourier Transform 

(FFT) were performed on the EMG signals of each performers. From the signal, 

integrated FFT values were taken for statistical analysis. Figure 2.6 depicts the EMG 

signal in frequency domain of a single subject. 
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Figure 2.6 : One of the participant’ EMG signal in frequency domain during one trial. 

Both time and frequency data sets were checked for normality adopting Shapiro-Wilks 

and Kologorov-Shimirnov tests (Tremolada et al., 2019). In both tests, the data were not 

found to be normally distributed. Therefore, a non-parametric Friedman test was applied 

to RMS, MAV, IEMG and Integrated FFT values for each group to compare conditions  

and Wilcoxon Signed-Ranks test (p = 0.05) were computed post-hoc to test specific 

differences between the conditions (Couvillion & Fairbrother, 2018; Schücker & 

Parrington, 2019). 

2.2.4. Feature Extraction 

2.2.4.1.  Features for artificial neural network classifiers 

In total, 3 focusing type x 35 participants (105 data files) were collected with 36000 

samples length for each dataset. Feature extraction was performed on MATLAB. Control, 

external and internal datasets were created for 35 participants. Since under control 

condition, it is unclear whether participants focused externally or internally due to their 

individual preferences, the control data was not used for signal classification. Therefore, 

70 different data sets were available to differentiate the attentional focusing type from 
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another. The maximum, minimum, average RMS, mean, variance and standard deviation 

were extracted from the data sets to be used as inputs to a neural network classifier  (Daud 

et al., 2013; Nazmi et al., 2016; Phinyomark et al., 2017). 

In this thesis, two different Artificial Neural Networks (ANNs) were designed. Six 

statistical features, namely, maximum, minimum, RMS, mean, variance and standard 

deviation were delivered from time and frequency domain data, for ANN 1 and ANN 2, 

correspondingly. 

Firstly, topology of the network was identified and then training algorithm and neuron 

activation functions (Al-Timemy et al., 2008; Ibrahimy et al., 2013) were determined. 

Our ANNs were feedforward trained by Levenberg-Marquardt algorithm and the output 

layer corresponds to the internal (Class 1) and external (Class 0) focus of attention. The 

data was separated into three phases, namely, training (70%), validation (15%) and testing 

(15%) for both ANN1 and ANN2. The sigmoid function was chosen as neural activation 

function (Oweis et al., 2014). It is known that the number of neurons in hidden layers 

affect the performance of neural network. However, there is no specific rule to choose the 

number of hidden neurons for a reliable classification. Thus, in order to get the best 

classification results, different number of hidden neurons were tried from 10 to 50 in 

ANNs in this thesis.  

The performance results of the ANNs are given in Chapter 3. 

2.2.4.2.  Features for deep neural network classifiers 

The superposition of multiple motor unit activities known as EMG signals. In order to 

use these signals for nerve and muscle control, EMG signals decomposition is one of the 

key points. Wavelet analysis is commonly used for signal decomposition (Amanpreet, 

2019; Reaz et al., 2006). Wavelet Transform (WT) is generally used for analyzing non-

stationary and fast transient signals. Besides, WT represents a very suitable method for 

EMG signal classification as well. There are two types of wavelet transforms: Continuous 

Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT). 

In thesis, in order to classify the signals according to subjects’ attentional focus 

conditions, Discrete Wavelet Transform (DWT) coefficients of the participants’ EMG 

signals were chosen to be used as input feature vectors to a Deep Neural Network (DNN). 
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Haar and Db4 wavelets were chosen as mother wavelets (Ghofrani Jahromi et al., 2017). 

DWT coefficients were extracted using MATLAB Wavelet Analyzer Toolbox. The EMG 

signals were decomposed up to the 4th level and the coefficients were cd1, cd2, cd3, cd4 

and ca4. Coefficient cd4 represents the highest frequency components whereas, ca4 

represents the lowest one. The representation of signal decomposition up to the 4th level 

is given in Figure 2.7. 

 

Figure 2.7 : The EMG signal decomposition up to the 4th level. 

In this thesis, each cd4 having length of 2250 coefficients for the Haar and Db4 wavelets 

were generated. In order to prevent missing information on the signal, the data of 2 

participants were removed from the analysis and control condition data was not used as 

well. Thus, the decomposition procedure was done for the signals belonging to 33 

participants for both external and internal condition data. The feature vectors from Haar 

and Db4 wavelets decomposition were used as an input to the designed DNN classifier.  

A deep neural network topology consists of inputs, hidden layers and outputs. A DNN is 

usually designed with two or more hidden layers. The number of neurons in each hidden 
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layer can be differ for the best classification performances. Each hidden and output layers 

have an activation function. One of the activation functions that is commonly used in a 

deep learning known as the rectified linear unit (ReLU). This function is applied to hidden 

layers for both training and classifying the data. Another commonly used activation 

function is called sigmoid function which is a nonlinear function and used for output 

layers in many deep learning classifiers (Shrestha & Mahmood, 2019).   

In the model, designed for this study, two hidden layers each having 32 neurons were 

preferred. 33 x 2250 data for internal and 33 x 2250 data for external were used. 33 x 100 

data out of 33 x 4500 was separated for testing. 70% of the data (33 x 3080) were assigned 

as training and the remaining 30% of data (33 x 1080) set as the test data. Keras library 

was chosen and the success rate of the designed neural network was calculated. ReLU 

was used as activation function for each hidden layer and sigmoid function was used for 

the output layer. Different epoch numbers were tried for the best classification success 

rate. Since it is unclear whether participants focused externally or internally under control 

condition, here the control data were also not used as inputs for signal classification. 

The performance results of the DNNs are given in Chapter 3. 

2.3.  Experiment 2: Leg Curl Exercises 

After getting reliable results form the previous experiments, another experiment was 

designed to obtain the effects of attentional focusing strategies on multiple muscles.   

First two experiments were based on biceps brachii muscle activities while weight-lifting. 

Here, this experiment was based on hamstring muscles. In order to investigate the effect 

of attentional focus instructions on the hamstring muscle group during a leg curl exercise, 

muscular activity of semitendinosus, semimembranosus and biceps femoris were 

compared. 

The hamstrings are a group of muscles that include semitendinosus (ST), 

semimembranosus (SM) and biceps femoris (BF) (Herman, 2006). These muscles are 

responsible for actions at the hip and knee and they are known as powerful hip extensors 

(McAllister et al., 2014). The activation level of these muscles is critical for performing 

many different sports, for instance football and sprint. Besides, strengthening these 

muscles play an important role to prevent hamstring injuries (Ebben et al., 2009; Woods 
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et al., 2004). Therefore, it is critical for trainers, athletes and physiotherapists to improve 

strength training programs that could target the hamstrings in an effective way to gain 

strength and reduce potential hamstring strain injuries (Tillaar et al., 2017).  

The leg curl is one of the exercise that commonly used for improving flexibility and 

strengthening muscles in hamstrings (Wright et al., 1999). The exercise includes basically 

bending both legs at the same time and trying to reach gluteal muscles with the heels and 

returning back to the initial position with a controlled movements (Delavier, 1998) and 

IEMG is one of a standard tools to obtain total muscular activity of targeted muscle during 

exercises. Therefore, in this experiment, the participants performed leg curls following 

attentional focus instruction while the muscular activity was recorded via IEMG.   

Many research on attentional focusing especially in sports has constantly showed that 

external focus increases motor performance, learning skills and reduces muscular activity 

(e.g., sports, athletic training) relative to internal focus (Ille et al., 2013; Pascua et al., 

2015; Gabriele Wulf, 2013).  

To our knowledge, there are no studies indicating that the impact of verbal instructions 

on the activity of semitendinosus, semimembranosus and biceps femoris muscles during 

leg curl exercises. Thus, the aim is to investigate EMG activity of hamstrings when 

subjects are instructed to perform leg curl exercises.  

In this thesis, it is hypothesized that EMG response of hamstrings to attentional verbal 

instructions may be a distinctive feature between semitendinosus, semimembranosus and 

biceps femoris muscles. This study opens up the avenue for further research on the 

muscular activity of hamstrings subjected to attentional focus. Sporting professionals and 

trainers can exploit the results to improve their training protocols. The EMG results 

enable modern prosthetics to simulate the hamstrings more realistically. In summary, this 

study provides a deeper insight on the dynamics of hamstrings by exploring mind-muscle 

connection one-step ahead. 

2.3.1. Participants for experiment 2 

20 male amateur football players with mean age of 18.0 (± 0.5) volunteered to take part 

in the trials. Descriptive characteristics of the participants are given in Table 2.1. 
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Table 2.1: Descriptive characteristics of the participants (N = 20, mean ± SD) 

Age (y) Height (cm) Weight (kg) Sport Experience (y) Lifted Weight for MVC (kg) 

18.0 ± 0.5 177.8 ± 6.0 69.0 ± 7.9 7.8 ± 2.9 40.6 ± 5.2 

The average weights to be lifted were calculated according to their body segments 

parameters including head, trunk, both upper arms, both forearms and hands values 

(Clauser et al., 1969). Subjects were naive to the purpose of the study. However, a week 

before testing day, each of them had a familiarization session with leg curl exercises.  

In the measurement day, all participants were informed of the procedures involved in the 

experiment and they were asked to answer physical activity and medical history 

questionnaires. The methodology was approved at the Institutional level, and informed 

consent was obtained before participation.  

2.3.2. Experimental procedure 

All data collection was conducted in sport and exercise laboratory of Faculty of Sport 

Sciences in the university. A day before the measurements, participants were asked to 

shave their hamstring area of both right and left legs. On a single test day, before the 

measurements, each participant was asked to complete 15 minutes standardized football-

specific dynamic warm-up (Hammami et al., 2018). Following to warm-up, the subjects 

were allowed to rest for 5 minutes. During this rest, hamstring area was cleaned with 

alcohol and electrodes were placed over ST, SM and BF muscles. The placement of 

electrodes on hamstrings are displayed in Figure 2.8 (EMGworks Acquisiton, 2010). 
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Figure 2.8 : The electrodes placement on hamstring muscles.  

Participants first completed 3 repetitions of maximum voluntary contractions (MVCs) 

during a leg curl exercise for normalization (Halperin et al., 2014). One of a participant’s 

MVC measurements are shown in Figure 2.9. 

 

Figure 2.9 : One of a subject’s MVC measurements of ST, SM and BF muscles. 
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No specific attentional instructions were given in MVC measurements. Following the 

MVC trial, participants completed control, internal and external attentional focusing trials 

with 6 repetitions for each movement.  

Subjects rested for approximately 2-3 minutes between attentional focus trials to avoid 

fatiguing effects (McAllister et al., 2014).  Prior to beginning of each trial, participants 

were given their allocated instructions verbally by the researcher. For the control trials, 

no instructions were given. For the internal trials, as it is a body part oriented, participants 

were instructed to “Focus upon the muscles that the electrodes are attached to and 

concentrate on contracting these muscles at maximum level” while for the external focus 

trials, as it is a target/object oriented, participants were instructed to “Focus upon the 

weight and concentrate on lifting that weight accurately.” The verbal instructions were in 

line with previous studies (Gokeler et al., 2015; Marchant, 2011). In order to prevent 

possible influence of visual or auditory feedbacks, the computer was positioned in such 

way that the participant could not see any of his results presented on monitor. In addition, 

foot position of the participants was not standardized in the experiments because the 

researchers felt that the subjects’ experience would allow foot position to be habitual. 

Besides, there was no audience, but researchers were present in the laboratory. Therefore, 

the participants could concentrate on mentally focusing upon the emphasis of the 

instructions given.  

2.3.3. Measurements 

EMG was used to quantify muscle activity during leg curl exercises. The 8-channel model 

Delsys BagnoliTM EMG System was also used for these experiments. The DE 2.1 Single 

Differential Surface EMG Sensor was used to subtract EMG potentials. EMGworks 

Acquisition software was used to acquire and monitor the data and EMGworks Analysis 

software was used for filtering and processing the data. In order to determine muscular 

activity during trials, surface electrodes were placed along the targeted both left and right 

leg hamstring muscles (Figure 2.8). The experimental setup is represented in Figure 2.10. 
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Figure 2.10 : Experimental task on a leg curl machine. 

Measurements were taken from both legs of the participants but only dominant legs 

EMGs were used for analysis. The representation of one of the participants measured 

EMG signals were displayed in Figure 2.11. 

 

Figure 2.11 : A participant’ s raw EMG measurements of ST, SM and BF 
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The raw EMG signals were sampled at 2 kHz. Maximum root mean square (RMS) values 

of recordings were used to normalize the data. The output of normalization was displayed 

as a percentage of MVC value (Vance et al., 2004). Therefore, it can be used to create a 

common ground when comparing the data between participants. 

2.3.4. Data analysis 

In order to measure muscle activities of the participants, Integrated EMG (IEMG) was 

calculated on the data’s MVC values. Each data sets were checked for normality adopting 

Kolmogorov-Shimirnov and Shapiro-Wilks tests (Tremolada et al., 2019). The data were 

found to be normally distributed. Therefore, paired sampled t test (p ≤ 0.05) was 

performed on the average IEMG values to determine if there is a significant difference 

between participants’ muscles activities under various attentional focus conditions 

(Marchant et al., 2009; Zachry et al., 2005). The results are given in the following chapter. 
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CHAPTER 3.  RESULTS AND DISCUSSION 

In this chapter, the results of each experiments are given. Firstly, the results of the first 

trials (with 16 subject) are presented and the discussion of these results are also given. 

Secondly, results of ANN (with 35 subjects) and DNN (with 33 subjects) classifiers are 

specified. Discussion of all the results is also available in detail in the following sections. 

Finaly, the results of the last experiments (with 20 football player) are explained and 

evaluation of these results are also given. Since results of the experiments are not 

comparable, here all results and their discussions are given under different headings. 

3.1.  Preliminary Experiment  

In order to obtain the differences between attentional focus condition groups, the data sets 

were checked for normality adopting Kolmogorov-Smirnov test (Tremolada et al., 2019). 

The data were found to be normally distributed. Therefore, paired t-test (p = 0.05) was 

applied to the data. The p value was found to be less than 0.05. Consequently, the results 

showed that there was a significant difference between external and internal focus 

conditions in their EMG activity level which is in line with previous attentional focus 

related studies. Besides, the muscular activity was lower when participants were 

instructed to focus on the dumbbell (external) instead of focus on their biceps brachii 

muscles (internal). These findings were also in line with constrain-action hypothesis 

(Gabriele Wulf et al., 2001). Moreover, these results also suggest that performers would 

achive experimental tasks such as grasping, weight-lifting or force production with less 

EMG activity resulted external focus of attention.  
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3.2.  Experiment 1   

3.2.1. Statistical results of experiment 1 

A non-parametric Friedman test results showed that there was a significant difference 

between attentional focus conditions for RMS, MAV, IEMG and Integrated FFT values. 

The statistical results are presented in Table 3.1. 

Table 3.1 : A non-parametric Friedman test results of different parameters. 

Statistical Parameter P value (p = 0.05) Chi-square (2) N = 35 

RMS 0.0032 11.4857 

MAV 0.0053 10.4714 

IEMG 

Integrated FFT 

0.0003 

0.0037 

15.8286 

11.2100 

After obtaining the statistical difference between the data sets, in order to determine 

specific differences between attentional conditions, Wilcoxon Signed-Ranks tests (p = 

0.05) were applied. The Wilcoxon Sign-Ranks tests results are given in Table 3.2. 

Table 3.2 : Statistical Wilcoxon Signed-Ranks tests results of different parameters for all data. 

Statistical 

Parameter 

P value 

(Control – External) 

P value 

(Control – Internal) 

P value 

(External – Internal) 

RMS 0.0069 0.1538 0.0012 

MAV 0.0034 0.2709 0.0001 

IEMG 

Integrated FFT 

0.0187 

0.0079 

0.4207 

0.1468 

0.0001 

0.0001 

The results of Wilcoxon Signed-Ranks test, post-hoc, for RMS, MAV, IEMG and 

Integrated FFT parameters showed that the main effect of attentional focus between 

external and internal was highly significant (p < 0.001). Besides, there was a statistical 

difference between control and external condition (p < 0.05) as well. However, no 

statistical difference was found between control and internal data.  

The graphical representation of average RMS is displayed in Figure 3.1.  
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         *Indicates a significant difference between the groups and error bars refer to Standard Error (SE). 

Figure 3.1 : Average RMS results of all data for each conditions.  

The graphical representation of average MAV is showed in Figure 3.2.  

 
        *Indicates a significant difference between the groups and error bars refer to Standard Error (SE). 

Figure 3.2 : Average MAV results of all data for each conditions.  

The graphical representation of average IEMG is presented in Figure 3.3.  
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    *Indicates a significant difference between the groups and error bars refer to Standard Error (SE). 

Figure 3.3 : Average IEMG results of all data for each conditions.  

The graphical representation of average Integrated FFT is presented in Figure 3.4.  

 
     *Indicates a significant difference between the groups and error bars refer to Standard Error (SE). 

Figure 3.4 : Average Integrated FFT results of all data for each conditions. Results of ANN classifiers 

The performances of ANN1 (time-domain) and ANN2 (frequency-domain) were 

compared by obtaining average results of training (70%), validation (15%) and test (15%) 

data. In order to keep the consistency between classification rate calculations, the results 

were calculated 3 times and their average results were evaluated. The summary of the 

EMG classification performances is displayed in Table 3.3.   
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Table 3.3 : Performance comparison of Neural Network for EMG classification. 

Neural Networks Training Validation Test Overall Hidden Layer 
ANN1 64.77 70.72 75.94 67.5 10 

 81.62 82.56 92.31 83.39 20 
 86.87 87.67 90.32 87.54 30 
 80.14 81.57 78.79 80.13 40 
 75.38 83.42 78.29 77.09 50 

ANN2 62.54 64.31 65.4 63.21 10 
 80.42 79.48 77.46 79.73 20 
 81.46 88.21 83.16 82.69 30 
 72.64 68.65 77.85 73.31 40 
 75.12 70.68 67.58 73.15 50 

It was concluded from Table 3.3 that the neural network with 30 neurons achieved the 

best classification rate which is 87.54% with ANN1. In case of ANN2, the best results 

were also obtained with 30 neurons. However, the success rate was lower compare to 

ANN1 which is 82.69%. The evaluation of classification performances of ANN1 and 

ANN2 is given in the following section.  

3.2.2. Discussion of the ANN results 

The results of the experiments showed that EMG activity was reduced under external 

focus condition, in agreement with previous studies, compare to control and internal one. 

Earlier studies that used EMG as a measurement parameter and run the experiments under 

various attentional focus conditions are given in Table 3. 4. 

Table 3.4 : Studies related to attentional focusing. 

Experimental Task Parameters Results 
Bicep curls (Vance et al., 2004) IEMG activity External< Internal 

Basketball free throws (Zachry et al., 2005) EMG activity External< Internal 
Isokinetic elbow flexion (Marchant et al., 2009) EMG activity External< Internal 

Jump and Reach (Gabriele Wulf et al., 2010) EMG Activity External< Internal 
Dart throwing (Lohse et al., 2010) EMG Activity External< Internal 

Isometric Force Production. (Lohse et al., 2011) EMG Activity External< Internal 
Balance task (Ardakani et al., 2015) EMG Activity External< Internal 

Vertical Jump Task (Ashraf et al., 2012) EMG RMSE External< Internal 
Current study EMG activity External< Internal 
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The results of the present study confirm and extend previous findings. Even though, in 

many former studies, external focus was found to result in more effective movement 

outcomes than internal focus, the present study was the first investigation of whether the 

influence of an individual’s attentional focus would also be seen in his/her EMGs to be 

used as control signals in robotics. Even though these results were not desired in case of 

previous studies, in term of HMI applications, the higher EMG activity means the better 

signal quality thereby the signal can be classified in such way that it can be used for 

controlling robotic mechanisms.  

In this experimental study, the EMG classification results for different attentional 

focusing types were presented. The results indicate that the designed algorithms ANN1 

and ANN2 were successfully classified the signals and the average rates were 87.54% 

and 82.69%, respectively. These results that are in line with previous studies are shown 

in Table 3.5. 

Table 3.5 : Comparison of classification results with related studies. 

Researcher Method Classification Rate 
(Al-Timemy et al., 2008) ANN with BPA 88% and 91% 

(Ibrahimy et al., 2013) ANN with trainlm 88.4% 

(Mane et al., 2015) ANN 93.25 % 

(Duan et al., 2016) ANN 93.2 % 

(Kehri et al., 2017) ANN with PCA 92.4 % 

(Oleinikov et al., 2018) ANN 91 % 

Current Study ANN 87.54 % and 82.69% 

In the research by Al-Timemy et al., they classified the EMG signals as they represent 

either myopathy or neuropathy. In the other studies, they used ANNs for hand motion 

detection applications (Duan et al., 2016; Mane et al., 2015; Oleinikov et al., 2018) and 

Kehri and his colleagues used the signals to classify neuromuscular diseases (Kehri et al., 

2017). In this present study, the signal classification was succeeded by means of time and 

frequency domain features extracted according to participants’ attentional focus 

preferences and the results were found to be 87.54% and 82.69%, for ANN1 and ANN2 

respectively.  
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The main difference between our study and the former ones is that our origin of the signal 

has not changed. In other words, this research is not relied on classifying EMG diseases 

which includes abnormal signals due to a patient’s fitness. Our results were based on 

same performers’ EMG signals. Additionally, the hand motion detection studies are also 

not difficult to classify according to their different signal outputs. However, in our study, 

the only difference that make the results significant was the individual’s focus of attention 

preferences. Even though they are all healthy and performed exactly same procedure in 

the experiments, just by changing their attentional focusing type, the results were 

changed, remarkably. Another point of view to this study is that one’s focus of attention 

type would be predicted from his/her EMG activity which can also be useful in control 

mechanisms. 

3.2.3. Results of DNN classifiers 

The results of 33 students were evaluated in this part of the study. The data from two 

students out of 35 were not found to be suitable for deep neural network classifier. 

Therefore, they were removed from the analysis.  

Figure 3.5 shows the EMG activity of a single participant, represented as a function of 

external versus internal focus.  
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Figure 3.5 : A participant’s EMG activity under external and internal focus conditions. (a) External 

condition (a participant focuses on the dumbbell during performance) - (b) Internal condition (a 
participant focuses on biceps brachii muscle during performance). 

After getting significant difference between EMG activities under external and internal 

focus and obtaining classification results for ANNs, a deep neural network model was 

developed for the classification of the attentional focusing strategies of a participant based 

on wavelet coefficients of his/her EMG signal. The deep neural network model was 

compiled and the results of performance comparison of deep neural network for EMG 

classification with different epoch numbers are given in Table 3.6. 

Table 3.6 : Performance comparison of DNN for EMG classification with different epoch numbers 

Wavelet Coefficients Training (70%) Test (30%) Overall Epoch Number 
 

DB4 (4th level) 
 

89.94 
 

90.83 
 

90.39 
 

100 
 96.66 97.65 97.16 200 
 98.21 99.92 99.07 300 
 96.33 99.7 98.02 400 

 
HAAR (4th level) 

 90.23 91.36 90.8 100 
 95.42 97.88 96.65 200 
 99.22 99.85 99.54 300 
 98.28 99.1 98.69 400 
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The best classification success rate of the model was obtained with 300 epochs for both 

DB4 and Haar wavelets. The classification rate was found to be 99.07% for DB4 

coefficients whereas, 99.54% for Haar coefficients.  

3.2.4. Discussion of DNN results 

It is known that most of the HMI studies (Pan et al., 2019) based on using a subject’s 

EMG signals to control such as artificial prosthetic arms, wheel chairs (Abbaspour et al., 

2020; Amanpreet, 2019; Shi et al., 2018). In all these EMG-based control studies, the 

useful signal features must be extracted in order to classify the signals. 

 In our study, DWT coefficients of subjects’ signals were extracted as features under 

external and internal focus of attention to be used as inputs for a deep neural network. 

Although the signals seemed to be similar (Figure 3.2), the classification rates for 

designed DNN were pretty high.  

The overall rate of the classification was found to be 99.07% for DB4 whereas, 99.54% 

for Haar methods. It can clearly be understood that with both preferred mother wavelets 

for EMG signals (Baspinar et al., 2015) , the results were promising.  

Another point of view to this study is that the results would be used for musculoskeletal 

rehabilitaiton. Recent studies have proved that verbal instructions could have a powerful 

influence on motor performance and learning by directing a subject’s focus externally 

rather than internally (Gokeler et al., 2015; Welling et al., 2016).  

Hunt et al. confirmed and extended previous studies by suggesting the use of attentional 

focusing strategies by physical therapists during rehabilitation sessions (Hunt et al., 

2017). Instructions given by a physical therapist are a key consideration in teaching motor 

skills and directing a patient’s attention of focus. Hence, in order to perform effective 

movement outcomes for the patients during rehabilitation physical therapists could have 

a great advantage by promoting an external focus of attention through verbal instructions.  

Although verbal instructions through external focus have shown a positive effect on 

movement outcomes, it has been hypotheised in this thesis that internal focusing might 

also have several benefits. For example, in case of musculoskeletal rehabilitation internal 

focusing might enhance the effectiveness of the therapy. As known, internal focus 
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constrains the automaticity of movement which causes more muscular activity to be 

generated. Since higher EMG activity means better EMG-based control, internal focus 

culd be useful especially during a robot-assisted musculoskeletal rehabilitation. 

Therefore, when a physical therapist instructs her or his patients internally, the patient, 

who has upper extremity disorders, could perform the required movements more 

successfully with the help of EMG-based robot-assisted mechanism. Since appropriate 

instructions are critical to effective guidance of movements, these results might be useful 

for physicians to plan their treatment as well. If this suggestion is considered by physical 

therapists, the advantages of internal focusing might be seen on the outcome of the 

treatments. 

Overall, unlike previous attentional focus related studies, this part of the thesis 

emphasizes the advantages of focusing internally. This opposite point of view is based on 

comparison of EMG activities of performers and presenting the possible benefits of 

internal focusing on HMIs, robotics, prosthetics and in robot-assisted musculoskeletal 

rehabilitation. The methodology is given here has also proved that the EMG signals could 

be classified according to attentional focusing type for the first time with quite high 

success rates (99.07% and 99.54%) which means when this model is applied for real-time 

control mechanisms, the system might work in such way that the mechanism can be 

controlled accurately.  Just by changing attentional focusing type the patients can control 

their movement with the help of EMG based systems. With the ability to predict type of 

attention, this novel approach might also be useful for physicians to plan effective 

treatment for their patients. 

3.3.  Experiment 2 

3.3.1. Results of experiment 2 

IEMG activity of 20 participants were calculated and the results were analyzed.  Table 

3.7 shows the paired t-test results (p <0.05) of normalized IEMG activity of ST, SM and 

BF muscles, respectively during 3 attentional focus conditions.   
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Table 3.7 : Paired t-test results of hamstring muscles under various attentional focus conditions 

Muscle 

(dominant) 

Control – External 
(p value) 

Control – Internal 
(p value) 

External – Internal 
(p value) 

Semitendinosus 0.0355* 0.0610 0.1844 

Semimembranosus 0.0124* 0.0008* 0.2865 

Biceps femoris 0.2584 0.0823 0.3847 

* Denotes significant difference between the groups 

A significant main effect of the verbal attentional focusing instructions were observed in 

IEMG of ST (p = 0.0355) with the external condition exhibiting a lower mean IEMG 

(32.24 ± 10.7 %IEMG) than the control condition (33.58 ± 11.81 %IEMG). However, 

internal verbal instructions (32.69 ± 10.73%IEMG) had no significant effect (p > 0.05) 

on ST. The graphical representation of IEMG activity for Semitendinosus is displayed in 

Figure 3.6.  

 
     *Indicates a significant difference between IEMG activities under these focusing conditions (paired t-test, p < 0.05) and error 

bars refer to Standard Error (SE). 

Figure 3.6 : Average IEMG activity of ST under control, external and internal focus of attention.  

The main effect of attentional focusing instructions on IEMG of SM during the task was 

significant (p = 0.0124) with the external condition exhibiting a lower mean IEMG (40.56 

± 15.17 %IEMG) than the control condition (43.31 ± 17.13 %IEMG). There was also 

significant difference (p = 0.0008) between control and internal (40.99 ± 16.14 %IEMG) 

conditions in SM muscle. However, the difference between external an internal was not 
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found to be significant (p > 0.05). The graphical representation of IEMG activity for 

Semimembranosus is displayed in Figure 3.7. 

 
        *Indicates a significant difference between IEMG activities under these focusing conditions (paired t-test, p < 0.05) and error    

          bars refer to Standard Error (SE). 

Figure 3.7 : Average IEMG activity of SM under control, external and internal focus of attention.  

In case of Biceps Femoris, no significant changes were found between any attentional 

focusing conditions. The graphical representation of IEMG activity for Biceps Femoris 

is displayed in Figure 3.5. 
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*Indicates a significant difference between IEMG activities under these focusing conditions (paired t-test, p < 0.05) and error bars 

refer to Standard Error (SE). 

 
Figure 3.8 : Average IEMG activity of BF under control, external and internal focus of attention. There 

was no significant difference between attentional focusing conditions (paired t-test, p > 0.05).  

The results showed that the different verbal attentional focus instructions resulted in 

comparable IEMG activity for the ST, SM and BF muscles during leg curl exercises.  

3.3.2. Discussion of experiment 2  

The main findings of this study demonstrate that there are significant differences in 

activation between muscles under various attentional focusing strategies. 

Lewis and Sahrmann already showed that the EMG activity of hamstrings were reduced 

when women were instructed as follows “use your gluteal muscles to lift your leg while 

keeping your hamstrings muscles relaxed” (Lewis & Sahrmann, 2009). Their results were 

based on comparing the effects of instructing the participants to contract gluteal muscles 

and afterwards the hamstring muscles. However, here we compared the effect of verbal 

instructions on IEMG activity of each hamstring muscles.  

In our study, as the leg curl exercise is directly targeting hamstring muscle group, it was 

expected that the effect of attentional focus instructions on hamstrings during leg curl 

exercises could be clearly observed. One of the key findings of our results that external 

focusing showed the lowest EMG activity in all muscles which is in line with 
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“constrained-action hypothesis” (Vance et al., 2004; Gabriele Wulf et al., 2001). Our 

results revealed that when considering the IEMG activity of the ST, SM and BF, the 

significant decrease with external focus could only be seen in ST and SM which are the 

medial hamstrings. No significant changes were found for BF under any attentional focus 

conditions.  

Semimembranosus showed the highest muscle activation under all conditions and both 

external and internal focusing resulted significant decrease compare to the control 

condition. As expected, external focusing reduced the EMG activity. However here, 

interestingly muscular activity was also reduced with internal focusing which is in 

contradiction with the Schoenfeld and Contreras study (Brad J Schoenfeld & Contreras, 

2016). They suggest using internal focus via mind-muscle connection would provide 

great advantage to maximize muscular development which is especially important to the 

fitness professionals. As mind-muscle connection related studies showed that internal 

focusing would enhancemuscle hypertrophy (Paoli et al., 2019; Brad Jon Schoenfeld et 

al., 2018), here the results of the experiments demonstrated that internal focusing had no 

positive effect on the hamstring muscles.  

For semitendinosus, the EMG activity was significantly different between control and 

external conditions. Similar to BF, there was no significant difference between control 

and internal conditions. Marchant showed that if there is no specific instructions under 

control conditions, the subjects appear to direct their attention toward the control of 

movements which is similar to internal focus condition (Marchant, 2011). Therefore, 

based on our results, it may be possible that majority of our participants focused internally 

as habitual practice during control condition.  

Kellis et al. explained architectural differences and similarities between hamstring 

muscles in detail and they came to the conclusion that intra-muscular differences have an 

effect on the function of the hamstrings as a muscle group. They also suggested that 

additional factors would be required for estimation of whole muscle architecture (Kellis 

et al., 2012). Since our study showed that different muscles correspond to different 

responses due to the attentional instructions at EMG activity level, the ability of the 

muscle to be focused amongst hamstring muscles demands a separate study.  
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The results of the present study indicate that among the hamstring muscles the EMG 

activity of both semitendinosus and semimembranosus was reduced under external focus 

condition. Contrary the the conventional effect belief, the biceps femoris muscles showed 

no significant change of EMG activity while being subjected to different attentional focus 

conditions. As leg curl exercise gives us an insight specifically into the hamstrings, this 

study allows improved efficiency on planning for training that involves hamstring 

muscles which eventually protects sport professionals from potential injuries. 
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CHAPTER 4.  GENERAL CONCLUSION 

There are several important findings in this thesis. Firstly, the EMG activity of biceps 

brachii muscle was reduced when the performers focused externally during weight-lifting 

which was in line with the literature. Therefore, it is clear that external focus enhances 

motor skills and learning of people but reduces EMG activity. Nevertheless, this thesis 

emphasizes the positive effects of internal focus.  

In order to use the EMG signals in engineering field such as in HMIs, high EMG activity 

is preferred for better signal quality so that it can be used as useful inputs for robotic 

control purposes. Since the internal focus increases the EMG activity, one can say that, 

focusing internally would create more useful inputs for control-based mechanisms.  

Furthermore, with this study, the performer’s EMG signals could be classified according 

to his/her attentional focus preferences. The ANN and DNN classifiers, feeded with 

different features, showed that even though the origin of the signals belongs to the same 

healthy people with the same experimental task, just by changing focus of attention type 

the signals could be classified with a very high accuracy. Therefore, one’s focus of 

attention type would be predicted from his/her EMG activity which may make a notable 

difference when these signals are used for EMG-based control mechanisms. When this 

model is applied for real-time control mechanisms, the system might work in such way 

that the mechanism can be controlled accurately. 

Additionally, it might be also possible that just by changing attentional focusing type, 

instructed by a physician, patients, who has suffered a stroke or upper extremity disorders, 

can improve the efficiency of their movement with the help of EMG based robot-assisted 

systems. This novel approach might also be helpful for physicians to plan effective 

treatment for their patients.  

Morever, these results were not limited to only biceps brachiie muscles. The results of leg 

curl exercise experiment also showed that the effects of attentional focusing type can 
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differ from one muscle to another. The results indicated that among the hamstring muscles 

the EMG activity of both semitendinosus and semimembranosus was reduced under 

external focus condition. Contrary to the conventional effect belief, the biceps femoris 

muscles showed no significant change of EMG activity when subjected to different 

attentional focus conditions. Besides, as opposed to mind-muscle connection phenomena, 

in this study, internal focusing had no positive effect on hamstring muscle activities.   

This thesis implements attentional focusing strategies into the engineering field. By 

classifying the EMG signal according to performers’ attentional preferences with high 

accuracy, it has been concluded here that the output of the classifiers can be used as 

alternate inputs for HMI applications. Therefore, number of useful inputs would be 

doubled which is a novel approach.  

As a result, this thesis suggested that attentional focusing strategies may have several 

advantages in engineering fields such as HMI, robotics, EMG-based control and it also 

gives a new perspective to the studies in the field of attentional focus. 
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